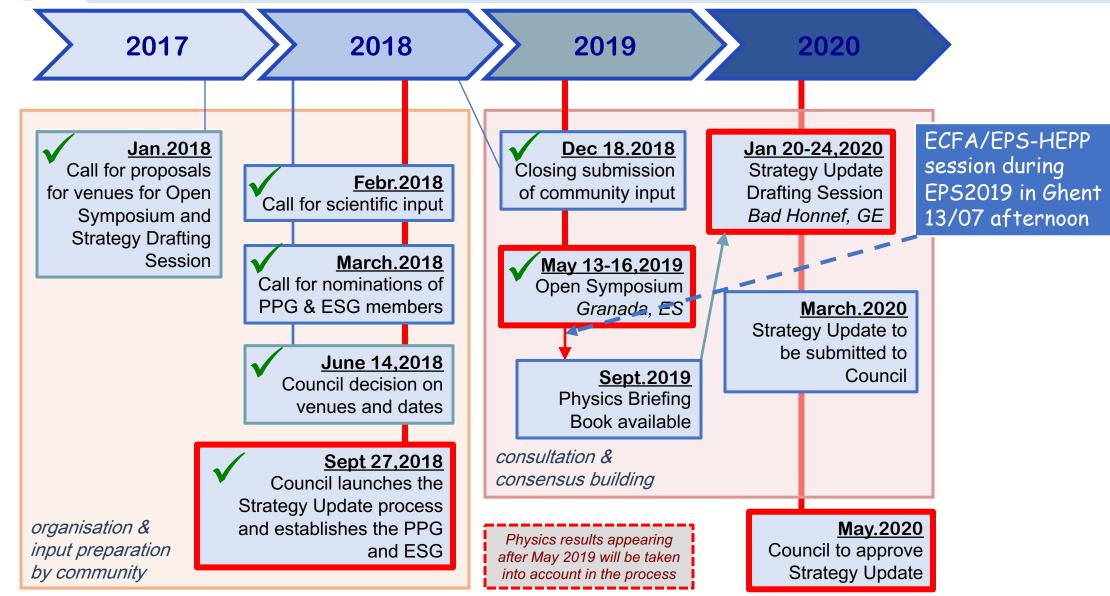


European Particle Physics Strategy Update 2020

Overview of the Open Symposium

Halina Abramowicz Tel Aviv University

- About the Symposium in Granada
- Examples of addressed physics issues
- About research tools
- · Challenges ahead



Reminder - organisation of the Update Process

- Decision making body CERN Council
- Drafting of the Strategy Update document responsibility of the European Strategy Group (ESG)
- Scientific Input to the Strategy Update responsibility of the Physics Preparatory Group (PPG)
 - > Call for input
 - > Processing of the input
 - > Open Symposium
 - > Briefing Book
- Coordinating body the Strategy Update Secretariat (SUS)

EPPSU 2020 timeline

Scientific Input to the Strategy Update

- Call for inputs issued February 28, 2018 with deadline for submission December 18, 2018
- 160 submissions received

Track ID	Granada sessions	Description	Conveners		
1		Large experiments and projects	PPG/ESG		40
2		National road maps	ESG		42
7	B1	Electroweak Physics (physics of the W, Z, H bosons, of the top quark, and QED)	Keith Ellis	Beate Heinemann	21
8	B2	Flavour Physics and CP violation (quarks, charged leptons and rare processes)	Belen Gavela	Antonio Zoccoli	27
5	B3	Dark matter and Dark Sector (accelerator and non-accelerator dark matter, dark photons, hidden sector, axions)	Marcela Carena	Shoji Asai	27
3	B4	Accelerator Science and Technology	Caterina Biscari	Lenny Rivkin	51
4	B5	Beyond the Standard Model at colliders (present and future)	Gian Giudice	Paris Sphicas	20
10	B6	Strong Interactions (perturbative and non-perturbative QCD, DIS, heavy ions)	Krzysztof Redlich	Jorgen D'Hondt	31
9	B7	Neutrino Physics (accelerator and non-accelerator)	Stan Bentvelsen	Marco Zito	23
6	B8	Instrumentation and Computing	Xinchou Lou	Brigitte Vachon	35
11		Other (communication, outreach, strategy process, technology transfer, individual contributions,)	ESG		

- The Open Symposium aimed to reach a consensus on the scientific goals of the community, based on the provided input, and to assess the proposed projects and technologies to achieve these goals
- > The ESG needs all this input to propose a realistic update of the Strategy

