

US DOE

Justin Frantz - Ohio University Lake Louise Winter Institute 2020 **Recent Results from PHENIX at RHIC**

Valentines Day 2/14/2020

Justin Frantz - PHENIX @ RHIC Ohio University

QGP: Quark Gluon Plasma

High Energy Nuclear Collisions

CMS p+p Event

CMS Experiment at LHC, CERN Data recorded: Sun May 23 07:22:45 2010 CEST Run/Event: 136066 / 37028366 Lumi section: 374 Orbit/Crossing: 97978542 / 401

CMS Heavy Ion Event

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

Particles O 'Rama!

2 particles in, ~50,000 come out

J. Frantz Ohio U. BSU Colloquium

RHIC, PHENIX, etc.

Three Traditional RHI/PHENIX QGP Measurements

Jet Quenching Suppression

Soft (<2GeV) Particle Hydro Flow

Thermal Soft Photons

These observables and many others – QGP!

Justin Frantz - PHENIX @ RHIC Ohio University

Justin Frantz - PHENIX @ RHIC Ohio University

R_{AA} at High p_T

- "Centrality" : Number of Nucleons Participating In Collision N_{part}
- We are interested in learning more about this region— is there a complete turn off of QGP effects at some system size?

Two particle ANGULAR (mostly $\Delta \phi$) JET correlation

Jets must be produced in back to back (pairs) to

- Trigger particle \rightarrow high momentum $\pi 0 \rightarrow$ proxy for jet
- Partner (Associated) particle → charged hadron from same jet or "awayside" jet
- Correlation function: C(ΔΦ)

 $C(\Delta\phi) \propto$

→ Convert to Yields of jet associated particles

Corrects

for imperfect detector

Centrality Dependence of Enhancement

Many measurements like this one: hard to get good precision in peripheral A+A ... another idea to look for turn off QGP effects....

Even in high multiplicity p+p !!! (?)

Num of participating partons (low x) / produced particles increase w/ E– collective "QGP" to be expected???

Jet Modification in Small Systems

Justin Frantz - PHENIX @ RHIC Ohio University

Jet Modification in Small Systems

Actual QGP Jet Quenching?

- There are number of "KNOWN" NUCLEAR EFFECTS we need to rule out... some we can , others we need more input from theory
- However this has implications beyond Heavy Ion Physics: new observables to constrain longstanding nuclear physics effects -a theme for several observables
- Example "Trivial" "Cold Nuclear Effects:
- "Hydro" v3, v1
- Enhanced Nuclear k_T
- Initial State nuclear modified PDF (nPDF) effects
- Rapidity Effects Mismatching p+p vs A+B?
- Color Transparency ?
 - "Cronin" Nuclear Effects

High pt v₂ for Hard Probes in Small System

Another piece of evidence for AuAu like Jet Eloss?

Justin Frantz - PHENIX @ RHIC Ohio University

Thermal Photons in A+A Collisions

- PHENIX has long history of making direct photon measurements
- High pt exactly in line with scaled p+p (no suppression : colorless probe)
- LOW PT Photons attributed to Thermal "Blackbody" PLASMA radiation

Scaling of Thermal Photons in A+A Collisions

Thermal Photons in Small Systems

Future: sPHENIX - New Collaboration

New Detector/Collaboration in same hall as PHENIX! Will RUN in 2023!

SC MAGNET

INNER HCAL

EMCAL

TPC

- Optimized for LHC/RHIC
 Jet Comparison
 OUTER HCAL
 - Hcal
 - better uniformity
 - QGP at two diff Temperature profiles!
 - Build of detector INTT already underway! MVTX

Conclusions

- PHENIX continues to characterize QGP with more and more precision/ new probes
- Some progress in different kinds of probes in determining if there is a smaller limit to various QGP "signature" effects
- Main Observable: Flow Seen in A LOT of small systems
 - Possible confirmation in Jet Energy Loss Quenching Effect
 - Possible confirmations in thermal photons
 - Other observable: Quarkonia modification (melting)

NS/AS Ratios: A Nice Observable for searching for small E_{loss} ?

