Results from NA62 - The Kaon Factory -

Simone Schuchmann, Johannes-Gutenberg-University Mainz, for the NA62 collaboration

> Lake Louise Winter Institute 14/02/2020

Kaon physics – why?

Content

Kaon physics why? – test and challenge the Standard Model (SM) This talk covers

- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- K⁺ decays and Lepton Number Violations (LNV)
- K⁺ decays and Heavy Neutral Leptons (HNL) and a brief overview of other activities at NA62

Kaon physics – why?

The CKM unitarity triangle can be constrained by kaon physics alone.

Kaon physic

 \rightarrow Measuring both K⁺ $\rightarrow \pi^+ \nu \nu$ and $K_{I} \rightarrow \pi^{0} \nu \nu$ constrains the CKM unitarity triangle independently from measurements in B mesons sector.

$$K_L \to \mu^+ \mu^- \begin{cases} K_L \to \gamma\gamma, K_L \to e^+ e^- \gamma \\ K_L \to e^+ e^- e^+ e^-, e^+ e^- \mu^+ \mu^- \end{cases}$$

14/02/2020

The K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ decay

«These loop-induced rare decays are sensitive to new physics, and will allow a determination of β , independent of its value measured in B decays.»^{*}

The K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ decay

«These loop-induced rare decays are sensitive to new physics, and will allow a determination of β , independent of its value measured in B decays.»^{*}

FCNC: Strongest CKM suppression in the Kaon sector \rightarrow strongest constraints. Very clean theoretically: Short distance contribution. No hadronic uncertainties.

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (0.84 \pm 0.03) \times 10^{-10} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (0.84 \pm 0.10) \times 10^{-10}$$

*PDG: Phys. Rev. D 98, 030001 (2018)

The K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ decay

«These loop-induced rare decays are sensitive to new physics, and will allow a determination of β , independent of its value measured in B decays.»*

FCNC: Strongest CKM suppression in the Kaon sector \rightarrow strongest constraints. Very clean theoretically: Short distance contribution. No hadronic uncertainties.

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (0.84 \pm 0.03) \times 10^{-10} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (0.84 \pm 0.10) \times 10^{-10}$$

The K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ decay

«These loop-induced rare decays are sensitive to new physics, and will allow a determination of β , independent of its value measured in B decays.»^{*}

FCNC: Strongest CKM suppression in the Kaon sector \rightarrow strongest constraints. Very clean theoretically: Short distance contribution. No hadronic uncertainties.

[Buras. et. al., JHEP11(2015)033]

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (0.84 \pm 0.03) \times 10^{-10} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (0.84 \pm 0.10) \times 10^{-10}$$

Main uncertainties from CKM elements \rightarrow precise measurement of BR helps to reduce these uncertainties!

The K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ decay

«These loop-induced rare decays are sensitive to new physics, and will allow a determination of β , independent of its value measured in B decays.»*

FCNC: Strongest CKM suppression in the Kaon sector \rightarrow strongest constraints. Very clean theoretically: Short distance contribution. No hadronic uncertainties.

[Buras. et. al., JHEP11(2015)033]

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (0.84 \pm 0.03) \times 10^{-10} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (0.84 \pm 0.10) \times 10^{-10}$$

Main uncertainties from CKM elements \rightarrow precise measurement of BR helps to reduce these uncertainties!

RICH

ZERBINATI

14/02/2020

STRAW

S

NA62 has around 200 participants from the following Universities or Institutes:

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, Fairfax GMU, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Naples, Perugia, Pisa, Prague, Protvino, Rome I, Rome II, San Luis Potosí, TRIUMF, Turin, Vancouver UBC