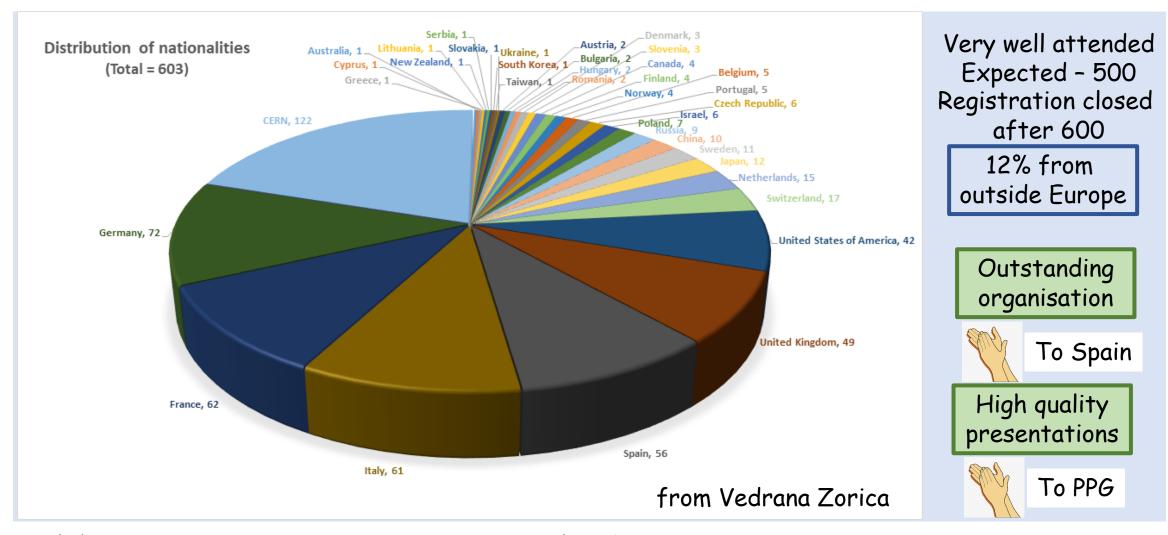
Open Symposium

Discussions on 8 themes organized in Parallel Sessions (EWK Physics, Flavour/CP, Dark Sector, Accelerators, BSM at colliders, Strong Interactions, Neutrino, Instrumentation and Computing)

Parallel Sessions convened each by 2 members of the PPG

- 2 half-day sessions per theme, separated by half-day
- Each session invited 2 (3) scientific secretaries
- Focus on a few fundamental questions (posted on Granada website under "Organisation of the Symposium")
- Experts invited to summarise submitted inputs
 - > About 100 speakers in total
- Plenty of time for discussions

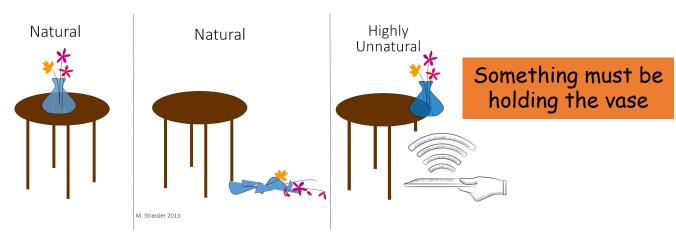
Open Symposium


Plenary Sessions

- 2 half-days to review where we stand and what is expected of the European community, also by communities outside Europe
- Full day of summaries from the Parallel Session
- ➤ End product of the Symposium → Briefing Book based on the summaries, compiled by the PPG, assisted by scientific secretaries (aim at about 100 pages)
- > Expected to be ready by September 2019
 - Executive Summary
 - Theoretical Introduction
 - Summaries of the 8 Parallel Sessions
 - Compiled synergies between various areas of research and projects
 - Addenda list of submitted projects, their timelines, cost estimates, ...
- > Documents compiled for the discussions in the Parallel Sessions will be posted in cds or arXiV

