Rare and forbidden decays of the D^0 meson Fergus Wilson

Particle Physics Department Rutherford Appleton Laboratory/STFC United Kingdom On behalf of the *BABA*R collaboration

Lake Louise Winter Institute 2020, 9th - 15th February, Canada

Science and Technology Facilities Council

Fergus Wilson (RAL/STFC)

 D^0 rare and forbidden decays

Lake Louise Winter Institute 2020 1 / 21

Introduction: rare charm decays

$D^0 ightarrow K^- \pi^+ e^+ e^-$

- $D^0 \rightarrow h'^- h^+ e^+ e^-$ and $D^0 \rightarrow h'^- h^+ \mu^+ \mu^- (h/h' = K \text{ or } \pi)$ allowed but very suppressed. Decay characterized by:
 - Short-distance contributions at the one-loop level, $\mathcal{O}(10^{-8})$:
 - Glashow-Iliopoulos-Maiani (GIM) cancellation almost exact.
 - Quark masses in the loop are small.
 - Long-distance contributions e.g. Vector Meson Dominance (VMD), $\mathcal{O}(10^{-6})$.
- Away from long-distance contributions, potential for New Physics to be visible.
- Lepton Universality: Do electrons and muons couple with equal strength?

• $\mathcal{B}(D^0 \to K^- \pi^+ \mu^+ \mu^-) = (4.17 \pm 0.12 \pm 0.40) \times 10^{-6}$ in mass region $0.675 < m(\mu^+ \mu^-) < 0.875 \text{ GeV}/c^2$ [1].

Figure: Left to Right: Short-distance: box, penguin diagrams; Long-distance: photon pole, VMD.

Introduction: forbidden charm decays

Ŷ

$\overline{(D^0 o h'^-} h^- \ell'^+ \ell^+$, $D^0 o h'^- h^+ e^\pm \mu^\mp$ and $D^0 o X^0 e^\pm \mu^\mp$

- $\ell/\ell' = e$ or μ ; $X^0 = \pi^0$, K^0_s , K^{*0} , ρ^0 , ϕ , ω , or η .
- Lepton Number Violation (LNV) and Lepton Flavor Violation (LFV) essentially forbidden in the Standard Model $<< O(10^{-40})$.
- Predicted by many New Physics models (see e.g. Ref. [2]).

Figure: Examples of leading order $\Delta L = 2 D^0$ meson decays.

Fergus Wilson (RAL/STFC)

 D^0 rare and forbidden decays

Method: $D^0 \rightarrow K^- \pi^+ e^+ e^-$

$D^0 ightarrow K^- \pi^+ e^+ e^-$

- Reconstruct $D^0 \to K^-\pi^+e^+e^-$ and $D^0 \to K^-\pi^+\pi^+\pi^-$ (normalization mode) from $D^{*+} \to D^0\pi^+$ produced in $e^+e^- \to c\overline{c}$.
- Maximum-Likelihood fit to $m(D^0)$ and $\Delta m = m(D^{*+}) m(D^0)$.
- Apply candidate-by-candidate reconstruction efficiencies ϵ .

$$\mathcal{B}(ext{signal}) \;=\; \mathcal{B}(ext{norm}) rac{N^{ ext{signal}}}{N^{ ext{norm}}} rac{\epsilon^{ ext{norm}}}{\mathcal{L}^{ ext{signal}}} rac{\mathcal{L}^{ ext{norm}}}{\mathcal{L}^{ ext{signal}}}$$

イロト 不得 トイヨト イヨト 二日

Method: $D^0 \to h'^- h^- \ell'^+ \ell^+$, $D^0 \to h'^- h^+ e^\pm \mu^\mp$ and $D^0 \to X^0 e^\pm \mu^\mp$

$D^0 ightarrow h^{\prime -} h^- \ell^{\prime +} \ell^+$, $D^0 ightarrow h^{\prime -} h^+ e^\pm \mu^\pm$

- Normalization mode $D^0 \to K^- K^+ \pi^+ \pi^-$, $D^0 \to K^- \pi^+ \pi^+ \pi^-$, or $D^0 \to \pi^- \pi^+ \pi^+ \pi^-$ depending on number of kaons in signal final state.
- Multivariate discriminant (MVA) to reject $e^+e^-
 ightarrow c\overline{c}$ background.
- For signal: cut on $m(D^0)$, Maximum Likelihood fit to Δm only.
- Use average reconstruction efficiencies ϵ for signal.