2017: 1.9x10¹² protons/spill, 3.5s spill, particle rate at GTK: ca. 500 MHz

14/02/2020

Decay-in-flight technique

$K^+ \rightarrow \pi v \bar{v}$: Main background decay modes

Decay mode	BR	Main rejection tools	
Decay mode		Main rejection tools	
$\mathrm{K}^+ ightarrow \mu^+ u(\gamma)$	63%	$\mu - ID + kinematics$	
$\mathrm{K}^+ \to \pi^+ \pi^0(\gamma)$	21%	γ -veto + kinematics	
$ \mathbf{K}^+ \to \pi^+ \pi^+ \pi^-$	6%	multi + kinematics	
$\mathrm{K}^+ \to \pi^+ \pi^0 \pi^0$	2%	γ -veto + kinematics	
$\mathrm{K}^+ \to \pi^0 e^+ \nu_e$	5%	$e{-}ID + \gamma{-}veto$	
$\mathrm{K}^+ \to \pi^0 \mu^+ \nu_\mu$	3%	$\mu - ID + \gamma$ -veto	

Trigger and data collected

<u>Run 1:</u>

2016: Physics run (45 days*)

2017: Physics run (160 days*)

2018: Physics run (217 days*)

1.9 x 10¹² proton per spill on target (3s)
~2 x 10¹² K⁺ decays

* Includes periods with beam off

<u>Run 1:</u>

2017: Physics run (160 days*)

2018: Physics run (217 days*)

- Trigger streams (hardware L0 + software L1)
 - "PNN":
 - LO: presence of a charged particle, photon and muon veto
 - L1: kaon identification, photon veto, STRAW track reconstruction
 - "Control": minimum bias, presence of a charged particle downscaled by 400

1.9 x 10¹² proton per

spill on target (3s)

~2 x 10¹² K⁺ decays

- Offline analysis
 - Data samples: PNN; Control: $K^+ \rightarrow \pi^+ \pi^0$, $K^+ \rightarrow \mu^+ \nu$, $K^+ \rightarrow \pi^+ \pi^-$, $K^+ \rightarrow \pi^+ \pi^- e^+ \nu$
 - Blind analysis procedure: signal/validation regions masked during the analysis

* Includes periods with beam off

$K^+ \rightarrow \pi v \bar{v}$: Signal selection

K⁺ decay events in the fiducial decay region selected before PID and γ /multi-track rejection

Signal region 1 and 2 are blinded.

Selection criteria

- π^+ identification: $\epsilon_{\pi^+} \sim 64\%$
- Single track decay topology
- \rightarrow multi-track rejection
- K⁺ π^+ matching: 110 m < Z_{vertex} < 165 m
- Photon suppression
- 15 GeV/c < $p_{\pi+}$ < 35 GeV/c, in order to have an optimal π/μ separation in the RICH and reduction of early decays.

Background suppression details:

- Muon suppression > 10⁷
- π^0 suppression (from $K^+ \rightarrow \pi^+ \pi^0$) > 10⁷
- Excellent time resolution O(100 ps)
- Kinematic suppression ~ O(10⁴)

14/02/2020

$K^+ \rightarrow \pi \ v \bar{v}$: Signal acceptance

$K^+ \rightarrow \pi \ v \bar{v}$: 2017 data-set

$K^+ \rightarrow \pi v \bar{v}$: Single event sensitivity

$$N_{K} = \frac{N_{\pi\pi} \cdot R}{A_{\pi\pi} \cdot BR_{\pi\pi}} = (1.3 \pm 0.1) \times 10^{12}$$

$$SES = \frac{1}{N_{K} \cdot \sum_{j} \left(A_{\pi \nu \nu}^{j} \cdot \epsilon_{\text{trig}}^{j} \cdot \epsilon_{\text{RV}}^{j}\right)}$$

Ν_{ππ}: Α_{ππ}: BR_{ππ}: *R*:

observed $K^+ \rightarrow \pi^+\pi^0$ signal acceptance from simulation (~8.5% *) branching ratio reduction factor applied to CTRL trigger

signal acceptance from simulation(~3%*) trigger efficiency random veto efficiency momentum and intensity bins * vector form factor hypothesis

