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The Standard Model of Physics

3

Gravitational Interactions Strong InteractionsElectroweak Interactions

Further exploration of the Standard Model 

Dark matter searches Electroweak symmetry breaking Deeper understanding of QCD: 

The Electron-Ion Collider will 
enable us to embark on a 
precision study of the nucleon 
and the nucleus at the scale of 
sea quarks and gluons, over all 
of the kinemaAc range that are 
relevant. 
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The dynamical nature of nuclear matter

4

Nuclear Matter Interactions and structures are 
inextricably mixed up

Observed properties such as mass and spin 
emerge out of the complex system

Ultimate goal Understand how matter at its most 
fundamental level is made

To reach goal precisely image quarks and gluons 
and their interactions

QCD’s Dyson-Schwinger Equations
The equations of motion of QCD () QCD’s Dyson–Schwinger equations

an infinite tower of coupled integral equations
tractability =) must implement a symmetry preserving truncation

The most important DSE is QCD’s gap equation =) quark propagator

�1
=

�1
+

ingredients – dressed gluon propagator & dressed quark-gluon vertex

S(p) =
Z(p2)

i/p + M(p2)

S(p) has correct perturbative limit

mass function, M(p2), exhibits
dynamical mass generation

complex conjugate poles
no real mass shell =) confinement

[M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003)]
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Imaging quarks and gluons and their interactions
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Novel QCD phenomena
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3D imaging in space and momentum 

longitudinal structure (PDF)
+ transverse  position Information (GPDs)
+ transverse momentum information (TMDs)

order of a few hundred MeV

TMD PDFs
3D DISTRIBUTIONS EXTRACTED FROM DATA

�30

Figure 8. The down quark TMD PDF in b-space(left) and kT -space(right) presented at different values of

x. The color shows the size of the uncertainty relative the value of distribution.

6 Conclusions

We have extracted the unpolarized transverse momentum dependent parton distribution function
(TMDPDF) and rapidity anomalous dimension (also known as Collins-Soper kernel) from Drell-Yan
data. The analysis has been performed in the ⇣-prescription with NNLO perturbative inputs. We
have also provided an estimation of the errors on the extracted functions with the replica method.
The values of TMDPDF and rapidity anomalous dimension, together with the code that evaluates
the cross-section, are available at [45], as a part of the artemide package. We plan to release grids
for TMDPDFs extracted in this work also through the TMDlib [69].

Theoretical predictions are based on the newly developed concepts of ⇣-prescription and op-
timal TMD proposed in ref. [27]. This combination provides a clear separation between the non-
perturbative effects in the evolution factor and the intrinsic transverse momentum dependence.
Additionally, the ⇣-prescription permits the usage of different perturbative orders in the collinear
matching and TMD evolution. For that reasons, the precise values of the rapidity anomalous di-
mension (±1%(4%, 6%) accuracy at b = 1(3, 5) GeV�1) are relevant for any observable that obeys
TMD evolution.

In our analysis, we have included a large set of data points, which spans a wide range of
energies (4 < Q < 150 GeV) and x (x > 10�4), see fig. 1. The data set can be roughly split into
the low-energy data, which includes experiments E288, E605, E772 and PHENIX at RHIC, and
the high-energy data from Tevatron (CDF and D0) and LHC (ATLAS, CMS, LHCb) in similar
proportion. To exclude the influence of power corrections to TMD factorization we consider only
the low-qT part of the data set, as described in sec. 3. A good portion of data is included in the fit
of TMD distributions for the first time, that is the data from E772, PHENIX, some parts of ATLAS
and D0 data. For the first time, the data from LHC have been included without restrictions (the
only previous attempt to include LHC data in a TMDPDF fit is [13], where systematic uncertainties
and normalization has been treated in a simplified manner). We have shown that the inclusion of
LHC data greatly restricts the non-perturbative models at smaller b (b . 2 GeV�1) and smaller x

(x . 0.05), and therefore they are highly relevant for studies of the intrinsic structure of hadrons.
A detailed comparison of fits with and without LHC data has been discussed in sec. 5.

