Recent Cross-section Measurements from MicroBooNE

Lake Louise Winter Institute
12th Feb 2020

Yifan Chen
University of Bern
On behalf of the MicroBooNE collaboration
The Need for Neutrino Scattering Measurements

What we can measure:

\[
R(\mathbf{x}) = \sum_i \sum_j \int_{E_{\text{min}}}^{E_{\text{max}}} \Phi(E_{\nu}) \times \sigma_i(E_{\nu}, \mathbf{x}) \times \epsilon(\mathbf{x}) \times N_j \times P(\nu_A \rightarrow \nu_B)
\]

Neutrino oscillation analysis for three flavours or more:
- Extract oscillation probability
- Constrain systematics
- Develop neutrino interaction generators

Background for beyond standard model physics (BSM):
- Milli-charged particles
- Neutrino trident
- Proton decay
- Direct dark matter search
Not an Easy Task

Mix of interaction modes

Nuclear effect

Plot by Patrick Stowell

MicroBooNE Cross-section
MicroBooNE has the advantage of
High-precision event reconstruction
High-statistics ν-Ar data

* See Sophie’s MicroBooNE overview talk

MicroBooNE’s Cross-section Service

Modern accelerator-based neutrino experiments studying neutrino scattering

| Experiment | beam $|E_{\nu}$| $|E_{\bar{\nu}}$| neutrino target(s) | run period |
|----------------|----------|------------|------------------|--------------|
| ArgoNeuT | $\nu, \bar{\nu}$ | 4.3, 3.6 | Ar | 2009 – 2010 |
| ICARUS (at CNGS)| ν | 20.0 | Ar | 2010 – 2012 |
| K2K | ν | 1.3 | CH, H$_2$O | 2003 – 2004 |
| MicroBooNE | ν | 0.8 | Ar | 2015 – 2017 |
| MINERvA | $\nu, \bar{\nu}$ | 3.5 (LE), 5.5 (ME) | He, C, CH, H$_2$O, Fe, Pb | 2009 – 2019 |
| MiniBooNE | $\nu, \bar{\nu}$ | 0.8, 0.7 | CH$_2$ | 2002 – 2019 |
| MINOS | $\nu, \bar{\nu}$ | 3.5, 6.1 | Fe | 2004 – 2016 |
| NOMAD | $\nu, \bar{\nu}$ | 23.4, 19.7 | C–based | 1995 – 1998 |
| NOvA | $\nu, \bar{\nu}$ | 2.0, 2.0 | CH$_2$ | 2010 – 2015 |
| SciBooNE | $\nu, \bar{\nu}$ | 0.8, 0.7 | CH | 2007 – 2008 |
| T2K | $\nu, \bar{\nu}$ | 0.6, 0.6 | CH, H$_2$O, Fe | 2010 – 2015 |

PDG (Neutrino Cross Section Measurements Review)

- **Constrain model systematics for future oscillation studies**
 SBN and DUNE have the same target material: argon

- **Probe for nuclear effects**
 Argon is a big nucleus. Our studies are sensitive to final states.

- **Contribute ν-Ar scattering measurements for the development of various generators**
 Data on neutrino interaction with argon nucleus is rare!
Topology-based Cross-section Analyses

BNB
Booster Neutrino Beam

\(\nu_\mu \) CC inclusive

NC elastic

\(\nu_\mu \) CC \(\pi^0 \)

\(\nu_\mu \) CC \(0\pi \) 2p

\(\nu_\mu \) CC \(0\pi \) Np

NuMI
The Neutrinos at the Main Injector beam

\(\nu_e \) CC inclusive

MicroBooNE Cross-section

Yifan Chen, University of Bern
νμ Charge Current Inclusive

νμ + Ar → μ⁻ + X

- First double differential cross-section on argon muon kinematics: p_μ and $\cos \theta_\mu$
- First inclusive measurement on argon at low $O(1\text{GeV})$ neutrino energies
- Full angular coverage
- Full momentum coverage

Multiple Coulomb Scattering (MCS)* is used to reconstruct muon momentum, which allows muon to be either contained or exiting

