Shear viscosity to entropy ratio in A+A collisions at NICA energies

E. Zabrodin
in collaboration with
L. Bravina, M. Teslyk, and O. Vitiuk

Simposium "Four decades of hydrodynamics at UiO", Dedicated to Laszlo Csernai 70th birthday.

Motivation

Motivation

- A.Muronga. PRC 69, 044901 (2004)
- L.Csernai, J.Kapusta, L.McLerran. PRL 97, 152303 (2006)
- P.Romatschke, U.Romatschke. PRL 99, 172301 (2007)
- S.Plumari et al. PRC 86, 054902 (2012)
- ALICE collaboration, CERNCOURIER (14.10.2016)
- J.Rose et al. PRC 97, 055204 (2018)
taken from
R.Rapp, H.Hees. arXiv:0803.0901[hep-ph]

Green-Kubo: shear viscosity η may be defined as:

$$
\eta\left(t_{0}\right)=\frac{1}{\hbar} \frac{V}{T} \int_{t_{0}}^{\infty} \mathrm{d} t\left\langle\pi(t) \pi\left(t_{0}\right)\right\rangle_{t}=\frac{\tau}{\hbar} \frac{V}{T}\left\langle\pi\left(t_{0}\right) \pi\left(t_{0}\right)\right\rangle
$$

where

$$
\begin{aligned}
\left\langle\pi(t) \pi\left(t_{0}\right)\right\rangle_{t} & =\frac{1}{3} \sum_{\substack{i, j=1 \\
i \neq j}}^{3} \lim _{\max \rightarrow \infty} \frac{1}{t_{\max }-t_{0}} \int_{t_{0}}^{t_{\max }} \mathrm{d} t^{\prime} \pi^{i j}\left(t+t^{\prime}\right) \pi^{i j}\left(t^{\prime}\right) \\
& =\left\langle\pi\left(t_{0}\right) \pi\left(t_{0}\right)\right\rangle \exp \left(-\frac{t-t_{0}}{\tau}\right)
\end{aligned}
$$

with

$$
\pi^{i j}(t)=\frac{1}{V} \sum_{\text {particles }} \frac{p^{i}(t) p^{j}(t)}{E(t)}
$$

t_{0} : initial cut-off time to start with

Model setup: cell calculations

- UrQMD calculations, central $\mathrm{Au}+\mathrm{Au}$ collisions at energies $E \in[10,20,30,40] \mathrm{AGeV}$ of the projectile, 51200 events per each
- central cell $5 \times 5 \times 5 \mathrm{fm}^{3} \Rightarrow\left\{\varepsilon, \rho_{\mathrm{B}}, \rho_{\mathrm{S}}\right\}$ at times $t_{\text {cell }}=1 \div 20 \mathrm{fm} / \mathrm{c}$
- statistical model $(\mathrm{SM}):\left\{\varepsilon, \rho_{\mathrm{B}}, \rho_{\mathrm{S}}\right\} \Rightarrow\left\{T, s, \mu_{\mathrm{B}}, \mu_{\mathrm{S}}\right\}$

Model setup: cell calculations

- UrQMD calculations, central $\mathrm{Au}+\mathrm{Au}$ collisions at energies $E \in[10,20,30,40] \mathrm{AGeV}$ of the projectile, 51200 events per each
- central cell $5 \times 5 \times 5 \mathrm{fm}^{3} \Rightarrow\left\{\varepsilon, \rho_{\mathrm{B}}, \rho_{\mathrm{S}}\right\}$ at times $t_{\text {cell }}=1 \div 20 \mathrm{fm} / \mathrm{c}$

Model setup: cell calculations

- UrQMD calculations, central $\mathrm{Au}+\mathrm{Au}$ collisions at energies $E \in[10,20,30,40] \mathrm{AGeV}$ of the projectile, 51200 events per each
- central cell $5 \times 5 \times 5 \mathrm{fm}^{3} \Rightarrow\left\{\varepsilon, \rho_{\mathrm{B}}, \rho_{\mathrm{S}}\right\}$ at times $t_{\text {cell }}=1 \div 20 \mathrm{fm} / \mathrm{c}$
- statistical model (SM): $\left\{\varepsilon, \rho_{\mathrm{B}}, \rho_{\mathrm{S}}\right\} \Rightarrow\left\{T, s, \mu_{\mathrm{B}}, \mu_{\mathrm{S}}\right\}$

