Physics with eA(light) scattering at EIC

C. Weiss (JLab), MCEGs for future ep and eA facilities, Vienna, 20-Nov-2019

EIC simulations: JLab 2014/15 LDRD project W. Cosyn, V. Guzey, D. Higinbotham, Ch. Hyde, K. Park, P. Nadel-Turonski, M. Sargsian, M. Strikman, C. Weiss [Webpage] + ongoing theoretical research

- Light-ion phyiscs at EIC Energy, luminosity, polarization, detection Objectives and challenges
- Nuclear breakup measurements

 Deuteron and spectator tagging
 High-energy process ↔ low-energy stucture
 Applications: Free neutron, EMC effect, ...
 Final-state interactions
- Coherent processes with light nuclei
 Nuclear GPDs, quark/gluon imaging
 Controled centrality, shadowing
- MCEG role and status

Light ions: EIC capabilities

- CM energy $\sqrt{s_{ep}} \sim 20\text{--}100(140) \text{ GeV}$ Factor $\sqrt{Z/A}$ for nuclei DIS at $x\gtrsim 10^{-3}, \ Q^2\lesssim 10^2 \text{ GeV}^2$
- Luminosity $\sim 10^{34}\,{\rm cm}^{-2}\,{\rm s}^{-1}$

Exceptional configurations in target Multi-variable final states Polarization observables

- Polarized protons and light ions
 Polarized deuteron, 3He, ...
- \bullet Forward detection of p,n,A

Exclusive and diffractive processes Nuclear breakup and spectator tagging Coherent nuclear scattering

Light ions: Physics objectives

[Nucleus rest frame view]

• Neutron structure

Flavor decomposition of PDFs/GPDs/TMDs, singlet vs. non-singlet QCD evolution, polarized gluon

Eliminate nuclear binding, non-nucleonic DOF!

• Nucleon interactions in QCD

Nuclear modification of quark/gluon densities Short-range correlations, non-nucleonic DOF QCD origin of nuclear forces

Associate modifications with interactions!

• Coherent phenomena in QCD

Coherent interaction of high–energy probe with multiple nucleons, shadowing, saturation

Identify coherent response!

Common challenge: Effects depend on the nuclear configuration during the high-energy process. Need to "control" the configurations!

Light ions: Measurements

• Inclusive scattering

No information on initial-state nuclear configuration

Final-state interactions irrelevant, closure $\boldsymbol{\Sigma}_X$

Basic measurements at EIC D, 3He (unpol/pol), 4He, ...

• Nuclear breakup detection ("tagging")

Potential information on initial-state nuclear configuration

Final-state interactions important, influence breakup amplitudes

New opportunities with EIC! New challenges for theory and MCEG!

 $[\bullet \ Coherent \ processes \rightarrow {\sf following}$

Tagging: Deuteron and spectator tagging

[Nucleus rest frame view]

• Deuteron target unpol/pol

Nucleonic wave function simple, known well including light-front WF for high-energy processes

Neutron spin-polarized, some D-wave depolarization

Intrinsic Δ isobars suppressed by isospin = 0 Large Δ component in 3He. Frankfurt etal 96; Bissey etal 02

• Spectator nucleon tagging

Identifies active nucleon

Controls configuration through recoil momentum: Spatial size, S \leftrightarrow D wave

Typical momenta \sim few 10 – 100 MeV (rest frame)

Tagging in fixed-target experiments CLAS6/12 BONUS, recoil momenta p= 70-150 MeV JLab12 ALERT, Hall A

Tagging: Collider experiments

Spectator nucleon moves forward with approx. $1/2 \mbox{ ion beam momentum}$

Detection with forward detectors integrated in interaction region and beams optics Expertise LHC, Tevatron, RHIC, HERA \rightarrow EIC

• Advantages over fixed-target

No target material, $\ oldsymbol{p}_p[\mathsf{rest}] o 0$ possible

Potentially good acceptance and resolution

Deuteron polarization in beam, no holding magnets around target

Forward neutron detection possible

Unique physics potential!

$$p_{p\parallel} = \frac{p_d}{2} \left[1 + \mathcal{O}\left(\frac{p_p[\text{rest}]}{m}\right) \right]$$

[Collider frame view]

Tagging: Cross section and observables

 $\frac{d\sigma}{dxdQ^{2}(d^{3}p_{p}/E_{p})} = [\text{flux}] \left[F_{Td}(x, Q^{2}; \alpha_{p}, p_{pT}) + \epsilon F_{Ld}(..) \right. \\ \left. + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{p} F_{LT,d}(..) + \epsilon \cos(2\phi_{p}) F_{TT,d}(..) \right. \\ \left. + \text{ spin-dependent structures} \right]$

7

- $\bullet~{\rm Semi-inclusive~DIS}$ cross section $e+d \rightarrow e'+X+p$
- Proton recoil momentum described by LF components $p_p^+ = \alpha_p p_d^+/2$, p_{pT} , simply related to p_p (restframe)
- Special case of target fragmentation QCD factorization Trentadue, Veneziano 93; Collins 97
- No assumptions re composite nuclear structure, $A = \sum N$, etc.

