Recent results from ATLAS in beauty and charm physics

Julie Kirk STFC, Rutherford Appleton Laboratory

On behalf of the ATLAS Collaboration

Lake Louise Winter Institute 10-15 February 2020

ATLAS B-physics programme and trigger strategy

ATLAS is a general purpose detector – main focus is high-pT physics.

Still has a strong dedicated B-physics programme:

- Precise property measurements, including CPV $(B_s^0 \rightarrow J/\psi\phi)$
- Cross-section measurements, quarkonium and associated production
- Rare decay processes, e.g. $B_{s,d} \rightarrow \mu\mu, B_d^0 \rightarrow K^*\mu\mu$
- Spectroscopy, exotic states (e.g. pentaquarks)

Most analyses rely on low pT di-muon triggers:

I will concentrate on recent results

Data collected by triggers with different muon p_T thresholds and di-muon mass ranges

Quarkonium production at high p_{T}

Heavy quarkonia provide insight into QCD near boundary between perturbative and nonperturbative regimes

Measuring in a broader kinematical range may help differentiate between theoretical models (previous ATLAS measurement up to $p_T \sim 100$ GeV)

Full Run2 data - measure double differential J/ ψ and ψ (2S) cross-section for prompt and non-prompt production

Unbinned maximum likelihood fit to mass and pseudo-proper decay time, in bins of rapidity (y) and transverse momentum (p_T).

$= \frac{m}{p_T} \frac{L_{xy}}{c}$

ATLAS-CONF-2019-047

Quarkonium production at high p_T

Measurements of prompt and nonprompt production in the ranges:

 J/ψ : 60-360 GeV ψ (2S) : 60-140 GeV

Note: Scaling by 1,10,100 of different rapidity ranges for visual clarity

Quarkonium production at high p_T

Prompt J/ ψ cross-section

Fit CMS* and ATLAS results with simple parameterization

Good agreement in overlap region

(No predictions available yet)

*CMS Result: Phys Lett B 780 (2018) 251

ATLAS-CONF-2019-047

ATLAS-CONF-2019-047

Quarkonium production at high p_{T}

Quarkonium production at high p_T

ATLAS-CONF-2019-047

ATLAS-CONF-2019-047

Quarkonium production at high p_T

Quarkonium production at high p_{T}

Non-prompt production fractions

Ratio of $\psi(2S)$ to J/ ψ

0.9

0.8 0.7

0.6

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

ATLAS-CONF-2019-047

Associated production: W + J/ ψ

- Production mechanism for charmonium in hadronic collisions is not fully understood
- Relative contribution of Colour Singlet (CS) and Colour Octet (CO) is unknown (including both gives better agreement between theory and experiment)
- Contributions from Single Parton Scattering (SPS) and Double Parton Scattering (DPS) are unknown.
- Can be probed using $\Delta \phi$ distribution between J/ ψ and W

Standard muonic W selection (p_T >25GeV, $|\eta|$ <2.4)

Extract prompt signal from fit to J/ψ mass and pseudo-proper decay time

Associated production: W + J/ ψ

Associated production: W + J/ ψ

Measure ratio of cross-sections, $R_{J/\psi}$:

$$R_{J/\psi} = \frac{\sigma_{W+J/\psi}}{\sigma_W}$$

Almost all systematic uncertainties cancel in ratio

NLO CO SPS prediction: $(0.428 \pm 0.017) \times 10^{-6}$

DPS contribution subtracted

$$R_{J/\psi}^{\text{DPSsub}} = (1.3 \pm 0.7 \pm 1.5^{+1.5}_{-0.7}) \times 10^{-6}$$
, $[\sigma_{\text{eff}} = 6.3 \pm 1.9 \text{ mb}]$

Differential inclusive cross-section in 6 bins of J/ ψ p_T SPS contribution modelled by CO model DPS contribution estimated using both values of σ_{eff} In both cases, prediction underestimates the measurement

CP violation in
$$B_s^0 \to J/\psi \phi \to \mu \mu K^+ K$$

Submitted to EPJC arXiv:2001.07115

B_s unitarity triangle

 $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$

CP violation in $B_s^0 \to J/\psi \phi \to \mu \mu K^+ K$

Submitted to EPJC arXiv:2001.07115

B_s unitarity triangle

 $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$

CP violating phase ϕ_s - small in SM New Physics can increase ϕ_s

CP violation in $B_s^0 \to J/\psi \phi \to \mu \mu K^+ K$

CP violation in $B_s^0 \to J/\psi \phi \to \mu \mu K^+ K$

Unbinned maximum likelihood fit simultaneously for B_s^0 mass, decay time, tagging probability and decay angles

Run 2 result from 80.5 fb⁻¹ (2015-17) - combined with previous Run1 result (Have another 60 fb⁻¹ recorded)