Assume well-known surface bias picture for Au+Au should apply as the system goes peripheral—possibly even in "small systems" p+Au, d+Au, He+Au

Look for Differences in Awayside Modification compared to Nearside

Jet Pair Quantification

PTY Nuclear Modification Factor $(I_{AA}) = Y^{AA} / Y^{pp}$ (Away

- side)
 Y roughly represents the number of particles produced per jet
 - Y is Per Trigger: any deviation from unity represents modification
 - AA/pp Partner h^{\pm} SINGLES EFFICIENCIES vs p_{T} NEEDED
 - Uncertainty dominated by singles charge hadron

efficiency Double Ratio: $RI = \frac{Y_{away}^{AA}/Y_{near}^{AA}}{Y_{away}^{pp}/Y_{near}^{pp}}$

- NO EFFICIENCIES NEEDED (Cancels in AS/NS)
 - Dominant systematic errors due to single charge hadron efficiency are completely removed
- Surface Bias: levels of modification mostly unchanged (going from IAA to RI)

Contribution of v_{2n} even harmonics from hydrodynamic flow is zero (e.g. v_2)

Contribution of higher order odd harmonics (>= v_3) can be neglected--only

Sensitive to inversity - PHENIX @ RHIC Ohio University

UPDATED PYTHIA 8 Nuclear k_T test

- Using k_T constraints from STAR jet measurements → No
 effect for 0-100% Minbias
- However, k_T smear larger in Central HeAu -> Exaggerated has some shape similarity but this is very large kT

OLD EPSo9 Initial State Nuclear PDF's?

nPDF effects would seem unlikely to cause this, since they probably often affect *both* jets in a di-jet

Studies with EPSo9 (and o9s) confirm this expectation

NOTE UNITS: << 1% negligible effect

RI Extracted from EPSo9 Study

UPDATED EPPS16 & "Real" He+Au nPDF

Previously only p+Au test for scale – He Wave Fn make a difference? Studies with EPPS16 and full HeAu Still negligible

sPHENIX Build Underway!

OHCAL Production sectors started arriving at BNL in Sep 2018

EMCAL Sector o production underway

SC Magnet Full field magnet test at 1.4 T at BNL in Feb 2018

Justin Frantz - Ohio University - sPHENIX

2-p Correlation Analyses - Methods

- Statistical Methods: subtraction: Not EvByEv
- Need to measure per-trigger yield $C(\Delta \phi_{AB}) = J(\Delta \phi_{AB}) + b_0 \frac{dN_{comb}^{AB}}{d\Delta \phi_{AB}}$ function)

Δφ

Correlation Function – bkgd (Flow)

π

0

Away-side Prompt γ -h Yield

- Integrate awayside of per-trigger yield
- Seems to scale with $z_T = p_{Th}/p_{Ty}$

- Low z_T and High z_T behaviors different.
- High z_T suppression for all centrality bins
- Low $z_T NOT SUPPRESSED$, relatively flat with centrality-- E_{loss} Recovery

Isolation cut allows more precise analysis of the semi-peripheral and peripheral centralities

Average $I_{AA} - \pi/2$ away-side

- High z_T energy loss enhances low z_T production
- 1st measurement of centrality dependence of low z_T enhancement
- To judge true centrality dependence of enhancement, must account for overall reduction of jets due to suppression
- Energy recovery factor High z_T /low z_T ratio shows monotonic increase toward central events

- Increasing low z enhancement for wider integration regions (blue points right to left)
 - Seen by previous gamma-jet and LHC jet reconstruction analyses

Both high z suppression and low z enhancement

Enhancement above suppressed jet level (black ratio) monotonically increasing towards central events for all away-sides

Back to γ -hYields High z_T Average I_{AA} **Centrality Dependence**

Implication: Causes? Results are pretty well tested and confirmed in He+Au – Need Theory Input—Important Question!

- Many potential Trivial or Cold Nuclear Explanations—but also shares qualitative features of Eloss
- "Trivial" explanations we could test:
 - 🗸 "Hydro" v3, v1

None of these could reproduce the effect

- ✓ Trivial Rapidity Distributions Mismatching p+p vs d+Au?
- ✓ HIJING show anything like this?
- "Cold Nuclear Effects":
 - Enhanced Nuclear k_T
 - ✓ Initial State nPDF effects (partial—EPSog(s) only checked)
 - Check other npdf's?
 - Get bonafide theory calcs from theorists (need input from theorists)
- Could QGP/Hot Eloss Cause This?
 - Get bonafide theory calcs from theorists (need input from theorists)