$D^0 o X^0 e^\pm \mu^\mp$

• As for
$$D^0 o h'^- h^- \ell'^+ \ell^+$$
 and $D^0 o h'^- h^+ e^\pm \mu^\mp$

• Reconstruct 8 intermediate X^0 meson decays:

• $\pi^0 \to \gamma\gamma, \ \eta \to \gamma\gamma, \ K_s^0 \to \pi^+\pi^-, \ \rho^0 \to \pi^+\pi^-, \ \overline{K}^{*0} \to K^-\pi^+, \ \phi \to K^+K^-$ • $\omega \to \pi^+\pi^-\pi^0, \ \eta \to \pi^+\pi^-\pi^0$

- Retune MVA for each X^0 with new observables.
- For signal: cut on $m(D^0)$, $m(X^0)$, Maximum Likelihood fit to Δm only.

BABAR Detector at PEP-II

Asymmetric beam momenta, $E_{CMS} = 10.58 \,\text{GeV}$, low multiplicity, low background, K/π particle identification, good μ and e identification with wide coverage.

Selection: $D^0 \rightarrow K^- \pi^+ e^+ e^-$

$D^0 ightarrow K^- \pi^+ e^+ e^-$

- Form a D⁰ vertex from 4 tracks with appropriate mass hypothesis and particle identification (PID).
- Combine D^0 and a "slow" π^+ to form D^{*+} .
- Momentum of the slow pion in the laboratory frame, $\pi^+ > 0.1\,{
 m GeV}/c.$
- Kaon charge opposite the "slow" π^+ charge.
- Momentum of D^0 in the center-of-mass frame, $p_{D^0}^* > 2.4 \, {\rm GeV}/c$; removes charm decays from *B*-mesons.
- $0.143 < \Delta m < 0.148 \, {
 m GeV}/c^2$, where $\Delta m = m(D^{*+}) m(D^0)$.
- $1.81 < m(D^0) < 1.91 \, \text{GeV}/c^2$.

・ロット 通マ マロマ キロマー 田

Selection:
$$D^0 o h'^- h^- \ell'^+ \ell^+$$
, $D^0 o h'^- h^+ e^\pm \mu^\mp$ and $D^0 o X^0 e^\pm \mu^\mp$

$D^0 ightarrow h'^- h^- \ell'^+ \ell^+$ and $D^0 ightarrow h'^- h^+ e^\pm \mu^\mp$

Criteria for normalization modes remains the same. Changes for the signal modes:

- Apply tighter PID selection than $D^0 \rightarrow K^- \pi^+ e^+ e^-$.
- Tune MVA for each signal mode to reject background. MVA inputs: momenta of charged tracks, D*+; event shape variables.
- Restrict $m(D^0)$ to $\sim 3 \times$ reconstructed width around D^0 Particle Data Group (PDG) mass.
- $0.141 < \Delta m < 0.149 \ (0.201) \ {
 m GeV}/c^2$ if < 2(=2) kaons in final state.

$D^0 o X^0 e^\pm \mu^\mp$

Criteria for normalization modes remains the same. Changes for the signal modes with respect to $D^0 \rightarrow h'^- h^- \ell'^+ \ell^+$ and $D^0 \rightarrow h'^- h^+ e^{\pm} \mu^{\mp}$:

- Retune PID for each signal mode.
- Reture MVA for each signal mode. MVA inputs: momenta of charged tracks, neutrals, X⁰, and D^{*+}; event shape variables.
- Restrict $m(D^0)$ to $\sim 3 \times$ reconstructed width around D^0 PDG mass.
- Restrict $m(X^0)$ to $\sim 3 \times$ reconstructed width around X^0 PDG mass.
- $0.1395 < \Delta m < 0.1610 \, \text{GeV}/c^2$.

