Shear viscosity to entropy ratio in A+A collisions at NICA energies

E. Zabrodin in collaboration with L. Bravina, M. Teslyk, and O. Vitiuk

Simposium "Four decades of hydrodynamics at UiO", Dedicated to Laszlo Csernai 70th birthday. Bergen, 9.09.2019

Motivation

L. Bravina , M. Teslyk , O. Vitiuk , E. Zabrodin

Shear viscosity in Au+Au cllisions at NICA energies

Motivation

taken from

R.Rapp, H.Hees. arXiv:0803.0901[hep-ph]

- A.Muronga. PRC 69, 044901 (2004)
- L.Csernai, J.Kapusta, L.McLerran.
 PRL 97, 152303 (2006)
- P.Romatschke, U.Romatschke. PRL 99, 172301 (2007)
- S.Plumari et al. PRC 86, 054902 (2012)
- ALICE collaboration, CERNCOURIER (14.10.2016)
- J.Rose et al. PRC 97, 055204 (2018)

イロト イ伺ト イヨト イヨト

=

Theory

Green-Kubo: shear viscosity η may be defined as:

$$\eta(t_0) = \frac{1}{\hbar} \frac{V}{T} \int_{t_0}^{\infty} \mathrm{d}t \langle \pi(t) \pi(t_0) \rangle_t = \frac{\tau}{\hbar} \frac{V}{T} \langle \pi(t_0) \pi(t_0) \rangle,$$

where

$$\langle \pi(t) \pi(t_0) \rangle_t = \frac{1}{3} \sum_{\substack{i,j=1\\i \neq j}}^3 \lim_{t_{\max} \to \infty} \frac{1}{t_{\max} - t_0} \int_{t_0}^{t_{\max}} dt' \pi^{ij} (t+t') \pi^{ij} (t')$$
$$= \langle \pi(t_0) \pi(t_0) \rangle \exp\left(-\frac{t-t_0}{\tau}\right)$$

with

$$\pi^{ij}(t) = \frac{1}{V} \sum_{\text{particles}} \frac{p^{i}(t) p^{j}(t)}{E(t)}$$

t₀: initial cut-off time to start with

L. Bravina , M. Teslyk , O. Vitiuk , E. Zabrodin

Shear viscosity in Au+Au cllisions at NICA energies

< ∃⇒

∃ ▶

990

=

< 口 > < 凸

- UrQMD calculations, central Au+Au collisions at energies *E* ∈ [10, 20, 30, 40] AGeV of the projectile, 51200 events per each
- central cell $5 \times 5 \times 5 \text{ fm}^3 \Rightarrow \{\varepsilon, \rho_B, \rho_S\}$ at times $t_{cell} = 1 \div 20 \text{ fm/c}$
- statistical model (SM): $\{\varepsilon, \rho_B, \rho_S\} \Rightarrow \{T, s, \mu_B, \mu_S\}$

- UrQMD calculations, central Au+Au collisions at energies *E* ∈ [10, 20, 30, 40] AGeV of the projectile, 51200 events per each
- central cell $5 \times 5 \times 5 \text{ fm}^3 \Rightarrow \{\varepsilon, \rho_B, \rho_S\}$ at times $t_{cell} = 1 \div 20 \text{ fm/c}$
- statistical model (SM): $\{\varepsilon, \rho_B, \rho_S\} \Rightarrow \{T, s, \mu_B, \mu_S\}$

- UrQMD calculations, central Au+Au collisions at energies *E* ∈ [10, 20, 30, 40] AGeV of the projectile, 51200 events per each
- central cell $5 \times 5 \times 5 \text{ fm}^3 \Rightarrow \{\varepsilon, \rho_B, \rho_S\}$ at times $t_{cell} = 1 \div 20 \text{ fm/c}$
- statistical model (SM): $\{\varepsilon, \rho_B, \rho_S\} \Rightarrow \{T, s, \mu_B, \mu_S\}$

Equilibration in the Central Cell

 $\mathbf{t}^{cross} = 2\mathbf{R}/(\gamma_{cm} \beta_{cm})$ $\mathbf{t}^{eq} \ge$

$$\geq t^{cross} + \Delta z/(2\beta_{cm})$$

L.Bravina et al., PLB 434 (1998) 379; JPG 25 (1999) 351 Kinetic equilibrium: Isotropy of velocity distributions Isotropy of pressure

