Performance Tracking across the Injector Complex

OP requirements' analysis and Technical Proposal.

LIU Meeting 27 September 2019

Marine Pace, for BE-CO.

Analysis study by Lukasz Burdzanowski, Mark Buttner and Greg Kruk.

Outline

- Reminder of OP request
- CO technical proposal and action plan

Outline

- Reminder of OP request
- CO technical proposal and action plan

OP Request: Input from LIU project

Verena's courtesy

- Goals in terms of intensity and brightness are defined for each year
- The performance of the injectors will be measured with respect to performance goals
 - \rightarrow Peak performance
 - → Reproducibility

 \rightarrow Performance needs to be tracked.

OP Request: 2 types of tracking required

Verena's courtesy

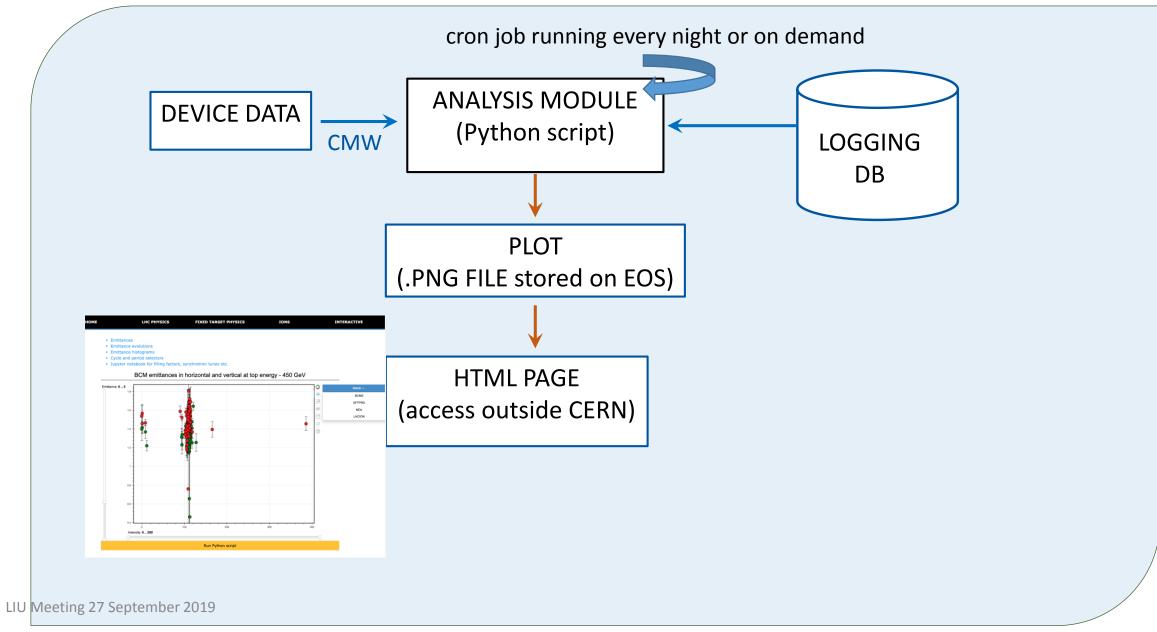
- Machine specific data tracking
 - Two aspects / sources of data:
 - 1. Normal equipment data logging
 - 2. Online monitoring of certain parameters
- Performance tracking per beam type
 - Across complex.
 - Need to track beam through complex \rightarrow unique SC number and beam ID

OP Request: Performance <u>per beam type</u> across complex

Verena's courtesy

- Should be online and web based (also visible from outside)
- Plots to be continuously populated no waiting for data from NXCALS
 - Background process to fill data in pickles?
 - Scripts with minor analysis for advanced plotting
 - Need interactive scientific plotting
 - Plots to be made by the "experts". Use BOKEH?