Latest update - first complete drafts appeared this week

Participants in Granada

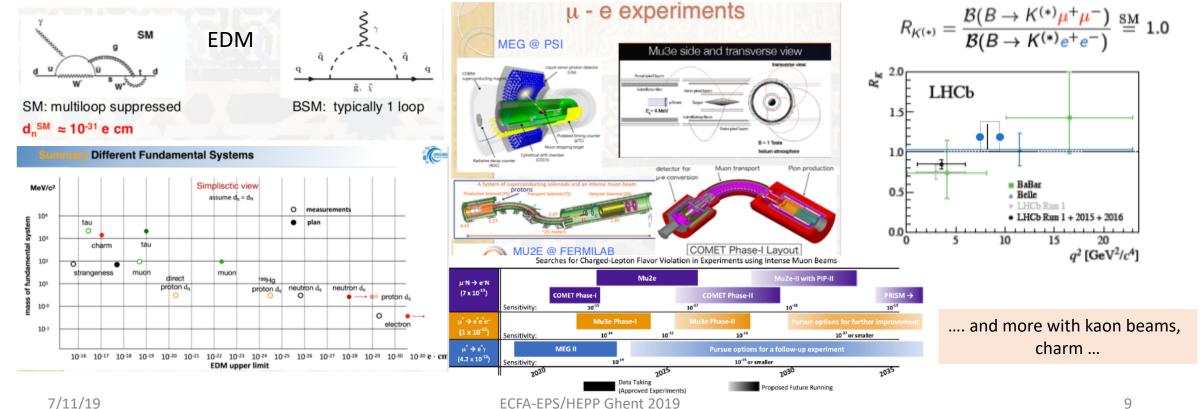

Strategy Update

What has changed since the 2013 Strategy Update?

- > The HL-LHC was approved in 2016
- The expected reach of HL-LHC has been substantially updated

√s = 14 TeV, 3000 fb⁻¹ per experiment Higgs couplings ATLAS and CMS Statistical after HL-LHC **HL-LHC** Projection Experimental Uncertainty [%] Theory Tot Stat Exp Th **1.8** 0.8 1.0 1.3 **1.7** 0.8 0.7 1.3 $\kappa_{Z} \equiv$ **1.5** 0.7 0.6 1.2 **2.5** 0.9 0.8 2.1 Largest contribution to the 3.4 0.9 1.1 3.1 uncertainty from theory **3.7** 1.3 1.3 3.2 **1.9** 0.9 0.8 1.5 **4.3** 3.8 1.0 1.7 0.06 0.08 0.02 0.04 0.1 0.12 0.14 Expected uncertainty What did not change since the 2013 Strategy Update?

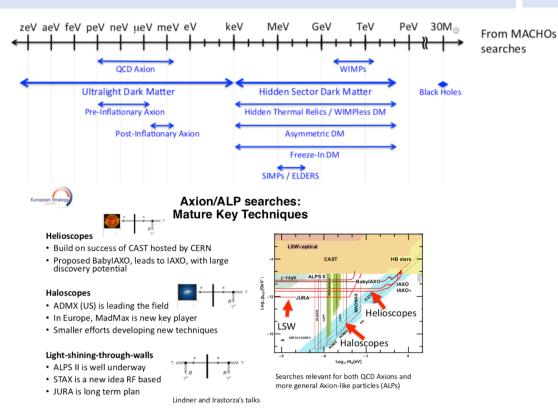
- No signs of BSM physics
- Neutrinos have masses not acquired in the SM
- There is dark matter in the Universe with no candidates within the SM
- Prevalence of matter over anti-matter
- Theorists believe that the theory is not complete



From Matt Strassler

Flavour Physics and CP

- > Study processes very unlikely or impossible in the SM
- \triangleright Great sensitivity to Physics Beyond the Standard Model scale beyond 10^2 10^5 TeV
- > Complementarity of low energy high-precision and high energy frontier



Dark matter/Dark sector

- Dark Matter
 - What if dark matter is light?

- Dark Sector
 - > Search for dark photon

Too small mass ⇒ won't "fit" in a galaxy!

Standard Model Portal Dark Sector

BEAM DUMP PROJECTS AT CERN

DP = Dark Photon DS = Dark Scalar

HNL = Heavy Neutral Lepton ALP = Axion-Like Particle

EXPERIMENT	PERIOD	BEAM	PARTICLES ON TARGET	SIGNATURE	MODELS
NA64++(e)	2015-24	e 100 GeV	eV ~5 10 ¹² invisible & visible		DP, ALPs
eSPS/LDMX	> 2026	e 16 GeV	10 ¹⁶	invisible	DP, ALPs
AWAKE++	> 2026	e ~50 GeV	~1015	visible e ⁺ e ⁻	DP, ALPs
NA62++	> 2022	p 400 GeV	10 ¹⁸	visible	DP, DS, HNL, ALPs
SHIP	> 2026	p 400 GeV	2 10 ²⁰	recoil & visible	DP, DS, HNL, ALPs
ΝΑ64++(μ)	> 2022	μ 160 GeV	5 10 ¹³	invisible	DZ_{μ} , $ALPs$