Tagging: Theoretical description

• Light-front quantization

High-energy scattering probes nucleus at fixed light-front time $x^+ = x^0 + x^3 = \text{const.}$

Deuteron LF wave function $\langle pn|d \rangle = \Psi(\alpha_p, \boldsymbol{p}_{pT})$

Matching nuclear \leftrightarrow nucleonic structure Frankfurt, Strikman 80's

Low-energy nuclear structure, cf. non-relativistic theory!

• Composite description

Impulse approximation IA: DIS final state and spectator nucleon evolve independently

Final-state interactions: Part of DIS final state interacts with spectator, transfers momentum

Idea: Use tagged momentum as variable to control nuclear binding, minimize/maximize FSI

Tagging: Free neutron structure

- Nuclear binding: Motion, interaction
- Extract free neutron structure

Measure tagged structure function dependence on proton momentum \rightarrow neutron off-shellness $t - m^2 = -2|\mathbf{p}_{pT}^2| + t'_{\min}$

Extrapolate to on-shell point $t-m^2
ightarrow 0$

Eliminates nuclear binding effects and FSI Sargsian, Strikman 05

• EIC simulations

Uncertainty mainly systematic: Proton momentum resolution/smearing 2014/15 LDRD

 F_{2n} extracted with percent-level accuracy at $x\sim 0.1,$ applications \bar{d}/\bar{u}

Tagging: Neutron spin structure

Control neutron polarization

Measure tagged spin asymmetries

S + D waves, depolarization

D-wave drops out at $p_{pT} = 0$: Pure S-wave, neutron 100% polarized

• Nuclear binding: Neutron polarization?

 $[|\boldsymbol{p}_{pT}| \approx 400 \text{ MeV}: \text{D-wave dominates}]$

- Free neutron spin structure On-shell extrapolation of asymmetry
- EIC simulations

Possible with int lumi \sim few 10 fb $^{-1}$

Tagging: EMC effect, non-nucleonic DoF

• Configuration dependence of nuclear partonic structure?

What momenta/distances cause modifications?

Connection EMC effect \leftrightarrow NN short-range correlations? Quarks: Hen, Higinbotham, Piasetzky, Weinstein, et al. Gluonic structure: Miller, Sievert, Venugopalan 17

• Tagged nuclear structure functions

Measure nucleon momentum dependence at $p_T \sim$ few 100 MeV

Separate initial-state modifications ↔ final-state interactions? Kinematic dependence: Strikman, CW, PRC97 (2018) 035209

Proton and neutron detection possible

• Tagging $\Delta\Delta$ configurations

Measure $e \to e' + X + \pi + N$, reconstruct Δ from πN

Direct demonstration of non-nucleonic degrees of freedom

e

е

Tagging: Final-state interactions

- DIS final state can interact with spectator
 Changes recoil momentum distributions in tagging
 No effect on total cross section closure
- Nucleon DIS final state has two components

"Fast"	$E_h = O(\nu)$	hadrons formed outside nucleus interact weakly with spectators
"Slow"	$E_h = O(\mu_{ m had}) \sim 1 \; { m GeV}$	formed inside nucleus interacts with hadronic cross section dominant source of FSI, cf. factorization

• FSI effects calculated $x \sim 0.1$ -0.5

Experimental data on nucleon fragmentation

Hadron-nucleon low-energy scattering amplitudes

Light-front quantum mechanics: Deuteron pn wave function, rescattering process $_{\rm Strikman,\ CW,\ PRC97\ (2018)\ 035209}$

Tagging: Hadrons from nucleon fragmentation 13

rest frame

• Kinematic variables

 ζ_h, p_{hT} hadron LC mom $\zeta_h \leftrightarrow x_{
m F}$ Slow hadrons in rest frame have $\zeta_h \sim 1$

 $\zeta_h < 1 - x$ kinematic limit

- Momentum distribution in rest frame
 Cone opening in virtual photon direction
 No backward movers if h = nucleon
- Experimental data

HERA x<0.01: $x_{\rm F}$ distns of p,n, scaling Cornell x>0.1: Momentum distns of p,π Neutrino DIS data $x\sim0.1$

