1 degree IR layout and optics

Rob Appleby
Luke Thompson
CERN/Cockcroft Institute
16/02/10
This is a brief status update

Luminosity and Acceptance of the IRs

Luminosity and acceptance very much depend on physics program
=> Possible scenario two different interaction region setups

$$
=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 10^{\circ}<\theta<170^{\circ}
$$

$$
=10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 1^{\circ}<\theta<179^{\circ}
$$

10 degree IR has been studied, with a optics and separation scheme worked out but work needed for the 1 degree (low lumi) IR

Interesting design and optics challenges
Interplay between optics, SR production and beam-beam interaction

Design dominated by separation scheme (well known)
Linked with the detector layout and design

10 degree IR layout

spectrometer effect: use dipole fields to separate the beams according to their momentum.
\rightarrow quadrupole triplet offset
LHC bunch distance:
25 ns 1st parasitic crossing:
3.75 m first e-quad positioned at $\quad 1.2 \mathrm{~m}$
... too far for sufficient beam separation
separation has to start at the IP, support the off-centre-quadrupole separation scheme by crossing angle ($\approx 1.5 \mathrm{mrad}$) at the IP . Betx=12.7 cm, Bety=7.1 cm

Overall SR power in IR is 60 kW . SR controlled with smooth bending. Masked needed

Turning to the 1 degree IR (needed for physics programme)..

Machine elements (quad) in forward region sit within the 1 degree cone, so a new design (and concept?) is needed
(Q1E has 21 cm outer radius)

1 degree conceptual layouts

The Q-B layout

- Electron optics: betx ${ }^{*}=0.63 \mathrm{~m}$, bety ${ }^{*}=0.35 \mathrm{~m}, \mathrm{E}=70 \mathrm{GeV}$
- Head-on lumi 1.5E32 (assuming matched proton optics, partially done)
- Achieve smooth bending with electron quad and dipole separator
- Bending radius of 26000 m (3060 m for LHC dipoles), matched for quads and dipole (smooth)
- Offset of electron quad is small in this scheme ($\sim 1 / 10 \mathrm{~mm}$)
- Separation criteria
- 5 sig_e +5 sig_p (absolute minimum)
- Exploit common proton half-quad with 10 degree, so need 37 mm separation
- First two parasitic nodes before electron quad, so need to supplement separation with beam crossing angle

Crossing angle of 1.44 mrad meets separation criteria

- Well in excess of $5+5$ criteria before electron quad (e optics)
- About 50% lumi drop (to be checked)
- Separation quite easy...we just need to bend more if the beam-beam is problematic......interplay between optics, SR production and beam-beam

CDR plans for 1 degree IR

- Separation achieved with smooth bending radius of offset quads and dipole, but major contribution to separation achieved with crossing angle
- We'll need to iterate on the optics and layout after SR calculations
- Finish Q-B layout and begin calculations of the SR with a set of prototype parameters
- Study the B-Q layout (probably beneficial)
- Iterate on optics and SR loads
- Study both for CDR
- Could we integrate dipoles into the detector?
- Match optics into e ring optics
- Make some new calculations of SR load, with a tilt towards studying the SR backgrounds
- Cl expertise in background calculations and optics