D^0 rare and forbidden decays

Normalization Mode Example: $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

Fitted Yields in data $39.3\pm0.2{ m fb}^{-1}$					
Decay mode	Nnorm	Svst.	Enorm		
$D^0 ightarrow$	(candidates)	(%)	(%)		
$K^-\pi^+\pi^-\pi^+$	260870 ± 520	4.7	20.1 ± 0.2		
$K^-K^+\pi^-\pi^+$	8480 ± 110	6.6	19.2 ± 0.2		
$\pi^-\pi^+\pi^-\pi^+$	28470 ± 220	6.8	24.7 ± 0.2		

Normalization modes use off-peak data (40 MeV below $\Upsilon(4S)$).

Lake Louise Winter Institute 2020 9 / 21

э

• • • • • • •

$D^0 \to K^- \pi^+ e^+ e^-$ Phys. Rev. Lett. 122 (2019) 081802

Fergus Wilson (RAL/STFC)

 D^0 rare and forbidden decays

Lake Louise Winter Institute 2020 10 / 21

・ロット 通マ マロマ キロマー 田

 $D^0
ightarrow K^- \pi^+ e^+ e^-$: 0.675 $< m(e^+ e^-) < 0.875 \, {
m GeV}/c^2$

 $N_{sig} = 68 \pm 9$ candidates. Yield significance 9.7σ

Fergus Wilson (RAL/STFC)

 D^0 rare and forbidden decays

Lake Louise Winter Institute 2020 11

11/21

э

 $D^0 \to K^- \pi^+ e^+ e^-$: $m(e^+ e^-) > 0.2 \,\mathrm{GeV}/c^2$

Background-subtracted fit projection onto $m(e^+e^-)$. Green = resonances excluded from "continuum" region.

$m(e^+e^-)$	N _{sig}	Signif.	B	$\mathcal{B}_{90\%}^{\mathrm{U.L.}}$
(GeV/c^2)	(cands.)	(σ)	$(\times 10^{-6})$	$(\times 10^{-6})$
0.675 - 0.875	68 ± 9	9.7	$4.0 \pm 0.5 \pm 0.2 \pm 0.1$	-
ϕ region	$3.8^{+2.7}_{-1.9}$	1.8	$0.2^{+0.2}_{-0.1}\pm 0.1$	0.5
Continuum	19 ± 7	2.6	$1.6\pm0.6\pm0.7$	3.1

 \pm Statistical \pm Systematic (\pm Normal. ${\cal B}).$

90% Confidence Level (CL) Upper Limits (UL) calculated using Feldman-Cousins method.

 $\begin{array}{l} {\cal B} \text{ in mass region} \\ 0.675 < m(e^+e^-) < 0.875 \, {\rm GeV}/c^2 \text{ agrees with} \\ {\rm LHCb \ result \ [1]} \ {\cal B}(D^0 \to {\cal K}^-\pi^+\mu^+\mu^-) = \\ (4.17 \pm 0.12 \pm 0.40) \times 10^{-6}. \end{array}$

$D^{0} ightarrow h'^{-}h^{-}\ell'^{+}\ell^{+}$ and $D^{0} ightarrow h'^{-}h^{+}e^{\pm}\mu^{\mp}$

arXiv:1905.00608, accepted by PRL

Fergus Wilson (RAL/STFC)