The extracted TMDPDF shows a non-trivial x-dependence that is not dictated only by the
collinear asymptotic limit of PDFs. In particular, we find that the unpolarized TMDPDF is bigger
(in impact parameter space) at larger x, see fig. 7. This indirectly implies a smaller value of the
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Fig. 6  The transverse-momentum distribution may be different for quarks of 
different flavors. There are some indications that the up-quarks are closer to 
the center than the down-quarks. The above pictures are compatible with 
existing data.
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Fig. 7  Polarization-averaged distributions, as in figs. 4 and 5, are cylindrically 
symmetric. But when the spin of the nucleon is taken into account (indicated 
by the white arrow in the plots), the distribution can be distorted. These 
images are elaborated starting from real data and show that the distortion for 
up- and down-quarks is opposite (see, e.g., [19, 20]). Large uncertainties are 
still affecting these pictures.
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Future nuclear physics facility 
The Electron-Ion Collider Project
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The Electron-Ion Collider: Frontier accelerator facility in the U.S.
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Luminosity / CME / Kinematic coverage 
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Background - The EIC Facility Concepts
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The 12 GeV upgrade of CEBAF at JLab and the COMPASS at CERN will initiate such
studies in predominantly valence quark region. However, these programs will be dramati-
cally extended at the EIC to explore the role of the gluons and sea quarks in determining
the hadron structure and properties. This will resolve crucial questions, such as whether
a substantial “missing” portion of nucleon spin resides in the gluons. By providing high-
energy probes of partons’ transverse momenta, the EIC should also illuminate the role of
their orbital motion contributing to nucleon spin.

The Spin and Flavor Structure of the Nucleon

An intensive and worldwide experimen-
tal program over the past two decades has
shown that the spin of quarks and antiquarks
is only responsible for ⇠ 30% of the pro-
ton spin. Recent RHIC results indicate that
the gluons’ spin contribution in the currently
explored kinematic region is non-zero, but
not yet su�cient to account for the missing
70%. The partons’ total helicity contribu-
tion to the proton spin is very sensitive to
their minimum momentum fraction x acces-
sible by the experiments. With the unique
capability to reach two orders of magnitude

lower in x and to span a wider range of mo-
mentum transferQ than previously achieved,
the EIC would o↵er the most powerful tool
to precisely quantify how the spin of gluons
and that of quarks of various flavors con-
tribute to the protons spin. The EIC would
realize this by colliding longitudinally polar-
ized electrons and nucleons, with both inclu-
sive and semi-inclusive DIS measurements.
In the former, only the scattered electron is
detected, while in the latter, an additional
hadron created in the collisions is to be de-
tected and identified.
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Current polarized DIS data:

CERN DESY JLab SLAC

Current polarized BNL-RHIC pp data:

PHENIX π0 STAR 1-jet
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Figure 1.2: Left: The range in parton momentum fraction x vs. the square of the momentum
transferred by the electron to the proton Q

2 accessible with the EIC in e+p collisions at two
di↵erent center-of-mass energies, compared to existing data. Right: The projected reduction
in the uncertainties of the gluon’s helicity contribution �G vs. the quark helicity contribution
�⌃/2 to the proton spin from the region of parton momentum fractions x > 0.001 that would
be achieved by the EIC for di↵erent center-of-mass energies.

Figure 1.2 (Right) shows the reduction in
uncertainties of the contributions to the nu-
cleon spin from the spin of the gluons, quarks
and antiquarks, evaluated in the x range

from 0.001 to 1.0. This would be achieved by
the EIC in its early operations. In future, the
kinematic range could be further extended
down to x ⇠ 0.0001 reducing significantly
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The 12 GeV upgrade of CEBAF at JLab and the COMPASS at CERN will initiate such
studies in predominantly valence quark region. However, these programs will be dramati-
cally extended at the EIC to explore the role of the gluons and sea quarks in determining
the hadron structure and properties. This will resolve crucial questions, such as whether
a substantial “missing” portion of nucleon spin resides in the gluons. By providing high-
energy probes of partons’ transverse momenta, the EIC should also illuminate the role of
their orbital motion contributing to nucleon spin.

