
Computing and Software
Challenges

Graeme A Stewart, CERN EP-SFT

ECFA-EPS Special Session, Ghent 2019-07-13

Acknowledgement

● Preparing this talk would not have been possible without the many interesting
submissions to the EPPSU

● In particular I drew heavily on talks at the Granada Workshop from Simone
Campana, Ian Bird, Roger Jones, Matthias Kasemann, Maria Girone and Brigitte
Vachon

Thank you!

Of course, I take responsibility for any mistakes and misunderstandings and it was
my choice as to which work, in particular, to highlight

2

https://indico.cern.ch/event/808335/timetable

LHC and HL-LHC Challenges

● ALICE and LHCb will have a very large
increase in rate for LHC Run-3

○ This puts pressure on both CPU resources and
storage

● Move to model of data reduction and
software triggers

○ Maximise physics within available resources

● HL-LHC factor 4 in instantaneous
luminosity for ATLAS and CMS (7.5 x 1034)

● Trigger rates of 7.5-10kHz
○ Challenge of rate x complexity

● Current plots already represent
significant improvements over the
estimates in the HSF Community White
Paper from 2017

3

CMS Storage

https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8

Non-LHC Experiments

● HENP
○ DUNE - Foresee 70PB/year by

mid-2020s
○ FAIR - LHC data volumes
○ Belle II - 10PB/year RAW

● Non-HEP
○ SKA
○ LSST

● We will not be alone as a
science at the exabyte scale

● This is a both a threat and an
opportunity

4

The Scale of HEP Computing
● WLCG: an international collaboration to distribute and

analyse LHC data
○ Born of the need to scale up our computing to

the challenge of the LHC
○ Integrates computer centres worldwide
○ Provide resources as a single infrastructure

accessible by all LHC physicists
■ LHC is about 95% of total HEP resources

● 167 sites in 42 countries
● ~1 million CPU cores (100€ each)
● ~1 exabyte of storage (10-100€ per TB)
● >2 million jobs per day
● 10-100Gb network links

5

The Scale of HEP Software

● At least 50 million lines of code
○ Each LHC experiment has about 6M lines each

● Mostly C++, a lot of Python
● This would cost at least €500M to develop

commercially
● A lot of significant common software

○ Event Generators
○ Detector Simulation
○ ROOT, foundational toolkit and analysis framework

● A lot of experiment specific software
○ Even when a common solution would have been

credible

6

Technology Evolution

7

Technology Evolution

● Moore’s Law continues to deliver
increases in transistor density

○ But, doubling time is lengthening

● Clock speed scaling failed around 2006
○ No longer possible to ramp the clock speed as process size

shrinks
○ Leak currents become important source of power consumption

● So we are basically stuck at ~3GHz clocks from the
underlying Wm-2 limit

○ This is the Power Wall
○ Limits the capabilities of serial processing

● Memory access times are now ~100s of clock cycles
○ Poor data layouts are catastrophic for software performance

8

NVIDIA Titan V GPU
US$3000, 1.5GHz

K Rupp

https://github.com/karlrupp/microprocessor-trend-data

Decreasing Returns
over Time

● Conclusion is that diversity
of new architectures will
only grow

○ We don’t know, specifically,
what processors will look like
in a decade

● Best known example is of
GPUs

● But FPGAs and TPUs
(Tensor Processing Units)
are also used

9

[ref]

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Disk, Tape, Network

● Tape market now dominated by a
single manufacturer

○ No serious technological obstacles
○ Non-tape archival storage options are not

competitive right now

● Hard disk sizes do still grow
○ 100TB by HL-LHC
○ Time to read a disk’s worth of data

increases

● Network technology keeps improving
○ Foresee continued increases in available

bandwidth and increasing capabilities
(SDNs)

10

Hardware Evolution in a Nutshell

● More complex future
● Rising uncertainties over

technology and prices
11

c. 2000

c. 2019

Challenges and Opportunities

12

Concurrency and Heterogeneity
● The one overriding characteristic of modern processor hardware is

concurrency
○ Doing more than one thing at a time (SIMD, a.k.a. Vectorisation; MIMD, a.k.a. multi-threading)

● Because of the inherently parallel nature of HEP processing a lot of
concurrency can be exploited at rough granularity

○ Task and job parallelism served us well for many years

● However, the push to highly parallel processing (1000s of GPU cores) requires
parallel algorithms

○ This often requires completely rethinking problems that had sequential solutions previously

● There are a lot of possible parallel architectures on the market
○ Different CPU and GPU variants, no real common API to access them
○ To avoid lock-in need to use a wrapper (isolate the main algorithm) or a low level library

13

Data Layout and Throughput
● Original HEP C++ Event Data Models were heavily inspired by the Object

Oriented paradigm
○ Deep levels of inheritance, access to data through various indirections
○ Scattered objects in memory