Thermal equilibrium: Energy spectra of particles are

described by Boltzmann distribution

$$\frac{dN_i}{4\pi pEdE} = \frac{Vg_i}{(2\pi\hbar)^3} \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Chemical equlibrium:

Particle yields are reproduced by SM with the same values of $(T, \ \mu_B, \ \mu_S)$:

$$N_i = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 dp \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Statistical model of ideal hadron gas input values output values $\varepsilon^{\mathrm{mic}} = \frac{1}{V} \sum_{i} E_{i}^{\mathrm{SM}}(T, \mu_{\mathrm{B}}, \mu_{\mathrm{S}}),$ $\boldsymbol{\rho}_{\mathrm{B}}^{\mathrm{mic}} = \frac{1}{V} \sum_{i} B_{i} \cdot N_{i}^{\mathrm{SM}}(\boldsymbol{T}, \boldsymbol{\mu}_{\mathrm{B}}, \boldsymbol{\mu}_{\mathrm{S}}),$ $\boldsymbol{\rho}_{\mathbf{S}}^{\mathrm{mic}} = \frac{1}{V} \sum_{i} S_{i} \cdot N_{i}^{\mathrm{SM}}(\boldsymbol{T}, \boldsymbol{\mu}_{\mathrm{B}}, \boldsymbol{\mu}_{\mathrm{S}}).$ Multiplicity $N_i^{\text{SM}} = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 f(p, m_i) dp,$ **Energy** \rightarrow $E_i^{\text{SM}} = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 \sqrt{p^2 + m_i^2} f(p, m_i) dp$ $P^{\rm SM} = \sum_{i} \frac{g_i}{2\pi^2 \hbar^3} \int_0^\infty p^2 \frac{p^2}{3(p^2 + m_i^2)^{1/2}} f(p, m_i) dp$ Pressure $s^{\text{SM}} = -\sum_{i} \frac{g_i}{2\pi^2 \hbar^3} \int_0^\infty f(p, m_i) \left[\ln f(p, m_i) - 1\right] p^2 dp$ Entropy density

• UrQMD box calculations at $\{\varepsilon, \rho_{\rm B}, \rho_{\rm S}\}$ for every energy and cell time $t_{\rm cell}$ from cell calculations, 80 points in total, 12800 events per each

 $\rho_{\rm B}$ is included as $N_p : N_n = 1 : 1$ $\rho_{\rm S}$ is included via kaons $K^$ box size: $10 \times 10 \times 10$ fm³ box boundaries: transparent

 π^{ij}(t) data extraction: t = 1 ÷ 1000 fm/c in box time, all types of hadrons are taken into account

- UrQMD box calculations at {ε, ρ_B, ρ_S} for every energy and cell time t_{cell} from cell calculations, 80 points in total, 12800 events per each ρ_B is included as N_p : N_n = 1 : 1 ρ_S is included via kaons K⁻ box size: 10 × 10 × 10 fm³ box boundaries: transparent
- π^{ij}(t) data extraction: t = 1 ÷ 1000 fm/c in box time, all types of hadrons are taken into account

L. Bravina , M. Teslyk , O. Vitiuk , E. Zabrodin Shear viscosity in Au+Au cllisions at NICA energies

୬ହନ

• UrQMD box calculations at $\{\varepsilon, \rho_{\rm B}, \rho_{\rm S}\}$ for every energy and cell time $t_{\rm cell}$ from cell calculations, 80 points in total, 12800 events per each

 $\rho_{\rm B}$ is included as $N_p: N_n = 1:1$ $\rho_{\rm S}$ is included via kaons $K^$ box size: $10 \times 10 \times 10$ fm³ box boundaries: transparent

 π^{ij}(t) data extraction: t = 1 ÷ 1000 fm/c in box time, all types of hadrons are taken into account

୬ହନ

Box with periodic boundary conditions

Initialization: (i) nucleons are uniformly distributed in a configuration space; (ii) Their momenta are uniformly distributed in a sphere with random radius and then rescaled to the desired energy density.