OP Request: Priorities, Deadlines

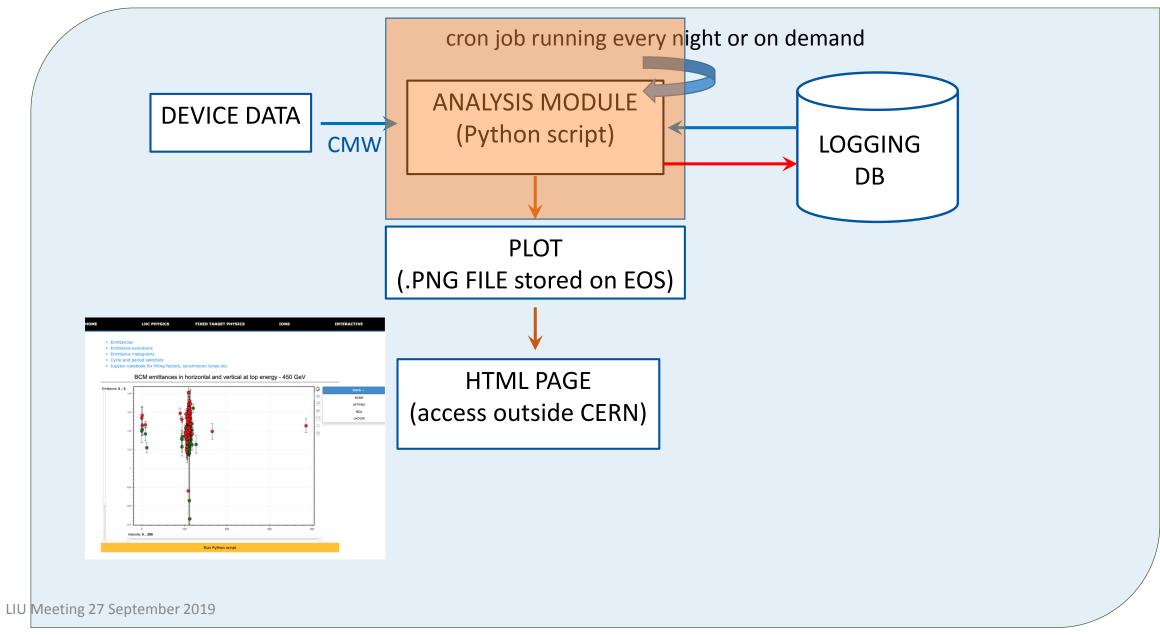

Verena's courtesy

- First priority: performance tracking web pages for all beam types
 - Unique identifiers for SC number and beam

7

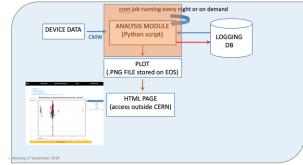
- Background process to retrieve data ready for plotting
- Plots "prepared" by users, ideally in Python
- Needs to be ready for start-up: mid 2020
- Second priority: event based analysis: cycle-by-cycle
 - Centralized analysis, reuse analysis results as input to other analysis
 - Republish results \rightarrow show in GUI, use for performance tracking
 - Results need to be ready before end of next cycle: latency requirements to be defined for small machines
 - Store grouped as event for playback
 - Needs to be developed 2021/22 for machines other than SPS