● Lacklustre performance was ~hidden by the CPU and we survived LHC start
● In-memory data layout has been improved since then (e.g. ATLAS xAOD)

○ But still hard for the compiler to really figure out what’s going on
○ Function calls non-optimal
○ Extensive use of ‘internal’ EDMs in particular areas, e.g. tracking

● iLCSoft / LCIO also proved that common data models help a lot with common
software development

● Want to be flexible re. device transfers and offer different persistency options
○ e.g. ALICE Run3 EDM for message passing and the code generation approaches in FCC-hh

PODIO EDM generator
14

Machine Learning

● Machine learning, or artificial intelligence,
used for many years in HEP

● Significant advances in the last years in ‘deep
learning’

● Rapid development driven by industry
○ Vibrant ecosystem of tools and techniques
○ Highly optimised for modern, specialised hardware

● For HEP offers
○ Better discrimination, already used widely
○ Replace slow calculations with trained outputs

■ In extreme cases skip entire processing steps

● Challenge to fully exploit these techniques
and to integrate them into workflows

15

Machine learning at the energy and intensity frontiers
of particle physics,

https://doi.org/10.1038/s41586-018-0361-2

Use of Generative
Adversarial
Networks to
simulate
calorimeter
showers, trained on
G4 events (S.
Vallacorsa)

https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1038/s41586-018-0361-2

Facilities
● 25% of compute used by LHC experiments

already comes from non-grid resources
○ Cloud Computing
○ HPC Centres
○ HLT Farms

● These resources will likely become more
important in the future

● Exascale HPCs planned around compute
accelerators

● Key challenge is their efficient use
○ How to utilise their GPUs
○ End to end problem to optimise total

throughput
○ Overcome access peculiarities per

site 16

ATLAS CPU Usage 2018

ES, EU, Japan and China all planning for exascale machines

HEP Evolution and R&D

17

Storage and Data Management

● Storage of HEP data is the main challenge
in the next decade

○ Data is our main asset, and our main cost
○ No opportunistic storage
○ Petabyte level storage facilities are hard to

operate

● We have massive experience in this area
● Active R&D into Data Organisation,

Management and Access (DOMA)
○ Modernised network protocols
○ Use caches to hide latency, support CPU only

sites
○ Data carousels to increase tape use with

scheduled access
○ Quality of storage interfaces 18

Horizon 2020 funding of
exabyte scale science
infrastructure

Data Cloud Model

Future Shared Infrastructure
● There is an opportunity to leverage commonality

across HEP and beyond.
○ This is happening already - compromise between experiment

specific and common solutions
○ Sustainability is very important

● Most of the facilities supporting HEP and other
science projects are the same.

○ The Funding Agencies do not want to deploy several
computing infrastructures

● The idea to generalize the infrastructure related
aspects of WLCG and open them to more scientific
communities is well received

○ Prototyped with DUNE and Belle-2

19

CERN VM
File System

Users Workshop

Users
Workshop

Users
Workshop

https://indico.cern.ch/event/757415/
https://indico.cern.ch/event/676817/
https://indico.cern.ch/event/676817/
https://indico.cern.ch/event/773489
https://indico.cern.ch/event/773489

Event Generation
● Starting the simulated events chain from theory

○ Previously was very small part of LHC computing budget
(cf. detector simulation), no pressure to optimise

● Increasing use of higher precision to drive down errors
(NLO, NNLO, …); negative weights are a serious problem

○ Greatly increases the CPU budget fraction given over to event
generation

○ Possibility of sharing matrix element calculations between experiments
being explored (HSF WG coordinating)

● Theory community not rewarded for providing generators
to experiments

○ Lack of expertise and incentives to adapt to modern CPU architectures

● From the technical point of view, these codes are a good
target for optimisation

○ Might even be suitable for GPUs

20

ATLAS 2018 CPU Report

https://hepsoftwarefoundation.org/workinggroups/generators.html

Simulation
● A major consumer of LHC grid resources today

○ Experiments with higher data rates will need to more simulation

● At the same time flat budget scenarios don’t give a lot more cycles
○ So need faster simulation

● Technical improvement programme helps (and helps everyone)
○ GeantV R&D modernises code and introduces vectorisation; serious studies of GPU porting are

starting (US Exascale Computing Project), but the problem is seriously hard

● Even this will probably not be sufficient to meet future needs
○ Will need to trade off accuracy for speed with approximate and hybrid simulation approaches

■ Combine full particle transport with faster techniques for non-core pieces of the event

● Machine learning techniques are gaining ground, but yet to be really proven
○ Need to decide when they are good enough cf. Geant4
○ Integrating these into the lifecycle of simulation software and developing toolkits for training

and inference is needed - this is a software and a computing problem
21

Reconstruction and Software Triggers
● Hardware triggers no longer sufficient for modern experiments