D⁰ rare and forbidden decays

Lake Louise Winter Institute 2020 13 / 21

・ロット 通マ マロマ キロマー 田

Lake Louise Winter Institute 2020 14/21

$D^0 o h'^- h^- \ell'^+ \ell^+$ and $D^0 o h'^- h^+ e^\pm \mu^\mp$ results

15/21

Decay mode	N _{sig}	$\epsilon_{ m sig}$	B	$\mathcal{B}_{90\%}^{\mathrm{U.L.}}$	(×10 ⁻⁷)
$D^0 ightarrow$	(candidates)	(%)	$(\times 10^{-7})$	BABAR	Previous
$\pi^-\pi^-e^+e^+$	$0.22 \pm 3.15 \pm 0.54$	4.38	$0.27 \pm 3.90 \pm 0.67$	9.1	1120
$\pi^-\pi^-\mu^+\mu^+$	$6.69 \pm 4.88 \pm 0.80$	4.91	$7.40 \pm 5.40 \pm 0.91$	15.2	290
$\pi^-\pi^-e^+\mu^+$	$12.42 \pm 5.30 \pm 1.45$	4.38	$15.41 \pm 6.59 \pm 1.85$	30.6	790
$\pi^-\pi^+ e^\pm \mu^\mp$	$1.37 \pm 6.15 \pm 1.28$	4.79	$1.55 \pm 6.97 \pm 1.45$	17.1	150
${\it K}^-\pi^- e^+ e^+$	$-0.23 \pm 0.97 \pm 1.28$	3.19	$-0.38 \pm 1.60 \pm 2.11$	5.0	28
${\cal K}^-\pi^-\mu^+\mu^+$	$-0.03 \pm 2.10 \pm 0.40$	3.30	$-0.05 \pm 3.34 \pm 0.64$	5.3	3900
${\it K}^-\pi^- e^+\mu^+$	$3.87 \pm 3.96 \pm 2.36$	3.48	$5.84 \pm 5.97 \pm 3.56$	21.0	2180
${\it K}^-\pi^+ e^\pm \mu^\mp$	$2.52 \pm 4.60 \pm 1.35$	3.65	$3.62 \pm 6.61 \pm 1.95$	19.0	5530
$K^-K^-e^+e^+$	$0.30 \pm 1.08 \pm 0.41$	3.25	$0.43 \pm 1.54 \pm 0.58$	3.4	1520
${\it K}^-{\it K}^-\mu^+\mu^+$	$-1.09 \pm 1.29 \pm 0.42$	6.21	$-0.81 \pm 0.96 \pm 0.32$	1.0	940
${\it K}^-{\it K}^-{\it e}^+\mu^+$	$1.93 \pm 1.92 \pm 0.83$	4.63	$1.93 \pm 1.93 \pm 0.84$	5.8	570
${\it K}^-{\it K}^+ e^\pm \mu^\mp$	$4.09 \pm 3.00 \pm 1.59$	4.83	$3.93 \pm 2.89 \pm 1.45$	10.0	1800

Uncertainties: \pm Statistical \pm Systematic

90% Confidence Level (CL) Upper Limits (UL) calculated using Feldman-Cousins method.

Fergus Wilson (RAL/STFC)

 D^0 rare and forbidden decays

$D^0 o X^0 e^\pm \mu^\mp$ To be submitted to PRD

Fergus Wilson (RAL/STFC)

 D^0 rare and forbidden decays

Lake Louise Winter Institute 2020 16 / 21

A (10) N (10)

$D^0 ightarrow X^0 e^{\pm} \mu^{\mp}$ fits

э

$D^0 \rightarrow X^0 e^{\pm} \mu^{\mp}$ results (preliminary)