The Spin and Flavor Structure of the Nucleon

An intensive and worldwide experimen-
tal program over the past two decades has
shown that the spin of quarks and antiquarks
is only responsible for ⇠ 30% of the pro-
ton spin. Recent RHIC results indicate that
the gluons’ spin contribution in the currently
explored kinematic region is non-zero, but
not yet su�cient to account for the missing
70%. The partons’ total helicity contribu-
tion to the proton spin is very sensitive to
their minimum momentum fraction x acces-
sible by the experiments. With the unique
capability to reach two orders of magnitude

lower in x and to span a wider range of mo-
mentum transferQ than previously achieved,
the EIC would o↵er the most powerful tool
to precisely quantify how the spin of gluons
and that of quarks of various flavors con-
tribute to the protons spin. The EIC would
realize this by colliding longitudinally polar-
ized electrons and nucleons, with both inclu-
sive and semi-inclusive DIS measurements.
In the former, only the scattered electron is
detected, while in the latter, an additional
hadron created in the collisions is to be de-
tected and identified.
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Figure 1.2: Left: The range in parton momentum fraction x vs. the square of the momentum
transferred by the electron to the proton Q

2 accessible with the EIC in e+p collisions at two
di↵erent center-of-mass energies, compared to existing data. Right: The projected reduction
in the uncertainties of the gluon’s helicity contribution �G vs. the quark helicity contribution
�⌃/2 to the proton spin from the region of parton momentum fractions x > 0.001 that would
be achieved by the EIC for di↵erent center-of-mass energies.

Figure 1.2 (Right) shows the reduction in
uncertainties of the contributions to the nu-
cleon spin from the spin of the gluons, quarks
and antiquarks, evaluated in the x range

from 0.001 to 1.0. This would be achieved by
the EIC in its early operations. In future, the
kinematic range could be further extended
down to x ⇠ 0.0001 reducing significantly
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Figure 1.2: Left: The range in parton momentum fraction x vs. the square of the momentum
transferred by the electron to the proton Q

2 accessible with the EIC in e+p collisions at two
di↵erent center-of-mass energies, compared to existing data. Right: The projected reduction
in the uncertainties of the gluon’s helicity contribution �G vs. the quark helicity contribution
�⌃/2 to the proton spin from the region of parton momentum fractions x > 0.001 that would
be achieved by the EIC for di↵erent center-of-mass energies.

Figure 1.2 (Right) shows the reduction in
uncertainties of the contributions to the nu-
cleon spin from the spin of the gluons, quarks
and antiquarks, evaluated in the x range
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High
Luminosity

Versatile range of:
• beam energies
• beam polarizations
• beam species (p → U)

World’s first collider of:
• ep: polarized electrons and 

polarized protons/light ions (d, 3He)
• eA: electrons and nuclei

EIC

JLEIC

CEBAF

Proposal by Jefferson Lab

Proposal by Brookhaven Lab

Highest priority for new construction 
for the U.S. Nuclear Physics program

7



Why an Electron-Ion Collider?
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Understanding of nuclear matter is transformational, 
perhaps in an even more dramatic way than how the understanding of the atomic and 
molecular structure of matter led to new frontiers, new sciences and new technologies.

Right tool

• to precisely image quarks 
and gluons and their 
interactions

• to explore the new QCD 
frontier of strong color 
fields in nuclei

• to understand how matter 
at its most fundamental 
level is made. 



EIC: Ideal facility for studying QCD

9

High luminosity / high precision 

E.g.: TMD program
• multi-dimensional SIDIS analysis (in 

five or more kinematic dimensions and 
multiple particles)

• in various configurations.  

Various beam energy 

broad Q2 range for 
• studying evolution to Q2 of ~1000 GeV2

• disentangling non-perturbative and 
perturbative regimes 

• overlap with existing experimentsoverlap with existing measurements

include non-perturbative, perturbative, and transition regimes

MCEGs for future ep and eA facilities 2019b



EIC: ideal facility for studying QCD

10

Polarization
Understanding hadron structure cannot
be done without understanding spin:
• polarized electrons and
• polarized protons/light ions (d, 3He) 

including tensor polarization for d

Longitudinal and transverse and 
polarization of light ions (d, 3He)

• 3D imaging in space and momentum
• spin-orbit correlations

MCEGs for future ep and eA facilities 2019b



EIC science program
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The 12 GeV upgrade of CEBAF at JLab and the COMPASS at CERN will initiate such
studies in predominantly valence quark region. However, these programs will be dramati-
cally extended at the EIC to explore the role of the gluons and sea quarks in determining
the hadron structure and properties. This will resolve crucial questions, such as whether
a substantial “missing” portion of nucleon spin resides in the gluons. By providing high-
energy probes of partons’ transverse momenta, the EIC should also illuminate the role of
their orbital motion contributing to nucleon spin.