(LHCb, ALICE)
○ More and more initial reconstruction needs to happen in software

● Close to the machine, need to deal with tremendous rates and get
sufficient discrimination

○ Pressure to break with legacy code is high
○ Lots of work in rewriting code for GPUs

● Best practice essential - data layout optimised, concurrent, async
● Even the physics performance can improve when revisiting code
● Real Time Analysis (HEP Version)

○ Design a system that can produce analysis useful outputs as part of the trigger
decision

○ If this captures the most useful information from the event, can dispense with raw
information

● This is a way to fit more physics into the budget

22

LHCb Run2 Turbo took 25% of
events for only 10% of bandwidth

Analysis

● Scaling for analysis level data also a huge challenge
● Efficient use of analysis data can come with combining many analyses

as carriages in a train like model (pioneered by PHENIX and ALICE)
○ Also goes well with techniques like tape carousels

● Reducing volume of data needed also helps hugely
○ CMS ~1kB nanoAOD - a vast difference to analysis efficiency and “papers per petabyte”

● Improve analysis ergonomics - how the user interacts
○ Declarative models (ROOT’s RDataFrame)

■ Say what, not how and let the backend optimise
○ Containers gain ground; notebook interfaces used for training and may scale further
○ Cluster power, laptop convenience - analysis clusters (interactive ROOT on HPCs)

● Interest in data science tools and machine learning is significant for
this community - inspiring new approaches (e.g. Coffea)

○ This is an ecosystem into which HEP can, and does, contribute - knowledge transfer
goes both ways

23

Facing the Challenges

24

Training and Careers
● Many new skills are needed for today’s

software developers and users
● Base has relatively uniform demands

○ Any common components help us

● LHCb StarterKit initiative taken up by
several experiments, sharing training material

○ Links to ‘Carpentries’ being remade (US funded training projects)

● New areas of challenge
○ Concurrency, accelerators, data science
○ Need to foster new C++ expertise (unlikely to be replaced soon as our core language, but

needs to be modernised)

● Careers area for HEP software experts is an area of great concern
○ Need a functioning career path that retains skills and rewards passing them on
○ Recognition that software is a key part of HEP now 25

Organising for the Future

● HSF
○ Overarching umbrella organisation, at the international level (strongest in Europe and North America)
○ Builds community efforts, very inclusive; defined the Community White Paper Roadmap

● Software Institutes
○ IRIS-HEP in US

■ NSF funded at US$25M over 5 years
■ Machine Learning, DOMA, Innovative Advanced Algorithms, Analysis

○ Should Europe do more here?
■ Traditionally labs (CERN, DESY) have played this role, but time to break out beyond HEP?
■ A lot of shared problems - critical architecture changes, new techniques affect us all

● Value of the institute is in breaking boundaries (experiment, region, science)
■ Linking to academic experts in software engineering could be mutually very beneficial
■ Also helps us to tackle the training problem (pass on skills) and careers (better defined path) and

solve practical software problems

26

https://doi.org/10.1007/s41781-018-0018-8

Summary
● The landscape has shifted significantly in the last decade

○ Concurrency, Accelerators, High-Speed Networks, Exascale, …

● We are constantly adapting and evolving our software and computing
○ Challenges are not just for current experiments, but R&D for future detectors

● Adopting a more radical approach involves committing a lot of human effort
○ It really pays off - improved software improves our physics

■ Poor and underfunded software is resource costly or cuts into physics
○ Efficient use of heterogeneous resources needs a critical mass of software

● Pyramid of skills and expertise
○ Need a lot of software engineering and physics talent
○ Address training needs
○ Long term career prospects for HEP software experts need to improve

● Huge opportunities for software to improve that we have to grasp
○ Organise around this goal - continue to reach out to industry, software engineers, other

sciences 27

Backup

28

Optimal Software - The Golden Roles

● Orienting the design around the data (with optimal layouts) is critical
● Bulk data together and exploit concurrency where ever possible
● Be as asynchronous as possible

○ Framework should hide latency
○ Storage systems should help

● Transfers between host and device are expensive
○ Port blocks of algorithms, even ones where gain is small

● The physics performance can improve when revisiting code!
○ We have a lot of legacy; revisiting the code oriented to the primary goal simplifies and improves

maintainability

29

Summary of EPPSU Inputs

● The EPPSU inputs that made mention of software and computing are
summarised here:

https://docs.google.com/spreadsheets/d/1mjN6AaSUUFY-r_HxkKvV4E4f2cgPkEaLc
hEFIHm0LxA/edit?usp=sharing

30

https://docs.google.com/spreadsheets/d/1mjN6AaSUUFY-r_HxkKvV4E4f2cgPkEaLchEFIHm0LxA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mjN6AaSUUFY-r_HxkKvV4E4f2cgPkEaLchEFIHm0LxA/edit?usp=sharing