Trigger and random veto efficiency

 ϵ_{RV} : measured on K⁺ $\rightarrow \mu^+\nu$ decays in data

$K^+ \rightarrow \pi v \bar{v}$: Single event sensitivity 2017 data-set

$$N_{K} = \frac{N_{\pi\pi} \cdot R}{A_{\pi\pi} \cdot BR_{\pi\pi}} = (1.3 \pm 0.1) \times 10^{12}$$

$$SES = \frac{1}{N_{K} \cdot \sum_{j} \left(A_{\pi \nu \nu}^{j} \cdot \epsilon_{\text{trig}}^{j} \cdot \epsilon_{\text{RV}}^{j} \right)}$$

Ν _{ππ} :
$A_{\pi\pi}$:
$BR_{\pi\pi}$:
R :

Source	Uncertainty $\times 10^{-10}$	
L0 trigger	± 0.015	
Acceptance	± 0.012	
Random veto	± 0.008	
L1 trigger	± 0.003	
Normalization background	negligible	

observed $K^+ \rightarrow \pi^+\pi^0$ signal acceptance from simulation (~8.5% *) branching ratio reduction factor applied to CTRL trigger signal acceptance from simulation(~3%*)

trigger efficiency random veto efficiency momentum and intensity bins * vector form factor hypothesis

S.E.S. = $(0.389 \pm 0.021) \times 10^{-10}$ BR(SM)/S.E.S. = $N_{\pi\nu\nu}^{exp} = 2.16 \pm 0.12 \pm 0.26_{ext}$ (SM)

14/02/2020

$K^+ \rightarrow \pi v \bar{v}$: 2017 data-set: background

Control $K^+ \rightarrow \pi^+ \pi^0$ data used to study the tails of the m²_{miss} distribution

14/02/2020

$K^+ \rightarrow \pi v \bar{v}: 2017 \text{ data-set:} \begin{array}{c} \text{Data in } \pi^* \pi^0 \text{ region after} \\ \pi^* v \overline{v} \text{ selection (including} \\ \pi^0 \text{ rejection)} \end{array}$

Control $K^+ \rightarrow \pi^+ \pi^0$ data used to study the tails of the m^2_{miss} distribution

 $N_{\pi\pi}^{exp}(region) = N(\pi^+\pi^0) \cdot f_{kin}(region)$

Expected $K^+ \rightarrow \pi^+ \pi^0$ in signal regions after the $\pi^+ v \overline{v}$ selection Fraction of $\pi^{+}\pi^{0}$ in signal region measured on control data

$K^+ \rightarrow \pi v \bar{v}$: 2017 data-set: $\pi^* v \bar{v}$ selection (including π^0 rejection)

Control $K^+ \rightarrow \pi^+ \pi^0$ data used to study the tails of the m^2_{miss} distribution

 $N_{\pi\pi}^{exp}(region) = N(\pi^{+}\pi^{0}) \cdot f_{kin}(region)$ Expected K⁺ $\rightarrow \pi^{+}\pi^{0}$ in Fraction of $\pi^{+}\pi^{+}$ signal regions after the $\pi^{+}\nu\overline{\nu}$ measured on

selection

Fraction of π⁺π⁰ in signal region measured on control data

$K^+ \rightarrow \pi v \bar{v}$: 2017 data-set: $\pi^* v \bar{v}$ selection (including

8

7

6

5

4

3

Events/(5 GeV/c)

Control $K^+ \rightarrow \pi^+ \pi^0$ data used to study the tails of the m²_{miss} distribution

 $N_{\pi\pi}^{exp}(region) = N(\pi^+\pi^0)$ $f_{kin}(region)$ Expected $K^+ \rightarrow \pi^+ \pi^0$ in signal regions after the $\pi^+ v \overline{v}$ selection

Fraction of $\pi^+\pi^0$ in signal region measured on control data

$K^+ \rightarrow \pi v \bar{v}$: 2017 data-set: background

Further background source:

Upstream background = Kaon decays or interactions before the fiducial volume (FV):

- \rightarrow loss of all daughters except one π^+ that reaches FV
- $\rightarrow \pi^+$ may undergo scattering in first tracking chamber (STRAW 1)
- back-extrapolation leads to a fake vertex with other beam particle falsely tagged as Kaon