EIC should measure nucleon fragmentation! Nucleon structure physics + input for nuclear FSI

Tagging: FSI momentum and angle dependence 14

• Quantum-mechanical description: Interference, absoprtion Strikman, CW 18

- Momentum and angle dependence in rest frame
 - $p_p < 300 \text{ MeV}$ IA imes FSI interference, absorptive, weak angular dependence
 - $p_p > 300 \text{ MeV}$ $|IA|^2$, refractive, strong angular dependence
- FSI vanishes at on-shell point $t m^2 \rightarrow 0$; extrapolation possible

Tagging: Diffraction and shadowing at small x 15

- Diffractive scattering: Nucleon remains intact, recoils with $k \sim$ few 100 MeV (rest frame)
- Shadowing: QM interference of diffractive scattering on neutron or proton Observed in inclusive nuclear scattering
- Final-state interactions

Low-momentum pn system with S = 1, I = 0

pn breakup state must be orthogonal to d bound state

Large distortion, deviations from IA Guzey, Strikman, CW; in progress

Tagging: Light nuclei A > 2

• Potential applications

Isospin dependence neutron \leftrightarrow proton

Universality of bound nucleon structure

• Simplest example: A-1 ground state recoil

3He (e, e' d) X, including polarization Ciofi, Kaptari, Scopetta 99; Kaptari et al. 2014; Milner et al. 2018

Bound proton \leftrightarrow free proton structure

• Nuclear breakup much more complex than A=2

IA: Wave function overlap, large amplitude factors Experience with quasielastic breakup: JLab Hall A

FSI: Multiple trajectories

Requires new nuclear structure imput: Light-front spectral functions, decay functions, FSI Workshop "Polarized light ion physics with EIC", 5-9 Feb 2018, Ghent [Webpage]. Emerging collaboration with low-energy nuclear structure community

Coherent processes: Nuclear quark-gluon imaging 17

QCD factorization theorem Collins, Frankfurt, Strikman 96

Generalized parton distributions $\langle A' | \mathcal{O}(\text{twist-2}) | A \rangle$: Unify concepts of parton density and form factor Müller et al. 94; Ji 96, Radyushkin 96

• Transverse spatial distribution of quarks/gluons

Transverse coordinate $\boldsymbol{b} \stackrel{\text{Fourier}}{\longleftrightarrow} \boldsymbol{\Delta}_T \qquad (t = -\boldsymbol{\Delta}_T^2)$

Compare quark \leftrightarrow gluon, charge \leftrightarrow matter distributions

Dynamics: Distributions change with x, polarization

• EIC: Quark-gluon imaging of light nuclei

Probe quarks: DVCS γ ; π , K, ρ^+ , K^* Probe gluons: J/ψ , ϕ ; DVCS γ NLO

Nuclei: D spin-1, 3He spin-1/2, 4He spin-0

Coherent processes: Centrality, shadowing

• eA collision at defined centrality

Basic question of high-energy nuclear collisions Empirical measures of centrality in heavy-ion collisions

Can be used to study dynamics!

• Nuclear shadowing in coherent scattering

Suppression of leading-twist gluon density at small x from interference of scattering on different nucleons Seen in ultraperipheral γA at LHC: ALICE, CMS. \rightarrow Talk Guzey

Impact parameter ↔ thickness Theoretical models: Guzey et al 09

Light ions: Test shadowing mechanism in simplest systems, positive detection of forward ions

Heavy ions: Veto nuclear breakup Caldwell, Kowalski 09

Summary

- EIC will enable next-generation physics program in eA(light) scattering
- Spectator tagging with deuteron overcomes main limiting factor of nuclear DIS: Control of nuclear configurations during high-energy process

Free neutron from on-shell extrapolation, eliminates nuclear binding and D-wave

Configuration dependence of nuclear modifications, EMC effect

Theory well developed, separates high-energy process \leftrightarrow low-energy structure

Extension to A > 2 possible, requires substantial nuclear structure input

 Coherent processes in eA present new possibilities for structure and dynamics Image nucleus in terms of quark/gluon degrees of freedom

Nuclear shadowing as function of centrality/thickness

• Nuclear breakup and coherent recoil are essentially QM processes, need to be described by QM cross section models, not probabilistic MC \rightarrow tomorrow

Supplementary material

Tagging: Neutron spin structure II

• Precise measurement of neutron spin structure

Wide kinematic range: Leading \leftrightarrow higher twist, nonsinglet \leftrightarrow singlet QCD evolution Parton density fits: Flavor separation $\Delta u \leftrightarrow \Delta d$, gluon spin ΔG Nonsinglet $g_{1p} - g_{1n}$ and Bjorken sum rule