Equilibration in the Central Cell

$\mathbf{t}^{\text {cross }}=2 \mathbf{R} /\left(\gamma_{\mathrm{cm}} \beta_{\mathrm{cm}}\right)$

$$
\mathbf{t}^{\text {eq }} \geq \mathbf{t}^{\text {cross }}+\Delta z /\left(2 \beta_{c \mathrm{~cm}}\right)
$$

Kinetic equilibrium:

Isotropy of velocity distributions
Isotropy of pressure
L.Bravina et al., PLB 434 (1998) 379; JPG 25 (1999) 351

$$
\frac{d N_{i}}{4 \pi p E d E}=\frac{V g_{i}}{(2 \pi \hbar)^{3}} \exp \left(\frac{\mu_{i}}{T}\right) \exp \left(-\frac{E_{i}}{T}\right)
$$

Chemical equlibrium:

Thermal equilibrium: Energy spectra of particles are described by Boltzmann distribution

Particle yields are reproduced by $\mathbf{S M}$ with the same values of $\left(T, \mu_{B}, \mu_{S}\right)$:

$$
N_{i}=\frac{V g_{i}}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{2} d p \exp \left(\frac{\mu_{i}}{T}\right) \exp \left(-\frac{E_{i}}{T}\right)
$$

Statistical model of ideal hadron gas

 input values$$
\begin{aligned}
\varepsilon^{\text {mic }} & =\frac{1}{V} \sum_{i} E_{i}^{\mathrm{SM}}\left(T, \mu_{\mathrm{B}}, \mu_{\mathrm{S}}\right), \\
\rho_{\mathrm{B}}^{\text {mic }} & =\frac{1}{V} \sum_{i} B_{i} \cdot N_{i}^{\mathrm{SM}}\left(T, \mu_{\mathrm{B}}, \mu_{\mathrm{S}}\right), \\
\rho_{\mathrm{S}}^{\text {mic }} & =\frac{1}{V} \sum_{i} S_{i} \cdot N_{i}^{\mathrm{SM}}\left(T, \mu_{\mathrm{B}}, \mu_{\mathrm{S}}\right) .
\end{aligned}
$$

Multiplicity

$$
\begin{aligned}
N_{i}^{\mathrm{SM}} & =\frac{V g_{i}}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{2} f\left(p, m_{i}\right) d p, \\
E_{i}^{\mathrm{SM}} & =\frac{V g_{i}}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{2} \sqrt{p^{2}+m_{i}^{2}} f\left(p, m_{i}\right) d p \\
P^{\mathrm{SM}} & =\sum_{i} \frac{g_{i}}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} p^{2} \frac{p^{2}}{3\left(p^{2}+m_{i}^{2}\right)^{1 / 2}} f\left(p, m_{i}\right) d p \\
s^{\mathrm{SM}} & =-\sum_{i} \frac{g_{i}}{2 \pi^{2} \hbar^{3}} \int_{0}^{\infty} f\left(p, m_{i}\right)\left[\ln f\left(p, m_{i}\right)-1\right] p^{2} d p
\end{aligned}
$$

Model setup: box calculations

- UrQMD box calculations at $\left\{\varepsilon, \rho_{\mathrm{B}}, \rho_{\mathrm{S}}\right\}$ for every energy and cell time $t_{\text {cell }}$ from cell calculations, 80 points in total, 12800 events per each
ρ_{B} is included as $N_{p}: N_{n}=1: 1$
ρ_{S} is included via kaons K^{-}
box size: $10 \times 10 \times 10 \mathrm{fm}^{3}$
box boundaries: transparent
$\pi^{i j}(t)$ data extraction: $t=1 \div 1000 \mathrm{fm} / \mathrm{c}$ in box time, all types of hadrons are taken into account

Model setup: box calculations

- UrQMD box calculations at $\left\{\varepsilon, \rho_{\mathrm{B}}, \rho_{\mathrm{S}}\right\}$ for every energy and cell time $t_{\text {cell }}$ from cell calculations, 80 points in total, 12800 events per each
ρ_{B} is included as $N_{p}: N_{n}=1: 1$
ρ_{S} is included via kaons K^{-}
box size: $10 \times 10 \times 10 \mathrm{fm}^{3}$
box boundaries: transparent