$K^+ \rightarrow \pi v \bar{v}$: 2017 data-set: background

Further background source:

Upstream background = Kaon decays or interactions before the fiducial volume (FV):

- \rightarrow loss of all daughters except one π^+ that reaches FV
- $\rightarrow \pi^+$ may undergo scattering in first tracking chamber (STRAW 1)
- back-extrapolation leads to a fake vertex with other beam particle falsely tagged as Kaon

Total background

Process	Expected events
$K^+ \to \pi^+ \nu \overline{\nu} \ (SM)$	$2.16 \pm 0.12_{stat} \pm 0.26_{ext}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.29 \pm 0.03_{stat} \pm 0.03_{syst}$
$K^+ \to \mu^+ \nu_\mu(\gamma)$ IB	$0.15 \pm 0.02_{stat} \pm 0.04_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$0.12 \pm 0.05_{stat} \pm 0.03_{syst}$
$K^+ \to \pi^+ \pi^- \pi^+$	$0.02 \pm 0.02_{syst}$
$K^+ \to \pi^+ \gamma \gamma$	$0.005 \pm 0.005_{systemine}$
$K^+ \rightarrow l^+ \pi^0 \nu_{\rm A}$ imination	negligible 62 K
Upstream background	$0.9 \pm 0.2_{stat} \pm 0.2_{syst}$
Total background	$1.5 \pm 0.2_{stat} \pm 0.2_{sust}$

$K^+ \rightarrow \pi \ v \bar{v}$: 2017 data-set: result

$K^+ \rightarrow \pi v \bar{v}$: 2017 data-set: result

Two events observed in signal region.

$K^+ \rightarrow \pi \ v \bar{v}$: 2017 data-set: result

$K^+ \rightarrow \pi \ v \bar{v}$: 2017 dat

Observed	Expected (background only)	CL
$Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.76 \times 10^{-10}$	$Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.41 \times 10^{-10}$	90%
$Br(K^+ \to \pi^+ \nu \bar{\nu}) < 2.11 \times 10^{-10}$	$Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.76 \times 10^{-10}$	95%

NAC

Historical evolution of measurements

Two sided 68% band: $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (0.47^{+0.72}_{-0.47}) \times 10^{-10}$

Historical evolution of measurements

The 'Exclusion plot' compared to SM prediction

Approaching the SM prediction limits ...

Testing the SM – other probes in NA62

- $\pi^0 \rightarrow invisible$ with π^0 from K⁺ decays : **Preliminary result: BR**($\pi^0 \rightarrow inv.$) < **4.4.10**⁻⁹ @ **90% C.L.** \rightarrow factor 60 improvement wrt. state of the art.
- Lepton Number Violation (LNV) and Lepton Flavour Violations (LFV): test for Majorana (massive) nature of the neutrino. → next slides
- Heavy Neutral Leptons (HNL): three right-handed (sterile) neutrinos N_i are added to the SM , they mix with classical neutrinos (Neutrino Minimal SM)→ next slides
- Lepton universality: R_{κ}
- Dark photons from Kaon decays: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow A' \gamma$, with $A' \rightarrow invisible$.
- Axion like particles (ALPs) \rightarrow dark matter candidates: dump the beam ahead of detectors with copper collimators closed \rightarrow produce B and D mesons decaying promptly into exotic mediators and SM particle \rightarrow e.g. study ALP $\rightarrow \gamma\gamma$
- Dark photons from visible decay e.g. $A' \rightarrow I^+I^-$ in beam dump events.
- HNL and Dark Scalar in beam dump events.
- ... more exotic, rare decay studies and precision measurements.

LNV: 2017 sub-data-set

Physics Letters B 797 (2019) 13479

 $K^+ \rightarrow \pi^- e^+ e^+$: no event observed.

 $K^+ \rightarrow \pi^- \mu^+ \mu^+ : 1$ event observed.