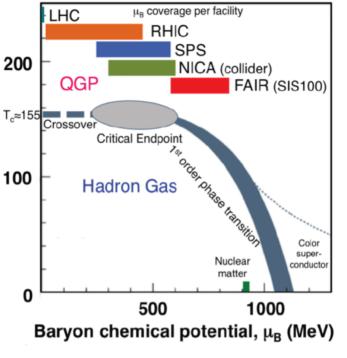
NB: CERN offers unique opportunities with both lepton and hadron beams

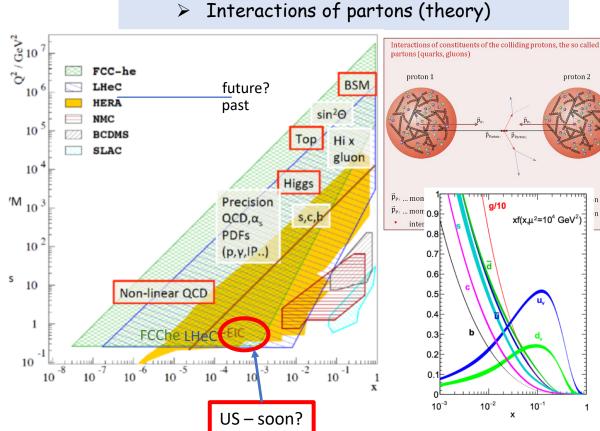
LHCb and LHC-LLP dedicated projects (FASER, milliQan, CODEX-b, MATHUSLA) have also sensitivity in similar mass range

Strong Interactions (QCD)

Human kind consists of 95% QCD and 5% Higgs

QCD is part of the SM but we have problems deciphering it!


- Confinement


 - > Hot and dense matter

(MeV)

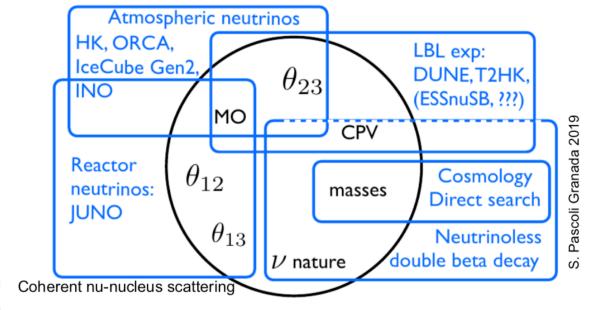
Temperature,

Spectroscopy (new form of hadrons) LHC Nucleus

Perturbative regime (essence of pp machines)

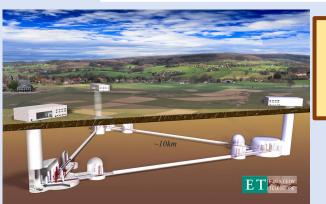
Partonic structure of hadrons (exp)

Expected as gas of free partons


Found to be a perfect liquid

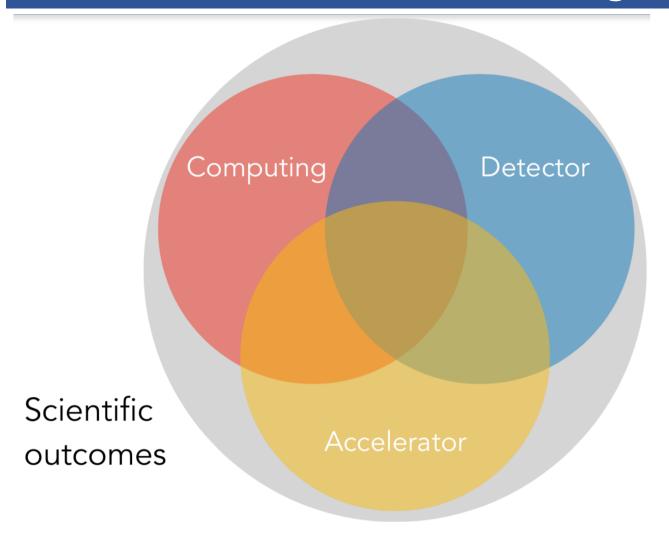
Quark gluon plasma

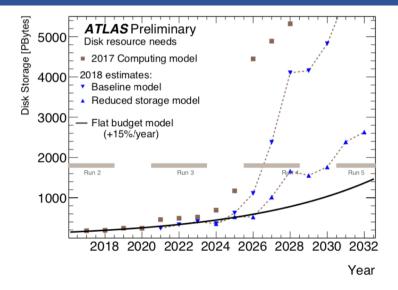
Neutrino physics and Astroparticle


A very diverse experimental approach

Motivation: necessary to get a complete picture, make the most out of every neutrino source, test at different L/E, possible existence of new neutrino states, of Non-Standard-Interactions

