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Abstract

A review of earlier fluid dynamical calculations with QGP show a softening of the directed flow while with hadronic
matter this effect is absent. The effect shows up in the reaction plane as enhanced emission which is orthogonal to the
directed flow. Thus. it is not shadowed by the deflected projectile and target. As both of these flow components are in the
reaction plane they form an enhanced ‘elliptic flow” pattern. Recent experimental data at 11 AGeV and above show the same
softening. hinting at QGP formation. © 1999 Published by Elsevier Science B.V. All rights reserved.
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Directed flow vl — NA61

Directed flow and the onset of deconfinement

Directed flow v, is considered to be sensitive to 15t order phase transition
(softening of EOS). Expected: non-monotonic behavior (positive—negative—positive)
of proton dv, /dy as a function of beam energy - “collapse of proton flow”

Predictions of hydrodynamical model:
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Directed flow vl — NA61

Centrality dependence of dv, /dy in Pb+Pb at Vsyy= 7.6 GeV

NAG61/SHINE fixed target setup — tracking and particle identification over wide
rapidity range

Flow coefficients are measured relative to the spectator plane estimated with,

Proiectile Spectator Detector (PSD) — unique for NAG1/SHINE Y
%“005; NAG1/SHINE preliminary -0.2¢y<0.8 '¢ %Q/ 4
=777 Pb+Pb @ 30A GeVic p,< 2 GeVic L
o) | ’
it 4y : . -
y i Close to mid-rapidity (-0.2 <y < 0.8)
] LR . ] .
Yo ¥ | - slope of pion v, is negative for all
— * + -T F—
i 5 . [ centralities
005 9%y SR . 1 - slope of proton v, changes
L . * sign at centrality of about 50%
- e T
- 4 proton
_0'1|_ ! | | |
o =20 40 80 8
PSD centrality (%) More NA61/SHINE flow results:

Klochkov, Selyuzhenkov (QM2018 talk)




Directed flow vl — NA61

Proton directed flow vs rapidity
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Directed flow vl — STAR
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Probe of the softening of the Equation of State
» strong softening: consistent with the 1st-order phase transition
» weaker softening: more likely due to crossover

SQM2019, Italy

J. Zhao
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Directed Flow Slope dv,/dyl_,

Directed flow vl — STAR

Directed flow (STAR BES-I)

directed flow
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transition
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* Need theory to explain
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Directed flow vl — STAR

% Directed Flow of Identified Particles
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Heavy quarks directed flow v1

Heavy Flavour dynamics: sources of v, for charm quarks

» Vorticity due to the large orbital angular momentum
in URHIC J=10°-10°h

Becattini, Piccinini e Rizzo, PRC 77, 024906 (2008)

Csernai, Magas and Wang - Phys. Rev. C 87 (2013) 034906
Becattini et al, EPJ C 75, 406 (2015)

Deng and Huang, PRC 93, 064907 (2016)

Jiang, Lin and Liao, PRC 94, 044910 (2016); PRC 95, 049904 (2017)

« Are HQ affected by the initial vorticity of the QGP?
Solving the relativistic Langevin eq. with tilted initial distribution in
the reaction plane produce a v, of D meson several times larger

than that of charged particle.
S. Chatterjee, P. Bozek PRI 120 (2018) no.19, 192301

» Intense magnetic field B:
created on Earth = 10" Gauss
in Neutron Star = 10" Gauss
in uRHIC = 10" Gauss =10 m_’

A. Bzdak, V. Skokov, PLB 710 (2012) 171-174
K. Tuchin, PRC 88, 024911 (2013).

K. Tuchin, Adv. High Energy Phys. 2013, 1 (2013). ' N
K. Hattori, X.-G. Huang Nucl.Sci.Tech. 28 (2017) no.2, 26. -

« Are HQ affected by the initial EM field produced in ‘ J \
aHIC? ¥<_/\
Solving the relativistic Langevin eq. with Lorentz force a sizeable v,

for charm (anti-charm) quarks is produced.
S.K. Das,S. Plumari,S. Chatterfee,J. Alam,F. Scardina,V. Greco, PLB768 (2017)
260,




Heavy quarks directed flow v1

The direct flow v, originates from
two competing effects: Hall effect

Faraday effect Lorentz force induced V —pt
Electric field induced by moving charges
by decreasing B, F :qE+i|'p><B'|

ext Ep . F

ext V.

Transport properties of Heavy Quarks and their
correlations to the bulk dynamics and the initial
Electromagnetic field
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v, (y)

Heavy quarks directed flow v1

Balance between Magnetic and Electric fields
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= Decreasing magnetic field B, creates E,
that induces a current in opposite
direction w.r.t. to the Magnetic Hall
drift: delicate balance!

= Larger initial (t<1 fm/c) field important
to determine a sizeable v, flow
S.K. Das et al., PLB 768 (2017)
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v, (y)

Heavy quarks directed flow v1

| Direct Flow v, of charm quarks

For light quarks was predicted v,=~ 10° -10*

0 m_— Vl:," Px | — — B (only EM fieic) U. Giirsoy, D. Kharzeev, K. Rajagopal PRC 89, 054905 (2014).

\pr/ D (only EM field) )

For charm quarks due to early production we
find a sizeable v, with the same E-B evolution

S. K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina, V.
Greco, PLB768 (2017) 260-264.

HQ best probe for v, from e.m. field:
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Heavy quarks directed flow vl - STAR

U P T

irected flow (v1) due to EM fields
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Das el. al., Phys Lelt B 768, 260 (2017)

Guannan Xie 2018 RHIC & AGS Annual Users' Meeting (BNL)
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Heavy quarks directed flow vl - STAR

of the source

D° Directed Flow (v,)

(bulk)

S.K. Das et al, PLB 768 (2017) 260

Charm quarks interact with bulk medium — D? v, sensitive to the initial tilt

S. Charterjee and P. Bozek, PRL 120 (2018) 192301

Charm and anti-charm quarks can be deflected differently by the imnitial EM

field — difference between D° and D v, sensitive to EM field

that of kaons

First observation of non-zero (negative) D°(D? ) v, slope, much larger than

D® + DO dv,/dy = —0.081 + 0.021(stat) + 0.017(sys)
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arXiv:1905.02052
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Heavy quarks directed flow v1 - ALICE

Delta v1 low p; for D? meson

Universiteit Utrecht
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