HNL: 2016 + 2017 data-set

- Preliminary results, 1/3 of the full NA62 data set.
- No HNL production signals are observed.

 $|U_{I4}|^2$: elements of the extended neutrino mixing matrix

 $\Gamma(K^+ \to \ell^+ N) = \Gamma(K^+ \to \ell^+ \nu) \times \rho_{\ell}(m_N) \times |U_{\ell 4}|^2.$

Decays in the fiducial volume: ~1.6×10⁸ K⁺ \rightarrow µ⁺v and ~3.7×10⁵ K⁺ \rightarrow e⁺v

HNL: 2016 + 2017 data-set

- Preliminary results, 1/3 of the full NA62 data set.
- No HNL production signals are observed.
- More than 2(1) orders of magnitude improvements with respect to previous result from 2015 min. bias data for e(μ).
 - Muon case: NA62 consistent with the E949 result and extends UL to higher masses.

Decays in the fiducial volume: ~1.6×10⁸ K⁺ \rightarrow µ⁺v and ~3.7×10⁵ K⁺ \rightarrow e⁺v

Summary

$K^+ \rightarrow \pi v \bar{v}$: summary and plans				
Preliminary 2017 result	S. E. S. = $(0.389 \pm 0.021) \times 10^{-10}$ Expected background: 1.50 ± 0.30 events	2 events in signal region observed	V	
Preliminary 2016 + 2017 result	$\begin{array}{l} BR(K^+ \to \pi^+ \nu \nu) < 1.85 \times 10^{-10} @ 90 \\ \text{Two sided 68\% band:} \\ BR(K^+ \to \pi^+ \nu \nu) = 0.47^{+0.72}_{-0.47} \times 10^{-10} \end{array}$) % CL vs SM predi	ction: (0.84 ± 0.10) x 10 ⁻¹⁰	

d

1,

Plans and outlook

- 2018 data analysis on-going: 2 × 2017 data-set.
- On-going studies to increase signal efficiency.
- On-going studies to reduce the random veto.
- Event shape analysis.
- Plans to strongly suppress the upstream background in future runs.
 - Hardware improvements such as beam line optimisation.
- Run 2 (2021-2023): Run at higher beam intensity foreseen.

Summary and outlook: NA62

- With the NA62 experiment at CERN, a considerable spectrum of ongoing and potential measurements to test and challenge the Standard Model is available.
- The high intensity Kaon beam and the beam dump configuration provide the basis for rare decay studies, precision measurements as well as Dark Matter and New Physics searches.
- Three $K^+ \rightarrow \pi^+ v \overline{v}$ events observed (2016-17), moving the measured BR closer to SM prediction and challenging its uncertainties.
- Results on Lepton Number Violation and preliminary searches for Heavy Neutral Leptons suggest no new physics so far.
- More precise measurements to come with analysis of all data 2016-2018 ...
- ... and with future data recordings in Run 2 with higher intensity and O(10¹⁸) POT for beam dump.

Backup

ALP

ALPs with photon coupling. Current bounds (filled areas) and prospects for PBC projects on 10–15 years timescale (solid lines) in the plane coupling $g_{a\gamma\gamma}$ versus mass of ALP.

Prospects of NA62 with O(10¹⁸) POT.

Dark photon in beam dump

Future upper limits at 90% CL for dark photon in visible decays in the plane mixing strength ε versus mass $m_{A'}$ for PBC projects on a ~10–15 year timescale.

Prospects of NA62 with O(10¹⁸) POT.

Dark Scalar in beam dump

Prospects on 10–15 year timescale for PBC projects for the Dark Scalar mixing with the Higgs in the plane mixing angle $\sin^2\theta$ versus dark scalar mass m_S

 $(\mu S + \lambda S^2) H^+ H$ $\mu = \sin \theta$ $S \rightarrow \mu^+ \mu^ \lambda = 0$

Search for two opposite sign charged tracks in the NA62 fiducial volume. Expected 90% CL exclusion contours

- Including trigger/acceptance/selection efficiencies
- Assume zero background