Astroparticle physics


- Gravitational waves and multimessenger physics open up a new window on the Universe. Very strong physics case.
- There is a very high impact on the field of particle physics (and fundamental interactions) (eg dark matter, neutrinos, general relativity, ...)
- There is clearly an opportunity for the particle physics community and laboratories to expand their involvement in this program



Einstein telescope needs CERN expertise "Triangular accelerator without beam"

Research Ingredients

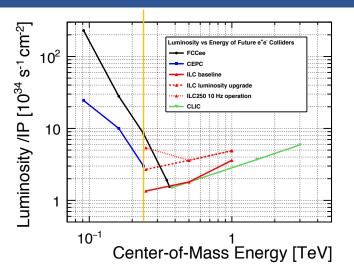
- Instrumentation and computing activities crucial to enable scientific programs.
- Important instrumentation and computing challenges ahead of us.
 - Exciting opportunities for innovation.
- Addressing these challenges will require taking into account
 - Human factor
 - R&D activities/coordination

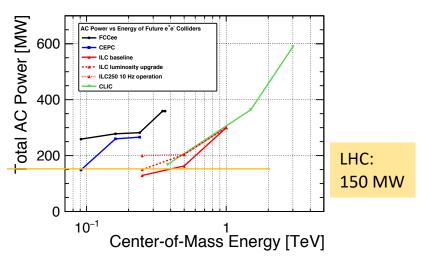
"Small scale" projects

CERN based

ID	Name	Timeline	Cost
12	SHiP	Physics in 2027	70 MCHF
129	SPS BDF	Available 2027	156.3 MCHF
17	n_TOF		
36	Dark sector with primary electron beam @ CERN	eSPS commissioning 2024 (5 years after decision)	79.5 MCHF
39	EPIC / ISOLDE	Commissioning 2027	101 MCHF
58	AWAKE++	Installation in LS3	
110	Next-generation LHC HI exp.	R&D etc. ongoing; installation during LS4	150 MCHF
151	BSM searches with HI collisions at LHC		No significant investment
143	QCD facility at M2 beamline at SPS		10-20 MCHF
153	KLEVER	Installation 2025 (LS3)	38.95 MEUR
75	REDTOP	-	50 M\$
75 / 94	LHC-LLP with MATHUSLA etc.		< 100 MCHF
	NA60++	3 years R&D, 2 years construction; data taking after LS3	15-25 M€
118	MUonE		< 10 M€
	COMPASS++	After LS3 operation	10-20 M€
154	NuStorm	Component construction starting >8 years from now	160 MCHF