The Spin and Flavor Structure of the Nucleon

An intensive and worldwide experimen-
tal program over the past two decades has
shown that the spin of quarks and antiquarks
is only responsible for ⇠ 30% of the pro-
ton spin. Recent RHIC results indicate that
the gluons’ spin contribution in the currently
explored kinematic region is non-zero, but
not yet su�cient to account for the missing
70%. The partons’ total helicity contribu-
tion to the proton spin is very sensitive to
their minimum momentum fraction x acces-
sible by the experiments. With the unique
capability to reach two orders of magnitude

lower in x and to span a wider range of mo-
mentum transferQ than previously achieved,
the EIC would o↵er the most powerful tool
to precisely quantify how the spin of gluons
and that of quarks of various flavors con-
tribute to the protons spin. The EIC would
realize this by colliding longitudinally polar-
ized electrons and nucleons, with both inclu-
sive and semi-inclusive DIS measurements.
In the former, only the scattered electron is
detected, while in the latter, an additional
hadron created in the collisions is to be de-
tected and identified.
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Figure 1.2: Left: The range in parton momentum fraction x vs. the square of the momentum
transferred by the electron to the proton Q

2 accessible with the EIC in e+p collisions at two
di↵erent center-of-mass energies, compared to existing data. Right: The projected reduction
in the uncertainties of the gluon’s helicity contribution �G vs. the quark helicity contribution
�⌃/2 to the proton spin from the region of parton momentum fractions x > 0.001 that would
be achieved by the EIC for di↵erent center-of-mass energies.

Figure 1.2 (Right) shows the reduction in
uncertainties of the contributions to the nu-
cleon spin from the spin of the gluons, quarks
and antiquarks, evaluated in the x range

from 0.001 to 1.0. This would be achieved by
the EIC in its early operations. In future, the
kinematic range could be further extended
down to x ⇠ 0.0001 reducing significantly
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The 12 GeV upgrade of CEBAF at JLab and the COMPASS at CERN will initiate such
studies in predominantly valence quark region. However, these programs will be dramati-
cally extended at the EIC to explore the role of the gluons and sea quarks in determining
the hadron structure and properties. This will resolve crucial questions, such as whether
a substantial “missing” portion of nucleon spin resides in the gluons. By providing high-
energy probes of partons’ transverse momenta, the EIC should also illuminate the role of
their orbital motion contributing to nucleon spin.

The Spin and Flavor Structure of the Nucleon

An intensive and worldwide experimen-
tal program over the past two decades has
shown that the spin of quarks and antiquarks
is only responsible for ⇠ 30% of the pro-
ton spin. Recent RHIC results indicate that
the gluons’ spin contribution in the currently
explored kinematic region is non-zero, but
not yet su�cient to account for the missing
70%. The partons’ total helicity contribu-
tion to the proton spin is very sensitive to
their minimum momentum fraction x acces-
sible by the experiments. With the unique
capability to reach two orders of magnitude

lower in x and to span a wider range of mo-
mentum transferQ than previously achieved,
the EIC would o↵er the most powerful tool
to precisely quantify how the spin of gluons
and that of quarks of various flavors con-
tribute to the protons spin. The EIC would
realize this by colliding longitudinally polar-
ized electrons and nucleons, with both inclu-
sive and semi-inclusive DIS measurements.
In the former, only the scattered electron is
detected, while in the latter, an additional
hadron created in the collisions is to be de-
tected and identified.
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Figure 1.2: Left: The range in parton momentum fraction x vs. the square of the momentum
transferred by the electron to the proton Q

2 accessible with the EIC in e+p collisions at two
di↵erent center-of-mass energies, compared to existing data. Right: The projected reduction
in the uncertainties of the gluon’s helicity contribution �G vs. the quark helicity contribution
�⌃/2 to the proton spin from the region of parton momentum fractions x > 0.001 that would
be achieved by the EIC for di↵erent center-of-mass energies.