OP Request: What exists today

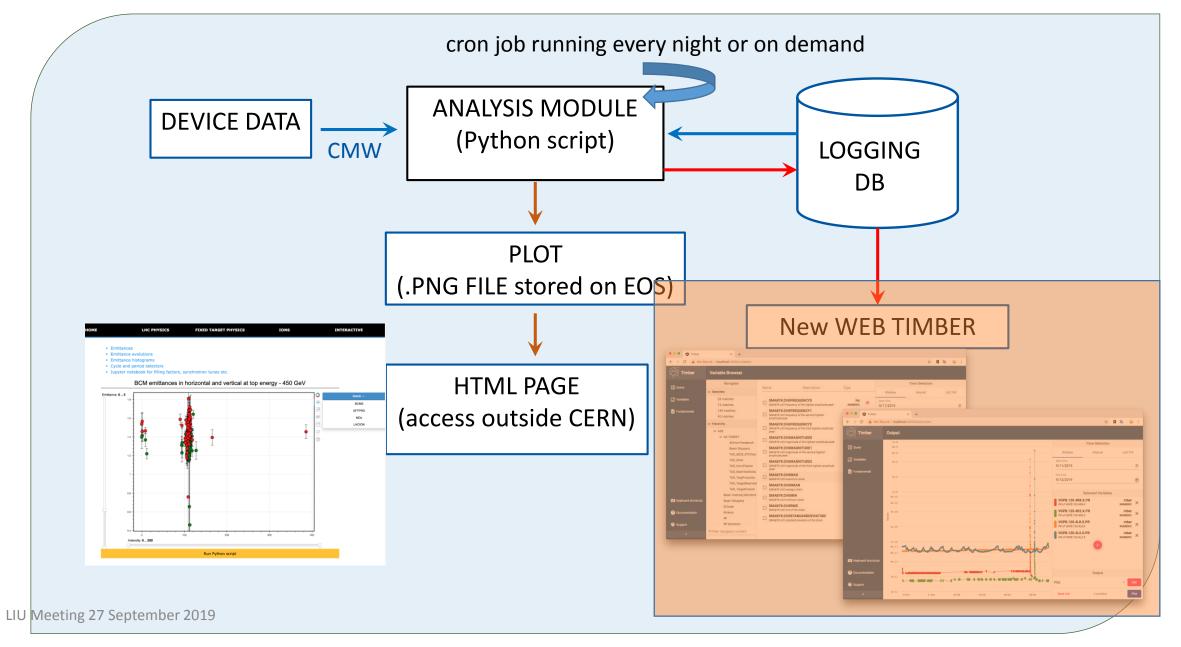

Outline

- Reminder of OP request
- CO technical proposal and action plan
 - for priority 1 : start-up mid 2020
 - for priority 2: 2021/22

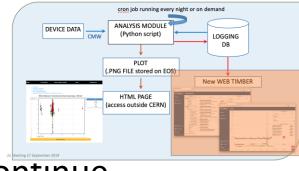
CO proposal for start-up mid 2020 (P1)


- 1. CO-standard infrastructure to manage Python scripts
- 2. New Web TIMBER
- 3. Access to Beam Instance ID to group data by beam

1. CO-standard infrastructure for Python scripts


1. CO-standard infrastructure for Python scripts

• Configure GitLab to store, version and track changes in Python analysis scripts.



- Mechanism to automate the deployment of scripts for testing / trigger the PRO deployment to suitable CO infrastructure from where it will be scheduled for execution.
- Facility to monitor the execution of scripts.
- Also aim for a mechanism to publish Python analysis results into NXCALS via UCAP.

¹³2. Web TIMBER

2. Web TIMBER

- First version of new TIMBER (Web), connected with NXCALS is foreseen for end of this year. Iterative development will continue throughout next year.
- TIMBER will include <u>user configurable</u> charts → in parallel to maintaining the existing OP Web publications to EOS, validate:
 - Suitability of Charts available in TIMBER
 - Performance of extraction of analysis results from NXCALS

3. Access to Beam Instance ID to group data by beam

- Extension of Timing beam metadata publications to include Beam Instance id.
- Timing will publish a device property that will links each cycle Stamp with Beam ID, Beam Instance ID and bcd Stamp (=Supercycle ID).
 - One device per machine
- All this metadata will be logged in NXCALS.
- Python analysis scripts (OP) can use this metadata from NXCALS to fetch all data related to a specific beam type and/or beam instance.

CO proposal for 2021-22 (P2)

• OP requirements

- Cycle by Cycle analysis Results ready before end of next cycle
- Re-publication of results, play back analysis...
- Outcome of preliminary CO analysis
 - OP needs are aligned with the CO technical direction (including our vision for UCAP in the controls system) in the coming years.
- No commitment for 2021-22 can be given now as strongly dependent on available HR.
- Our proposal will be presented mid 2020.

Work organization

- The OP requests for start up mid 2020 will be fulfilled by CO.
 - Some CO activity will be reshuffled to give priority to this request.
- CO group commitment
 - APS: integrated environment for Python scripts. Aim to also publish analysis results to be stored in NXCALS.
 - DS: new TIMBER (Web) with user configurable charts.
 - SRC: publication of beam instance ID to correlate beam data across machines.
- Vito Baggiolini will coordinate this activity.
 - Follow-up of CO deliverables
 - Main interface with OP/ABP. Reporter to LIU.

Beam Instance ID

- OP needs to identify each beam type (BeamID) as well as instance of that beam within the BCD (beamInstanceID)
 - If there are two TOF beams within the BCD, they should have the same BEAMID (that's the case today) but distinct beamInstanceIDs
 - As long the same BCD is played in a loop, the beamInstanceID of all beams within this BCD should remain unchanged
 - Once OP edits the played BCD or changes LSA Cycle-USER mapping (to be confirmed)

 all beamInstanceIDs should be regenerated

• OP needs to identify uniquely the BCD

- This could be achieved e.g. by using a bcdStamp (cycleStamp of the first cycle in the BCD – usually the PSB one)
- Note that in case SPS or LEIR are in standalone mode, their bcdStamp would be different from PSB/PS

Beam Instance ID

- Before playing a cycle in each machine, the Timing system could publish all the related information in a single property (one device per machine):
 - Header:
 - cycleStamp
 - cycleName (user)
 - bcdStamp
 - beamInstanceId
 - beamId
 - beamName
- With the information above logged to NXCALS, OP would be able to:
 - For a given time window, find all bcdStamps, beamIds, beamInstanceIDs and beam names
 - Then using beamInstanceIDs and cycleStamps , find all other beam-related data for all machines