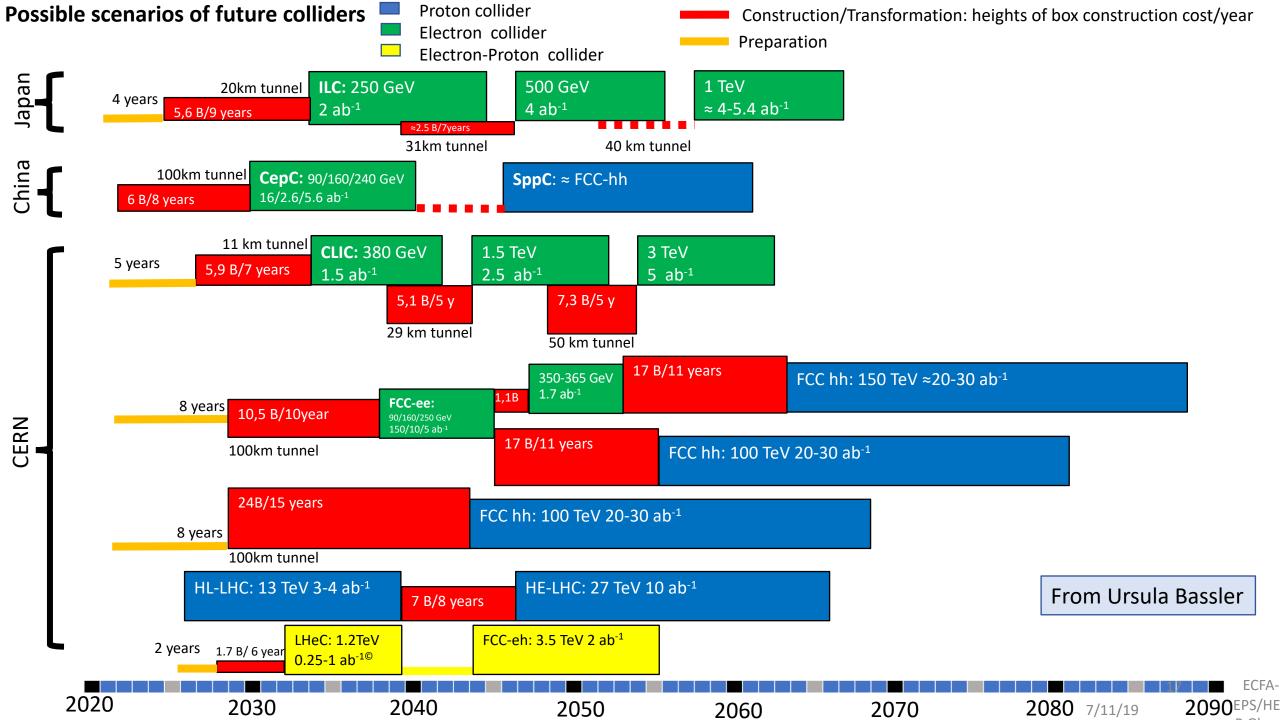
Elsewhere


76	J-PARC		
93	NICA @ JINR	Multi-phase setup; operational 2025?	465 M\$
14	Complex Nevod	2019-26	24.6 MCHF
49	Super-Tau-Charm Factory	Operation 2029	415 MEUR
137	Short baseline neutrinos at FNAL	Physics with LArTPC end of 2020	
30	Large-scale neutrino detectors in Russia	Full setup ready 2027	265 MEUR
124	Neutrino beam Protvino → ORCA	2018 construction start; 2027 (35) phase 1 (2) data taking	
158	Opportunities in acc based neutrinos in Japan	T2K running beyond 2021; HyperK far detector construction beginning 2020.	-
64	Gravitational waves / Einstein Telescope	5 years construction	O(1000 MEUR)
11	SuperKEKB/Belle II	operation until ~2027	
74	Electron-ion collider science and technoloy		


List not complete – work in progress

New accelerator projects

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost	1 ILCU = 1 USD in 1	/01/2012
ILC	ee	0.25	2	11	129 (upgr. 150-200)		4.8-5.3 GILCU + upgrade	
		0.5	4	10	163 (204)	7.98 GI	7.98 GILCU	
		1.0			300	?	?	
CLIC	ee	0.38	1	8	168	5.9 GCI	5.9 GCHF	
		1.5	2.5	7	(370)	+5.1 G	+5.1 GCHF	
		3	5	8	(590)	+7.3 G	+7.3 GCHF	
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$	5 G\$	
		0.24	5.6	7	266	_		
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 G	CHF	
		0.24	5	3	282			
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 G	CHF	
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GO	CHF	
FCC-hh	pp	100	30	25	580 (550)	17 GCH	F (+7 GCHF)	
HE-LHC	pp	27	20	20		7.2 GCI	HF.	
LE-FCC	pp.	37.5	15	20		14.9 GCH	F. New at re	equest of ESG

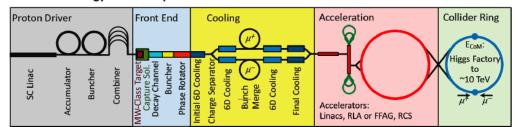

Technical Challenges in Energy-Frontier Colliders proposed

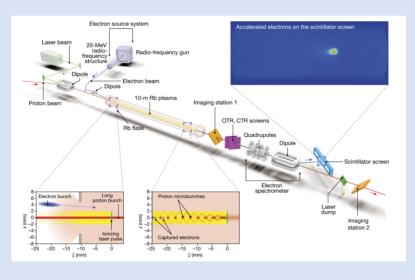
		Ref.	E (CM) [TeV]	Lumino sity [1E34]	AC- Power [MW]	Cost-estimate Value* [Billion]	B ITI	E: [MV/m] (GHz)	Major Challenges in Technology
С	FCC- hh	CDR	~ 100	< 30	580	24 or +17 (aft. ee) [BCHF]	~ 16		High-field SC magnet (SCM) - Nb3Sn: Jc and Mechanical stress Energy management
C	SPPC	(to be filled)	75 – 120	TBD	TBD	TBD	12 - 24		High-field SCM - IBS: Jcc and mech. stress Energy management
С	FCC- ee	CDR	0.18 - 0.37	460 – 31	260 – 350	10.5 +1.1 [BCHF]		10 – 20 (0.4 - 0.8)	High-Q SRF cavity at < GHz, Nb Thin-film Coating Synchrotron Radiation constraint Energy efficiency (RF efficiency)
C	CEPC	CDR	0.046 - 0.24 (0.37)	32~ 5	150 – 270	5 [B\$]		20 - (40) (0.65)	High-Q SRF cavity at < GHz, LG Nb-bulk/Thin- film Synchrotron Radiation constraint High-precision Low-field magnet
L	ILC	TDR update	0.25 (-1)	1.35 (- 4.9)	129 (- 300)	4.8- 5.3 (for 0.25 TeV) [BILCU]		31.5 - (45) (1.3)	High-G and high-Q SRF cavity at GHz, Nb-bulk Higher-G for future upgrade Nano-beam stability, e+ source, beam dump
C	CLIC	CDR	0.38 (- 3)	1.5 (- 6)	160 (- 580)	5.9 (for 0.38 TeV) [BCHF]		72 – 100 (12)	Large-scale production of Acc. Structure Two-beam acceleration in a prototype scale Precise alignment and stabilization. timing