Figure 1.2 (Right) shows the reduction in
uncertainties of the contributions to the nu-
cleon spin from the spin of the gluons, quarks
and antiquarks, evaluated in the x range

from 0.001 to 1.0. This would be achieved by
the EIC in its early operations. In future, the
kinematic range could be further extended
down to x ⇠ 0.0001 reducing significantly
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Figure 1.2: Left: The range in parton momentum fraction x vs. the square of the momentum
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2 accessible with the EIC in e+p collisions at two
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uncertainties of the contributions to the nu-
cleon spin from the spin of the gluons, quarks
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The 12 GeV upgrade of CEBAF at JLab and the COMPASS at CERN will initiate such
studies in predominantly valence quark region. However, these programs will be dramati-
cally extended at the EIC to explore the role of the gluons and sea quarks in determining
the hadron structure and properties. This will resolve crucial questions, such as whether
a substantial “missing” portion of nucleon spin resides in the gluons. By providing high-
energy probes of partons’ transverse momenta, the EIC should also illuminate the role of
their orbital motion contributing to nucleon spin.
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Study structure and 
dynamics of nuclear 
matter in ep and eA
collisions with high 
luminosity and 
versatile range of 
beam energies, beam 
polarizations, and 
beam species.

eA

ep
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The worldwide EIC community

MCEGs for future ep and eA facilities 2019b 12

EIC User Group (http://www.eicug.org)
Currently 967 members from 194 institutions from 30 countries.

Experiment

Theory
Accelerator



Timeline
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EIC simulations and analysis 
MCEGs for future ep and eA facilities

MCEGs for future ep and eA facilities 2019b 14



MCEGs for future ep and eA facilies
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Satellite Workshop



Status of ep and eA in general-purpose MCEG

MCEGs for future ep and eA facilities 2019b

General-purpose MCEG and ep collisions
• Sherpa

• DIS with ME corrections and PS merging 
• Good description of jet data at low Q2 with ≳ 3 partons in the final state
• Automated NLO matching with Powheg method, applicable for jets at high-
Q2

• Herwig
• Two shower options with spin correlations and NLO matching 
• Good description for single-particle properties in DIS
• Also QED radiation for angular-ordered shower 

• Pythia
• Possible to generate DIS events with the new dipole shower 

implementation 
• Higher-order corrections via Dire plugin, soon part of Pythia core
• Photoproduction for hard and soft QCD processes, also hard diffraction 

General-purpose MCEG and eA collisions
• No strong modifications for DIS (nuclear PDFs, what else?) 
• For photoproduction need to include interactions between resolved photon  

and other nucleons
• Complementary to ultra-peripheral collisions at the LHC and RHIC 

Results from Rivet workshop

Comparsions to D∗± in DIS
• Combined H1 and ZEUS
analysis [JHEP 1509 (2015) 149]

• Comapared to
• Pythia 8.240
• Herwig 7.1.4
• Sherpa 3.0.0
• RapGap 3.303
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[Plots by A. Verbytskyi]
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Comparisons to combined H1 
and ZEUS analysis (A. Verbytskyi)

JHEP 1509 (2015) 149

Ilkka Helenius (Jyväskylä)

16

with high-Q2 cut applied

with high-Q2 cut applied
JHEP 1509 (2015) 149
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Performance examples – Herwig

I NLO Merged calculation vs data from hep-ex/9907027

Merging in DIS

eq ! eq at LO and with NLO-merging vs H1 data.
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[H1, EPJC12 (2000) 595]

Stabilization with higher orders.

Stefan Gieseke · MCEGs for future ep and eA colliders · Regensburg · 22–23 Mar 2018 14/23
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Status of NLO simulations for ep

Fixed-order QCD 
• QCD calculations available up to N3LO for inclusive DIS
• Peculiarities of DIS require careful selection of scales
• Excellent description of experimental data from HERA 

MCEGs for future ep and eA facilities 2019b

Stefan Hoeche (SLAC)

17

MC event simulation 
• DIS simulations available in all three event generation frameworks
• NLO matching & merging standard, NNLO matching available
• Peculiarities of DIS require careful selection of clustering history
• Very good description of wide range of experimental data 

Workshop Summary



MCEG–HERA comparisons and MCEG validation for ep

• MCEG R&D requires easy access to data
• data := analysis description + data points

• HEP existing workflow for MCEG R&D using tools such as 
HZTool, Rivet and Professor

• Detailed comparisons between modern MCEG and 
HERA data

• workshop on Rivet for ep (Feb 18—20 2019)
• mailing list rivet-ep-l@lists.bnl.gov
• HERA data not (yet) included in MCEG tunes