M.Belkacem et al., PRC 58, 1727 (1998)

Model employed: UrQMD 55 different baryon species (N, Δ , hyperons and their resonances with $m \leq 2.25 \text{ GeV/c}^2$) 32 different meson species (including resonances with $m \leq 2 \text{ GeV/c}^2$) and their respective antistates. For higher mass excitations a string mechanism is invoked.

Test for equilibrium: particle yields and energy spectra

Box: particle abundances

Saturation of yields after a certain time. Strange hadrons are saturated longer than others (at not very high energy densities)

Cell + SM

Dependence of $\varepsilon, \rho_B, \rho_S$ (from cell) and of T, μ_B, μ_S (from SM) on t_{cell}

< 🗆 🕨

996

=

SM, Boltzmann entropy s

Dynamics of Boltzmann entropy density s and of $s/\rho_{\rm B}$ in cell

L. Bravina , M. Teslyk , O. Vitiuk , E. Zabrodin Shear viscosity in Au+Au cllisions at NICA energies

< □ ▶

920

=

=

Results: $\langle \pi(t) \pi(t_0) \rangle_t$ at $E \in [10, 20, 30, 40]$ AGeV

Time dependence of correlators $\langle \pi(t) \pi(t_0) \rangle_t$ $t_0 = 300 \text{ fm/c}$ $t_{\text{cell}} \in \{1 \div 20\} \text{ fm/c}$

L. Bravina , M. Teslyk , O. Vitiuk , E. Zabrodin Shear viscosity in Au+Au cllisions at NICA energies

< ロ > < 同 > < 三 >

.≣ .>

Results: $\langle \pi(t) \pi(t_0) \rangle_t$ at fixed t_{cell}

Time dependence of correlators $\langle \pi(t) \pi(t_0) \rangle_t$ Subplot: the same but at linear scale $t_0 = 300 \text{ fm/c}$ $t_{\text{cell}} = 7 \text{ fm/c}$

L. Bravina , M. Teslyk , O. Vitiuk , E. Zabrodin Shear viscosity in Au+Au cllisions at NICA energies

Dependence of τ on t_0

L. Bravina , M. Teslyk , O. Vitiuk , E. Zabrodin Shear viscosity in Au+Au cllisions at NICA energies

=

=

Results: au from the fit

Dependence of τ_{fit} on t_0

- ∢ ≣ →

Ξ

うくぐ

Results: Comparison of τ_{int} and τ_{fit}

L. Bravina , M. Teslyk , O. Vitiuk , E. Zabrodin Shear viscosity in Au+Au cllisions at NICA energies

< 🗆 🕨

996

=

=

Results: viscosity $\eta(t_0)$

Dependence of η on t_0

L. Bravina , M. Teslyk , O. Vitiuk , E. Zabrodin Shear viscosity in Au+Au cllisions at NICA energies

< ロ > < 団 > < 亘 > .

-∢∃>

うくぐ

=

Results: viscosity $\eta(t_{cell})$

Dynamics of η in cell All curves sit on the top of each other for $t_{cell} \ge 7$ fm/c

< 🗆

996

I

Results: η/s

Dynamics of η/s in cell η/s increases with time for $t_{cell} \ge 6$ fm/c for all four energies Minimum - for 10 AGeV, corresponding to 4.5 GeV in c.m. frame

୶ୡୡ

L. Bravina , M. Teslyk , O. Vitiuk , E. Zabrodin Shear viscosity in Au+Au cllisions at NICA energies

< 🗆 🕨

920

=

=

Conclusions

- data from central cell of UrQMD calculations are used as input for SM to calculate temperature *T* and Boltzmann entropy density *s*, and for UrQMD box calculations in order to estimate shear viscosity *η*
- box output data are taken within the range 200 ≤ t₀ ≤ 800 fm/c because:
 - values at $t_0 < 200 \text{ fm/c}$ are distorted by the initial fluctuation in the box
 - values at $t_0 > 800$ fm/c may be disturbed by the analog of Brownian motion
- it is shown that for all four tested energies η and s in the cell drop with time
- ratios η/s reach minima about 0.3 at $t \approx 5$ fm/c for all energies. Then, the ratios rise to $1.0 \div 1.2$ at t = 20 fm/c
- this increase is accompanied by the simultaneous rise of μ_B and drop of both T and μ_S in the cell