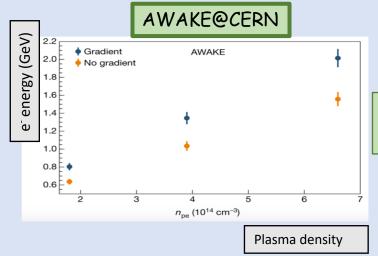
A. Yamamoto, 190513b

*Cost estimates are commonly for "Value" (material) only.

26




Future developments


Very interesting R&D projects

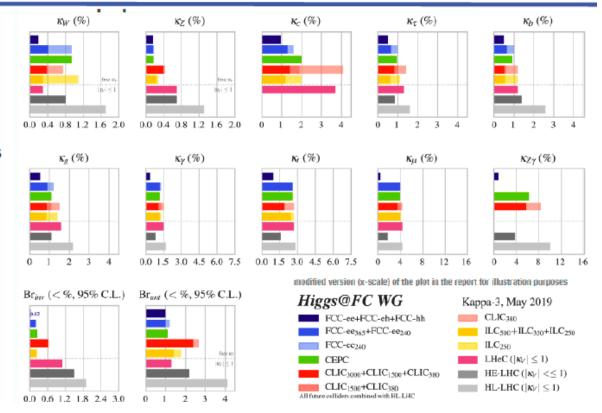
- Muon collider:
 - from proton beam (rcooling success: MICE)
 - from e+e- production (LEMMA)
- Plasma wakefield acceleration:
 - High gradients possible: ~100 GV/m
 - R&D progressing well but many challenges

Muon-based technology represents a unique opportunity for the future of high energy physics research: the multi-TeV energy domain exploration.

Achieved 2 GeV over 10m Gradient 200 MV/m

Precision physics with the Higgs

Comparison of Colliders: kappa-framework


Why precision physics with the Higgs boson

 H as a scalar couples to all the fundamental particles

Some observations:

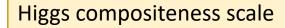
- HL-LHC achieves precision of ~1-3% in most cases
 - · In some cases model-dependent
- Proposed e⁺e⁻ and ep colliders improve w.r.t. HL-LHC by factors of ~2 to 10
- Initial stages of e⁺e⁻ colliders have comparable sensitivities (within factors of 2)
- ee colliders constrain BR → untagged w/o assumptions
- Access to κ_c at ee and eh

arXiv:1905.03764

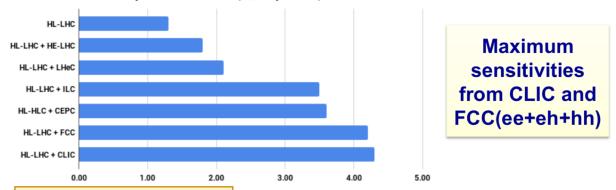
Various collider options relative to HL-LHC

of "largely" improved H couplings (EFT)

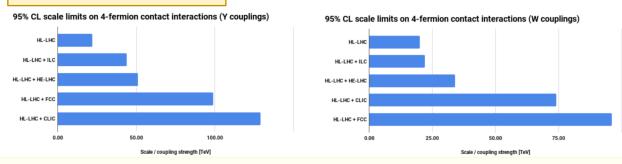
		Factor ≥2	Factor ≥5	Factor ≥10	Years from T ₀
	CLIC380	9	6	4	7
Initial	FCC-ee240	10	8	3	9
run	CEPC	10	8	3	10
	ILC250	10	7	3	11
	FCC-ee365	10	8	6	15
2 nd /3rd	CLIC1500	10	7	7	17
Run ee	HE-LHC	1	0	0	20
	ILC500	10	8	6	22
hh	CLIC3000	11	7	7	28
ee,eh & hh	FCC-ee/eh/hh	12	11	10	>50