MCEGs for future ep and eA facilities 2019b 18

Rivet example 
SIDIS analysis at HERMES

https://indico.desy.de/indico/event/21792/
mailto:rivet-ep-l@lists.bnl.gov


TMDs and MCEGs

Revisited version of a recursive model 
for the fragmentation of polarized 

quarks
Albi Kerbizi

University of Trieste, Trieste INFN Section

In collaboration with
X. Artru, Z. Belghobsi and A. Martin

21st February 2019,
DESY,

Hamburg

Albi Kerbizi - Trieste University and INFN 1

MCEGs for future ep and eA facilities 2019b 19

1 F Hautmann: MCEG Workshop, DESY - February 2019 

 MCEG Workshop 

DESY, February 2019

                                

                                     F Hautmann  

                 TMDs from Parton Branching 

                

Introduction

The Parton Branching (PB) method

New results and applications           

          

  

nTMD using PB method

Krzysztof KutakKrzysztof Kutak

NCN

Based on ongoing project with:
E. Blanco, A. van Hameren, H. Jung, A. Kusina  

Updates for KaTıe

Andreas van Hameren

Institute of Nuclear Physics

Polish Academy of Sciences

Kraków

presented at the

MCEGs for future ep and eA facilities

21-02-2019, DESY, Hamburg

Lund string + 3P0; good description of Collins and di-

hadron asymmetries; Boer-Mulders, jet handedness 

can be simulated.

Vibrant community

First TMD parton shower using higher order 

spliFng funcGon.

First all flavor. all Q2, all x and all kt TMD at NLO 

determined.

First all Q2, all x, all kt TMD at NLO for nuclei.

Comparison with DY data (pp, pPb, CMS)

First ever off-shell hard process calculation for 

ep including all flavors. 

Lively discussion: Factorization 
Theorem and MCEG approaches 
To what extent are TMDs a result of a 

coherent branching evolution as, e.g.,  

implemented in Herwig 

Next: Comparison to TMD theory 
Extract TMD from the different MCs and 

compare to analytic results. 

Workshop Summary



Merging QED and QCD effects
CLASSIFICATION OF O(↵) QED CORRECTIONS

Radiation from the lepton
model independent (universal),
dominating by far: enhanced by large logs, ln(Q2/m2

e)

vacuum polarization (boson self energy)
universal, photon self energy ‹ ↵em(Q2)

Radiation from the hadronic initial/final state
parton model: radiation from quarks
to be considered as a part of the nucleon structure

Interference of leptonic and hadronic radiation
2� exchange
new structure

purely weak corrections

Note: for NC-scattering, straightforward separation
IR divergences: need to combine real and virtual radiation

H. Spiesberger (Mainz) MCEGs, 20. 2. 2019 5 / 20

MCEGs for future ep and eA facilities 2019b 20

Andrei Afanasev, Workshop on MCEGs for Future ep and eA faciities, 20 Feb 2019  

Radiative  corrections in SIDIS

The real polar angle of virtual photon is changing due to 
radiation of the real photon, introducing azimuthal 

dependence, coupling to f-dependence of the x-section
Akushevich, Ilyichev, Osipenko, PL B672 (2009) 35

4

Hubert Spiesberger (Mainz): QED corrections for electron scattering
• High-precision measurements need careful treatment of radiative 

corrections. 
• Closely related to experimental conditions need full Monte Carlo 

treatment (Unfolding) including simulation of hadronic final states. 
• The basics are known and available …
• … but improvements are needed. 

Andrei Afanasev (GWU): Semi-analytic vs. Monte-Carlo Approaches for 
QED Corrections to SIDIS
• Consistent approach to address RC for SSA in polarized SIDIS

• SSA due to two-photon exchange need to be included in analysis of 
SSA from strong interaction, of same size at JLAB experiments

• More detailed calculation of the two-photon exchange at quark level 
required: elastic scattering, inclusive, semi-inclusive, and exclusive DIS

Workshop Summary



JupyterLab environment for EIC simulations

• collaborative workspace to create and share Jupyter Notebooks

• web-based interactive analysis environment accessible, 
consistent, reproducible analyses

• fully extensible and modular build a collection of analyses and 
analysis tools

• bridge to modern data science, e.g., 
• Nature 563, 145-146 (2018): “Why Jupyter is data scientists’ 

computational notebook of choice”
• more than three million Jupyter Notebooks publicly available on 

GitHub

MCEGs for future ep and eA facilities 2019b

• narra$ve of the analysis 

Jupyter Notebooks
• wri$ng analysis code

• visualization of results

07/23 EIC Software Tutorial
Dmitry Romanov (JLAB) introduced EIC simulations in JupyterLab environment.
Quickstart https://eic.gitlab.io/documents/quickstart/ 