CP violation in $B_s^0 \to J/\psi \phi \to \mu \mu K^+ K$

Relative B_c^{\pm}/B^{\pm} production cross-section

20.3 fb⁻¹ data at \sqrt{s} = 8 TeV

 $B^{\pm} \rightarrow J/\psi(\mu^{+}\mu^{-}) K^{\pm} \qquad \qquad B_{c}^{\pm} \rightarrow J/\psi(\mu^{+}\mu^{-}) \pi^{\pm}$

Extended unbinned maximum likelihood fits to B invariant mass distributions. Full region plus 2 bins in p_T and 2 bins in rapidity (y)

Yield : ~400k B^{\pm} and ~800 B_c^{\pm}

Measure relative cross-section

- First double differential measurement in central rapidity
- Complements CMS and LHCb measurements

Science and

Technology Facilities Counci B_c^{\pm} cross-section decreases faster with p_T than B^{\pm} cross-section

Submitted to PRD

Pentaquark search in $\Lambda_b^0 \rightarrow J/\psi p K^-$

Observation by LHCb in $J/\psi p$ invariant mass in $\Lambda_b^0 \rightarrow J/\psi p K^-$

ATLAS search uses 7 TeV (4.9 fb⁻¹) and 8 TeV (20.9 fb⁻¹) data No hadron ID : select $J/\psi h_1 h_2$ ($h_{1,2} = p, K, \pi$)

Perform simultaneous analysis of kinematically close:

 $\begin{array}{l} & \Lambda_b^0 \to J/\psi p K^- & \text{via various } \Lambda^* \text{ or } P_c \text{ states} \\ & B^0 \to J/\psi K \pi & \text{via various } K^* \text{ or } Z_c \text{ states} \\ & B_s^0 \to J/\psi K K & \text{via various } f & \text{or } \phi \text{ states} \\ & B_{(s)} \to J/\psi \pi \pi & \end{array}$

Simulated events use phase space events weighted by theoretically calculated matrix elements

```
Suppress background with M(K\pi) > 1.55 GeV
```

Sequence of fits in Control Region, Signal Region and global scope

Pentaquark search in $\Lambda_b^0 \rightarrow J/\psi p K^-$

Fit with 2 pentaguark hypothesis (spin parity $3/2^{-}$ (light) and $5/2^{+}$ (heavy)

 χ^2/N_{dof} = 37.1/39 (*p*-value = 55.7%)

Fit with 4 pentaguark hypothesis Fit with no pentaguarks Properties of narrow states fixed to LHCb values

 $\chi^2/N_{dof} = 37.1/42$

ATLAS-CONF-2019-048

 $\chi^2/N_{dof} = 69.2/37$

Two and four pentaquark hypotheses consistent with data. No pentaquark hypothesis cannot be excluded

Summary

ATLAS has an active and varied B-physics programme

Recent results presented on

- ✤ Quarkonium production
- W + J/ ψ associated production
- CP violation
- ♦ B_c^{\pm}/B^{\pm} production cross-section
- Pentaquark search

All public results available here :

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults

Backup

Quarkonium production at high p_{T}

ATLAS-CONF-2019-047

Comparison to FONLL predictions

Good agreement at low pT FONLL predicts higher crosssections at high pT

CP violation in $B_s^0 \to J/\psi \phi \to \mu \mu K^+ K$

Unbinned maximum likelihood fit input:

- \succ B_s^o properties: m_i, σ_{mi} , t_i, σ_{ti} , p_{Ti}, p_i(B|Q_x)
- Traversity angles: Ω_i(θ_{Ti}, φ_{Ti}, ψ_{Ti})
- Parameters: ϕ_s , $\Delta\Gamma_s$, Γ_s , $|A_{||}(0)|^2$, $|A_o(0)|^2$, $|A_s(0)|^2$, δ_{\perp} , δ_s , δ_{\perp} δ_s

Figure: Angles between final state particles in transversity basis.

CP violation in $B_s^0 \rightarrow J/\psi \phi \rightarrow \mu \mu K^+ K$

Tagging : weighted sum of charge in a cone

$$Q_x = \frac{\sum_{i}^{N \text{ tracks}} q_i \cdot (p_{\mathrm{T}i})^{\kappa}}{\sum_{i}^{N \text{ tracks}} (p_{\mathrm{T}i})^{\kappa}},$$

Tag method	ϵ_x [%]	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

Tagging efficiency (
$$\epsilon_x$$
): $\epsilon_x = \frac{N_{sig}^{tagged}}{N_{sig}^{total}}$

Dilution:
$$\mathcal{D}(Q_x) = 2P(B|Q_x) - 1$$

Tagging power (
$$T_x$$
): $T_x = \Sigma_i \epsilon_{xi} \cdot \mathcal{D}(Q_{xi})$

Effective Dilution:
$$D_{\chi} = \sqrt{\left(\frac{T_{\chi}}{\epsilon_{\chi}}\right)}$$