13 quantities in total

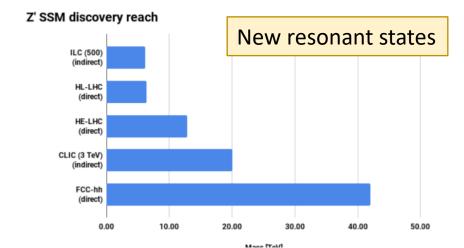
NB: number of seconds/year differs: ILC 1.6x10⁷, FCC-ee & CLIC: 1.2x10⁷, CEPC: 1.3x10⁷

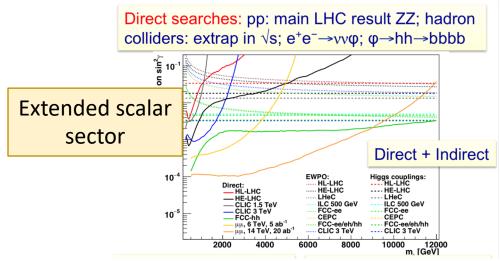


BSM at colliders


ECFA-EPS/HEPP Ghent 2019

95% CL limits on compositeness scale (O_H operator)




Contact Interactions

Sensitivity for ee colliders enhanced for couplings ≥ 1 (weak couplings → direct searches become more sensitive)

Searches for W' & charged fermion currents more effective at hadron colliders

And much more

Challenges for the European Strategy Group

Recommend future facility in Europe Are we ready? NO, but

- > Guidance from the Briefing Book
- Projects assessment of technological readiness, time scales, financial profile, operational costs, innovation, reach, ...
- > National Inputs (pre-Granada) subject to interpretation, however
 - ✓ Clear preference for an ete-collider as the next facility
 - ✓ R&D for future high energy colliders (new technologies)
 - ✓ Hadron collider beyond LHC
 - √ Support for diversity programme
 - ✓ Synergies with Astroparticle Physics

Plan to return to community with post-Granada scenarios

Challenges for the European Strategy Group

Additional aspects to be considered

- Ensure adequate dynamism in the particle physics science to remain attractive (long time scales)

 Many interesting ideas to complement energy frontier with precision measurements

 (EDMs, rare decays, low energy DM like dark mediators or axions, neutrinos,..., QCD)
- Ensure adequate support for theory development and related tools (career path)
 Difficult to convince Academia National Labs may help (CERN included)
- Ensure preservation of expertise in detector, accelerator and computing sciences See above; enhance the role of National Institutions
- Communicate interest of science to other fields of research and to society

 Seek synergies with ApPEC, NuPPEC, but also material science, light sources...

 Help with ECO (Education/Communication/Outreach) with dedicated funding
- ... Think about innovative ways to increase funding !!!!

EPPSU 2020/backup

Strategy Secretariat

- H. Abramowicz (Chairperson)
- J. D'Hondt (ECFA Chairperson, ECFA: European Committee for Future Accelerators)
- K. Ellis (SPC Chairperson, SPC: Science Policy Committee @ CERN)
- L. Rivkin (European LDG Chairperson, LDG: Lab Directors Group)

Contact: <u>EPPSU-Strategy-Secretariat@cern.ch</u>

Physics Peparatory Group

- Strategy Secretariat
- Caterina Biscari (ES), Belen Gavela (ES), Beate Heinemann (DE), Krzysztof Redlich (PL) delegates nominated by SPC
- Stan Bentvelsen (NL), Paris Sphicas (GR), Marco Zito (FR), Antonio Zoccoli (IT) delegates
 nominated by ECFA
- Gian Giudice (CERN) nominated by CERN
- Shoji Asai (Japan) and Xinchou Lou (China) delegates from Asia nominated by ICFA
- Marcela Carena (US) and Brigitte Vachon (Canada) delegates from the Americas nominated by ICFA

Responsible to organize the Open Symposium and to deliver to the European Strategy Group (ESG) a Briefing Book.

http://europeanstrategyupdate.web.cern.ch/composition-esg

Composition of the ESG

European Strategy Group (ESG) composition, adopted by Council, December 2013:

- the Strategy Secretary (acting as Chairperson),
- one representative appointed by each CERN Member State,
- one representative for each of the Laboratories participating in the major European Laboratory Directors' meeting, including its Chairperson,
- the CERN Director-General,
- the SPC Chairperson,
- the ECFA Chairperson.

Responsible to deliver a draft Strategy Update to Council.

Invitees

- the President of the CERN Council,
- one representative from each of the Associate Member States,
- one representative from each Observer State,
- one representative from the European Commission and JINR,
- the Chairpersons of ApPEC, FALC, ESFRI, and NuPECC,
- the members of the Physics Preparatory Group.