21

https://eic.gitlab.io/documents/quickstart/


Pythia8 on Jupyter

MCEGs for future ep and eA facilities 2019b 22

Visualization of ep collisionContainer for Pythia8+DIRE by Nadine Fischer (Pythia)

Jupyter notebook interface

JLAB LDRD



Online catalogue for MCEGs

• Goals Hosted on http://eicug.org/web/content/eic-software, editable for EIC group on 
GitLab

• Proposed fields
• Categories ep, eA, radiative effects
• Name
• Contact information
• Brief Description What processes are described? What is unique about the MCEG? 

Include version number as reference. 
• References (links) website, repository, documentation, container, validation plots

MCEGs for future ep and eA facilities 2019b 23



Online catalogue for MCEGs 

• Category ep, eA, exclusive vector meson produc3on, general photoproduc3on

• Name eSTARlight

• Contact Informa0on Spencer Klein, srklein@lbl.gov

• Brief descrip0on eSTARlight simulates coherent photoproduc3on and electroproduc3on of 
vector mesons in ep and eA collisions. It can simulate a variety of different vector mesons, and 
it also includes an interface to DPMJET, which allows for general simula3on of photonuclear 
interac3ons. It internally simulates most simple (2-body) vector meson decays with a correct 
accoun3ng for the ini3al photon polariza3on (transverse for Q^2 ~ 0, with an increasing 
longitudinal component with increasing Q^2) in the angular distribu3ons of the final state. It 
can also interface to PYTHIA8 to simulate more complicated decays.

• References The code is freely available from hVps://estarlight.hepforge.org/ The Readme file 
includes a fairly comprehensive users manual. The physics behind the code is documented in 
M. Lomnitz and S. Klein, Phys. Rev. C99, 015203 (2019).

MCEGs for future ep and eA facilities 2019b 24

mailto:srklein@lbl.gov
https://gcc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Festarlight.hepforge.org%2F&data=02%7C01%7Cmdiefent%40jlab.org%7C21a0891f3a634882fa3a08d6a3793188%7Cb4d7ee1f4fb34f0690372b5b522042ab%7C1%7C1%7C636876138268654510&sdata=12U1usBssj7Hu8P2Gx5y0kM1rklvK3OpxoRMiG2h3HU%3D&reserved=0


Where we ended our discussions at DESY (MCEG2019a)

• General-purpose MCEGs, HERWIG, PYTHIA, and SHERPA, will be significantly  improved w.r.t. MCEGs at HERA time: 
• MCEG-data comparisons in Rivet will be critical to tune the MCEGs to DIS data and theory predictions. 
• The existing general-purpose MCEG should soon be able to simulate NC and CC unpolarized observables also for 

eA. A precise treatment of the nucleus and its breakup is needed. 
• First parton showers and hadronization models for ep with spin effects, but far more work needed for polarized 

ep / eA simulations. 
• Need to clarify the details about merging QED+QCD effects (in particular for eA).

• TMD physics
• Vibrant community working on various computational tools for TMDs. 
• CASCADE: MCEG for unpolarized TMDs at high energy. 
• Need more verification of MCEG models with TMD theory / phenomenology. 

MCEGs for future ep and eA facilities 2019b 25

MCEG for ep We are on a very good path, but sTll quite some work ahead.
MCEG for eA Less clear situaTon about theory and MCEG. 

Workshop Summary



Where we will continue our discussions

MCEGs for future ep and eA facilities 2019b 26

MCEG for eA
• eA theory: 

• Challenges for MCEG for eA
• eA Theory: Light Ions
• eA Theory: Heavy Ions
• Nuclear PDFs and TMDs

• eA MCEG: ALICE, Angantyr: Mueller dipole morels for pA and eA, BeAGLE, 
MCEG for spectator tagging in eD, JETSCAPE and JETSCAPE for EIC, MCEGs for 
Saturation, Sartre

MCEG validation Rivet/HZTool, Rivet for Heavy Ions

MCEG for TMDs ARTIMIDE, MCEG for (SI)DIS with TMDs, Parton branching 
TMDs and collider cross sections, TMDs and Coherent Branching



Goals
Markus Diefenthaler

mdiefent@jlab.org

Build our community

MCEG R&D for EIC
• eA
• TMDs
• validation

Common projects?