	N _{sig}	$\epsilon_{ m sig}$	$\prod \mathcal{B}_l$	${\cal B}~(imes 10^{-7})$	$ \mathcal{B}_{90\%}^{\mathrm{U.L.}}$	$(\times 10^{-7})$
Decay mode	(candidates)	(%)	(%)		BABAR	Previous
$D^0 o \pi^0 e^\pm \mu^\mp$	$-0.3\pm2.0\pm0.9$	2.15	98.8	$-0.6\pm4.9\pm2.3$	8.1	860
$D^0 o K^0_{ m s} e^\pm \mu^\mp$	$0.7\pm1.7\pm0.7$	3.01	69.2	$1.9\pm4.6\pm1.9$	8.6	500
$D^0 o ar{K^{st 0}} e^\pm \mu^\mp$	$0.8\pm1.8\pm0.8$	2.31	66.6	$2.8\pm6.1\pm2.6$	12.4	830
$D^0 o ho^0 e^\pm \mu^\mp$	$-0.7\pm1.7\pm0.4$	2.10	100.0	$-1.8\pm4.4\pm1.0$	5.0	490
$D^{0} ightarrow \phi e^{\pm} \mu^{\mp}$	$0.0\pm1.4\pm0.3$	3.43	49.2	$0.1\pm3.8\pm0.9$	5.1	340
$D^{0} ightarrow \omega e^{\pm}\mu^{\mp}$	$0.4\pm2.3\pm0.5$	1.46	88.2	$1.8\pm9.7\pm1.9$	17.3	1200
$D^{0} ightarrow \eta e^{\pm} \mu^{\mp}$				$6.1\pm9.7\pm2.3$	23.0	1000
with $\eta ightarrow \gamma \gamma$	$1.6\pm2.3\pm0.5$	2.96	39.4	$7.0\pm10.5\pm2.4$	24.0	-
with $\eta \to \pi^+ \pi^- \pi^0$	$0.0\pm2.8\pm0.7$	2.46	22.6	$0.4\pm26.1\pm6.1$	43.3	-

90% Confidence Level (CL) Upper Limits (UL) calculated using Feldman-Cousins method.

 D^0 rare and forbidden decays

- 34

イロト 不得下 イヨト イヨト

Summary plot of charm LFV and LNV results

э

Conclusion

$D^0 \to K^- \pi^+ e^+ e^-$ Phys. Rev. Lett. 122 (2019) 081802 [3]

- The decay $D^0 o K^- \pi^+ e^+ e^-$ is observed for the first time.
- In the mass range $0.675 < m(e^+e^-) < 0.875 \, {
 m GeV}/c^2$:
 - $\mathcal{B}(D^0 \to K^- \pi^+ e^+ e^-) = (4.0 \pm 0.5 \pm 0.2 \pm 0.1) \times 10^{-6}.$
 - Agrees with $\mathcal{B}(D^0 \to K^- \pi^+ \mu^+ \mu^-) = (4.17 \pm 0.12 \pm 0.40) \times 10^{-6}$.
- No evidence for deviation from equal lepton-coupling strengths.
- No evidence for short-distance or New Physics effects in the continuum range.

$D^0 o h'^- h^- \ell'^+ \ell^+$, $D^0 o h'^- h^+ e^\pm \mu^\mp$ and $D^0 o X^0 e^\pm \mu^\mp$

- $D^0 \to h'^- h^- \ell'^+ \ell^+$, $D^0 \to h'^- h^+ e^{\pm} \mu^{\mp}$: 12 new $\mathcal{B}_{90\%}^{U.L.}$ in range $(1.0 30.6) \times 10^{-7}$.
- $D^0 o X^0 e^{\pm} \mu^{\mp}$: 7 new $\mathcal{B}^{\mathrm{U.L.}}_{90\%}$ in range $(5.0 23.0) imes 10^{-7}$.
- One to three orders of magnitude more stringent than previous results.
- arXiv:1905.00608, submitted to PRL [4] and $D^0 \rightarrow X^0 e^{\pm} \mu^{\mp}$ to be submitted to PRD.

- [1] LHCb Collaboration, R. Aaij et al., First observation of the decay $D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-$ in the $\rho^0 \omega$ region of the dimuon mass spectrum, Phys. Lett. B **757** (2016) 558, arXiv:1510.08367.
- [2] S. de Boer and G. Hiller, Flavor and new physics opportunities with rare charm decays into leptons, Phys. Rev. D 93 (2016) 074001, arXiv:1510.00311.
- [3] BABAR Collaboration, J. P. Lees *et al.*, Observation of the decay $D^0 \rightarrow K^-\pi^+e^+e^-$, Phys. Rev. Lett. **122** (2019) 081802, arXiv:1808.09680.
- [4] BABAR Collaboration, J. P. Lees et al., Search for rare or forbidden decays of the D⁰ meson, arXiv:1905.00608 BABAR-PUB-19-002, SLAC-PUB-17424, arXiv:1905.00608.

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト