

Recent Cross-section Measurements from MicroBooNE

Lake Louise Winter Institute 12th Feb 2020

Yifan Chen

University of Bern On behalf of the MicroBooNE collaboration

The Need for Neutrino Scattering Measurements

What we can measure:

$$R(\vec{\mathbf{x}}) = \sum_{i}^{\text{process target}} \sum_{j}^{E_{\text{max}}} \Phi(E_{\nu}) \times \sigma_{i}(E_{\nu}, \vec{\mathbf{x}}) \times \epsilon(\vec{\mathbf{x}}) \times N_{j} \times P(\nu_{A} \to \nu_{B})$$

Neutrino oscillation analysis for three flavours or more:

- Extract oscillation probability
- Constrain systematics
- Develop neutrino interaction generators

Background for beyond standard model physics (BSM):

- Milli-charged particles
- Neutrino trident
- Proton decay
- Direct dark matter search

Not an Easy Task

MicroBooNE's Cross-section Service

Modern accelerator-based neutrino experiments studying neutrino scattering

	$\langle E_{\nu} \rangle, \langle E_{\overline{\nu}} \rangle$		
	$\langle L_{\nu}/, \langle L_{\nu}/\rangle$	neutrino	run
beam	${ m GeV}$	target(s)	period
$ u,\overline{ u}$	4.3, 3.6	Ar	2009 - 2010
ν	20.0	Ar	2010 - 2012
ν	1.3	CH, H_2O	2003 - 2004
ν	0.8	Ar	2015 -
$ u,\overline{ u}$	3.5 (LE),	He, C, CH,	2009 - 2019
	5.5 (ME)	H_2O , Fe, Pb	
$ u,\overline{ u}$	0.8, 0.7	CH_2	2002 - 2019
$ u,\overline{ u}$	3.5, 6.1	Fe	2004 - 2016
$ u,\overline{ u}$	23.4, 19.7	C-based	1995 - 1998
$ u,\overline{ u}$	2.0, 2.0	CH_2	2010 -
$ u,\overline{ u}$	0.8, 0.7	CH	2007 - 2008
$ u, \overline{\nu} $	0.6, 0.6	CH, H_2O , Fe	2010 -
	$ \begin{array}{c} \nu, \overline{\nu} \\ \nu \\ \nu \\ \nu, \overline{\nu} \end{array} $	$\begin{array}{cccc} \nu, \overline{\nu} & 4.3, 3.6 \\ \nu & 20.0 \\ \nu & 1.3 \\ \nu & 0.8 \\ \nu, \overline{\nu} & 3.5 \text{ (LE)}, \\ & 5.5 \text{ (ME)} \\ \nu, \overline{\nu} & 0.8, 0.7 \\ \nu, \overline{\nu} & 3.5, 6.1 \\ \nu, \overline{\nu} & 23.4, 19.7 \\ \nu, \overline{\nu} & 2.0, 2.0 \\ \nu, \overline{\nu} & 0.8, 0.7 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

MicroBooNE has the advantage of High-precision event reconstruction High-statistics v-Ar data

* See Sophie's MicroBooNE overview talk

PDG (Neutrino Cross Section Measurements Review)

- Constrain model systematics for future oscillation studies SBN and DUNE have the same target material: argon
- **Probe for nuclear effects** Argon is a big nucleus. Our studies are sensitive to final states.
- Contribute v-Ar scattering measurements for the development of various generators

Data on neutrino interaction with argon nucleus is rare!

Topology-based Cross-section Analyses

v_µ Charge Current Inclusive

Phys. Rev. Lett. 123, 131801 (2019)

- First double differential crosssection on argon muon kinematics:
 p_µ and cos θ_µ
- First inclusive measurement on argon at low O(1GeV) neutrino energies
- Full angular coverage
- Full momentum coverage
 Multiple Coulomb Scattering (MCS)*
 is used to reconstruct muon
 momentum, which allows muon to
 be either contained or exiting

* JINST 12 P10010 (2017)

v_µ Charge Current Inclusive: Selection

Selected Events: 27,200 Signal purity: 50.4%

Cosmic rejection:

- Through-going tacks
- Tracks outside of the TPC time window with the trigger t0
- Stopping muons (by Bragg peak and/or Michel electron tagging)
- Flash Match:

Check the consistency of reconstructed light signals from the PMTs and the modelled light signal corresponding to a cluster of charge deposition

- Reconstruction quality
- M.I.P consistency (by calorimetry)
- Fiducial volume

v_µ Charge Current Inclusive: Systematics

$$E^{\text{syst}} = E^{\text{flux}} + E^{\text{xsec}} + E^{\text{detector}} + \dots$$
Phys. Rev. Lett. 123, 131801 (2019)

Source of uncertainty	Relative uncertainty [%]	
Beam flux	12.4	
Cross section modeling	3.9	
Detector response	16.2	
Dirt background	10.9	
Cosmic ray background	4.2	
MC statistics	0.2	
Statistics	1.4	
Total	23.8	

Various detector aspects, such as dynamic induced charge, light yield, space charge effect and electron lifetime, are considered in the simulation and/or are calibrated in the latest analyses.

v_µ Charge Current Inclusive: Results

ν_μ **CC** π⁰

v_{μ} CC 0π with Protons

From v_{μ} CC inclusive selection

Proton identification

Using χ^2 test statistics to compare dE/dx profile to the theoretic profile from Bethe-Bloch

Protons are required to be contained

Proton purity > 92%

MICROBOONE-NOTE-1056-PUB

Proton threshold

- Kinematic energy: 47 MeV
- Track length: 1.5 cm

The lowest energy threshold in current running accelerator-based neutrino experiments.

MicroBooNE Cross-section

Yifan Chen, University of Bern

ν_μ CC 0π 2p

Same selection in different models

- Probe nuclear dynamics
- Support the development of generators

MICROBOONE-NOTE-1056-PUB PRL in preparation

v_μ CC 0π Np (N>0)

Proton multiplicity

	Nreco=1	Nreco=2	Nreco=3	Nreco=4	Nreco=5
Ntrue=1	4404	128	4	0	0
Ntrue=2	663	621	9	0	0
Ntrue=3	113	115	49	1	1
Ntrue=4	18	36	23	5	0
Ntrue=5	7	17	10	2	0

MICROBOONE-NOTE-1056-PUB

PRD in preparation (differential cross-section measurement)

MicroBooNE Cross-section

Yifan Chen, University of Bern

NC Elastic

$v_{\mu} + Ar \rightarrow v_{\mu} + p + N^*$

- The topology is a single proton
- Decent efficiency (expect ~1000 NC elastic events in the collected data)
- Goal: cross-section and axial mass measurement

v_e CC inclusive

$v_e / \overline{v_e} + Ar \rightarrow e^{\pm} + X$

- Using NuMI (5% v_e in NuMI flux comparing <1% v_e in BNB flux) to measure v_e inclusive cross-section
- Automated selection
 - Identify electron shower
 - ~100 signal events
- Verified with closure test in measuring cross-section

$$\sigma_{MC} = 4.83 \pm 0.69 \text{ (stat)} \pm 1.20 \text{ (sys)} \times 10^{-39} \text{ cm}^2$$

Paper in preparation

Yifan Chen, University of Bern

Work in Progress - Near Future Measurements

Mostly topology-based measurement

- **v_µ CC inclusive** (with updated simulation, detector calibration and cosmic ray tagger)
- $v_{\mu} CC \pi_{+}$
- v_{μ} CC π^{0} (differential cross-section measurement)
- **BNB** ν_μ CC 0π 0p
 - ν_µ CC 0π 1p
 - Transverse variables in v_{μ} CC0 π
 - · $v_{\mu} \, CC$ kaon production
 - NC elastic scattering
- v_e CC inclusive
 v_e CC Np
 Kaon decay at rest

Summary

MicroBooNE v-Argon cross-section measurements are important for:

- Constraining model systematics for future oscillation experiments (SBN/DUNE)
- The development of neutrino interaction generators
- Understanding backgrounds for beyond standard model physics

MicroBooNE published cross-section measurements:

 ν_µ CC inclusive (first double differential measurement on argon, first inclusive measurement in O(1 GeV) neutrino energy on argon)

Phys. Rev. Lett. 123, 131801 (2019)

• v_{μ} CC π^{0} (first π^{0} cross-section measurement on argon)

Phys. Rev. D 99, 091102(R) (2019)

Preliminary results (public)

• v_{μ} CC 0π 2p

• v_{μ} CC 0π Np

- NC elastic
- v_e NC inclusive (NuMI)

MICROBOONE-NOTE-1056-PUB

MICROBOONE-NOTE-1053-PUB

MICROBOONE-NOTE-1054-PUB

Back Up

v_µ Charge Current Inclusive: Migration Matrix

Phys. Rev. Lett. 123, 131801 (2019)