Model setup: box calculations

- UrQMD box calculations at $\left\{\varepsilon, \rho_{\mathrm{B}}, \rho_{\mathrm{S}}\right\}$ for every energy and cell time $t_{\text {cell }}$ from cell calculations, 80 points in total, 12800 events per each
ρ_{B} is included as $N_{p}: N_{n}=1: 1$
ρ_{S} is included via kaons K^{-}
box size: $10 \times 10 \times 10 \mathrm{fm}^{3}$
box boundaries: transparent
- $\pi^{i j}(t)$ data extraction: $t=1 \div 1000 \mathrm{fm} / \mathrm{c}$ in box time, all types of hadrons are taken into account

Box with periodic boundary conditions

Initialization: (i) nucleons are uniformly distributed in a configuration space; (ii) Their momenta are uniformly distributed in a sphere with random radius and then rescaled to the desired energy density.

Test for equilibrium: particle yields and energy spectra

Box: particle abundances

M.Belkacem et al., PRC 58, 1727 (1998)

L.Bravina et al., PRC 62, 064906 (2000)

Saturation of yields after a certain time. Strange hadrons are saturated longer than others (at not very high energy densities)

Cell + SM

Dependence of $\varepsilon, \rho_{\mathrm{B}}, \rho_{\mathrm{S}}$ (from cell) and of $T, \mu_{\mathrm{B}}, \mu_{\mathrm{S}}$ (from SM) on $t_{\text {cell }}$

SM, Boltzmann entropy s

Dynamics of Boltzmann entropy density s and of s / ρ_{B} in cell

Results: $\left\langle\pi(t) \pi\left(t_{0}\right)\right\rangle_{t}$ at $E \in[10,20,30,40] \mathrm{AGeV}$

Time dependence of correlators $\left\langle\pi(t) \pi\left(t_{0}\right)\right\rangle_{t}$
$t_{0}=300 \mathrm{fm} / \mathrm{c}$
$t_{\text {cell }} \in\{1 \div 20\} \mathrm{fm} / \mathrm{c}$

Results: $\left\langle\pi(t) \pi\left(t_{0}\right)\right\rangle_{t}$ at fixed $t_{\text {cell }}$

Time dependence of correlators $\left\langle\pi(t) \pi\left(t_{0}\right)\right\rangle_{t}$
Subplot: the same but at linear scale
$t_{0}=300 \mathrm{fm} / \mathrm{c}$
$t_{\text {cell }}=7 \mathrm{fm} / \mathrm{c}$

Results: $\tau\left(t_{0}\right)$

Dependence of τ on t_{0}

Results: τ from the fit

Dependence of $\tau_{\text {fit }}$ on t_{0}

Results: Comparison of $\tau_{\text {int }}$ and $\tau_{\text {fit }}$

Results: viscosity $\eta\left(t_{0}\right)$

Dependence of η on t_{0}

Results: viscosity $\eta\left(t_{\text {cell }}\right)$

Dynamics of η in cell
All curves sit on the top of each other for $t_{\text {cell }} \geq 7 \mathrm{fm} / \mathrm{c}$

Results: η / s

Dynamics of η / s in cell
η / s increases with time for $t_{\text {cell }} \geq 6 \mathrm{fm} / \mathrm{c}$ for all four energies Minimum - for 10 AGeV , corresponding to 4.5 GeV in c.m. frame

Results: η / s

Conclusions

- data from central cell of UrQMD calculations are used as input for SM to calculate temperature T and Boltzmann entropy density s, and for UrQMD box calculations in order to estimate shear viscosity η
- box output data are taken within the range $200 \leq t_{0} \leq 800$ fm / c because:
- values at $t_{0}<200 \mathrm{fm} / \mathrm{c}$ are distorted by the initial fluctuation in the box
- values at $t_{0}>800 \mathrm{fm} / \mathrm{c}$ may be disturbed by the analog of Brownian motion
- it is shown that for all four tested energies η and s in the cell drop with time
- ratios η / s reach minima about 0.3 at $t \approx 5 \mathrm{fm} / c$ for all energies. Then, the ratios rise to $1.0 \div 1.2$ at $t=20 \mathrm{fm} / \mathrm{c}$
- this increase is accompanied by the simultaneous rise of μ_{B} and drop of both T and μ_{S} in the cell