MicroBooNE Cross-section

v_µ Charge Current Inclusive: Systematics

$$E^{\text{syst}} = E^{\text{flux}} + E^{\text{xsec}} + E^{\text{detector}}$$
$$E_{ij} = \frac{1}{N_s} \sum_{i=0}^{N_s} (\sigma_i^s - \sigma_i^{cv}) (\sigma_j^s - \sigma_j^{cv}) \qquad E_{ij}^{det} = \sum_{m=1}^u (\sigma_i^{cv} - \sigma_i^m) (\sigma_j^{cv} - \sigma_j^m)$$

Source of uncertainty	Relative uncertainty [%]
Beam flux	12.4
Cross section modeling	3.9
Detector response	16.2
Dirt background	10.9
Cosmic ray background	4.2
MC statistics	0.2
Statistics	1.4
Total	23.8

s=0

Systematic Sample	Relative Uncertainty [%]
Induced Charge Effect	13.0
Light Yield Model	4.7
Channel Saturation	4.3
Space Charge Effect	3.7
TPC Visibility	3.7
Electron Lifetime	2.9
Misconfigured Channels	1.8
Longitudinal Diffusion	1.7
Transverse Diffusion	1.6
PE Noise	0.4
Wire Response	0.2
Wire Noise	0.1
Electron Recombination	0.1

m=1

Phys. Rev. Lett. 123, 131801 (2019)

v_µ Charge Current Inclusive: Covariance Matrix

Phys. Rev. Lett. 123, 131801 (2019)

MicroBooNE Cross-section

Yifan Chen, University of Bern

$$\left\langle \frac{d^2\sigma}{dp_{\mu}^{\text{reco}}d\cos\theta_{\mu}^{\text{reco}}} \right\rangle_{i} = \frac{N_{i} - B_{i}}{\tilde{\epsilon}_{i} \cdot N_{target} \cdot \Phi_{\nu_{\mu}} \cdot (\Delta p_{\mu} \cdot \Delta \cos\theta_{\mu})_{i}} \quad \text{i identifies a bin in the } p_{\mu} \cos\theta_{\mu} \text{ space}$$
Forward folding with detector smearing and efficiency published

$$\tilde{\epsilon}_i = \frac{\sum_{j=1}^M S_{ij} N_j^{\text{sel}}}{\sum_{j=1}^M S_{ij} N_j^{\text{gen}}},$$

Phys. Rev. Lett. 123, 131801 (2019)

v_µ Charge Current Inclusive: Results

Flux integrated cross-section per nucleon

 $\sigma = 0.693 \pm 0.010 (\text{stat}) \pm 0.165 (\text{syst}) \times 10^{-38} \text{ cm}^2$

v_µ Charge Curent Inclusive: Model Comparison

Model Element	GENIE v2 + MEC (v2.12.2)	GENIE v3 (v3.00.04 G1810a0211a)	NuWro (19.02.1)	GiBUU (2019)	
Nuclear Model	Bodek-Ritchie Fermi Gas [1]	Local Fermi Gas [2, 3]	Local Fermi Gas [2, 3]	Consistent nuclear medium corrections throughout. Also uses a LFG model for nucleon momenta, a separate MEC model [11], and propagates final state particles according to the	
Quasi-elastic	Llewellyn-Smith [4]	Nieves [2, 3]	Nieves [2, 3]		
MEC	Empirical [5]	Nieves [2, 3]	Nieves [2, 3]		
Resonant	Rein-Seghal [6]	Berger-Seghal [7]	Berger-Seghal [7] (pion production from [9])		
Coherent	Rein-Seghal [6]	Berger-Seghal [7]	Berger-Seghal [7]	Boltzmann-Uehling-	
FSI	hA [8]	hA2018 [8]	Oset [10]	Uhlenbeck equations [11]	

MICROBOONE-NOTE-1045-PUB

v_µ Charge Curent Inclusive: Results

v_{μ} CC 0π 2p: Model Comparison

Model element	GENIE Default	GENIE Alternative
Nuclear Model	Bodek-Ritchie Fermi Gas	Local Fermi Gas
Quasi-elastic	Llewellyn-Smith	Nieves
Meson-Exchange Current	Empirical	Nieves
Resonant	Rein-Seghal	Berger-Seghal
Coherent	Rein-Seghal	Berger-Seghal
FSI	hA	hA2014

MICROBOONE-NOTE-1056-PUB

$v_{\mu} \ CC \ 0\pi \ 2p$