* JINST 12 P10010 (2017)
ν_μ Charge Current Inclusive: Selection

Selected Events: 27,200
Signal purity: 50.4%

- Cosmic rejection:
 - Through-going tacks
 - Tracks outside of the TPC time window with the trigger t0
 - Stopping muons (by Bragg peak and/or Michel electron tagging)
- Flash Match:
 Check the consistency of reconstructed light signals from the PMTs and the modelled light signal corresponding to a cluster of charge deposition
- Reconstruction quality
- M.I.P consistency (by calorimetry)
- Fiducial volume

MICROBOONE-NOTE-1045-PUB
\(E_{\text{syst}} = E_{\text{flux}} + E_{\text{xsec}} + E_{\text{detector}} + \ldots \)
\[\left\langle \frac{d^2 \sigma}{dp_\mu^{\text{reco}} \cos \theta_\mu^{\text{reco}}} \right\rangle_i = \frac{N_i - B_i}{\tilde{c}_i \cdot N_{\text{target}} \cdot \Phi_{\nu_\mu} \cdot (\Delta p_\mu \cdot \Delta \cos \theta_\mu)_i} \]

\(i \) identifies a bin in the \(p_\mu \cos \theta_\mu \) space

Forward folding with detector smearing and efficiency published

<table>
<thead>
<tr>
<th>Model</th>
<th>(\chi^2) / Nbins</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENIE v2 + MEC</td>
<td>245.9/42</td>
</tr>
<tr>
<td>GENIE v3</td>
<td>108.8/42</td>
</tr>
<tr>
<td>GiBUU</td>
<td>172.9/42</td>
</tr>
<tr>
<td>NuWro</td>
<td>126.5/42</td>
</tr>
</tbody>
</table>

Test against different models:
High \(\chi^2 \) is mostly driven by high momentum bins in forward direction

MicroBooNE 1.6 \(\times 10^{20} \) POT

-1.00 \(\leq \cos(\theta_\mu^{\text{reco}}) \leq -0.50 \)

MicroBooNE Cross-section

MICROBOOONE-NOTE-1045-PUB
νμ CC π⁰

From νμ CC pre-selection

Single-shower selection:
- Able to reconstruct and distinguish photon shower
- Able to identify vertex
- Verified with conversion distance

Two-shower verification:
- Test with π⁰ mass

(σ)Φ = 1.9 ± 0.2(stat) ± 0.6(syst) × 10⁻³⁸ cm²/Ar

First on argon
Flux integrated cross-section measurement of νμ CC π⁰

C. Adams et al 2020 JINST15 P02007

Proton identification
Using χ^2 test statistics to compare dE/dx profile to the theoretic profile from Bethe-Bloch
Protons are required to be contained

Proton purity > 92%

Proton threshold
- Kinematic energy: 47 MeV
- Track length: 1.5 cm

Proton interaction probability is high

The lowest energy threshold in current running accelerator-based neutrino experiments.
ν_μ CC 0π 2p

Same selection in different models

- Probe nuclear dynamics
- Support the development of generators

MICROBOONE-NOTE-1056-PUB PRL in preparation

MicroBooNE Cross-section 12

Yifan Chen, University of Bern
ν_μ CC 0π Np ($N>0$)

Proton multiplicity

<table>
<thead>
<tr>
<th>Ntrue</th>
<th>Nreco=1</th>
<th>Nreco=2</th>
<th>Nreco=3</th>
<th>Nreco=4</th>
<th>Nreco=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4404</td>
<td>128</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>663</td>
<td>621</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>113</td>
<td>115</td>
<td>49</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>36</td>
<td>23</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>17</td>
<td>10</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Proton Multiplicity

[Leading proton] Momentum

[Leading proton] $\cos \theta_n$

 MICROBOONE-NOTE-1056-PUB

PRD in preparation (differential cross-section measurement)
\(\nu_\mu + \text{Ar} \rightarrow \nu_\mu + p + N^* \)

- The topology is a single proton
- Decent efficiency (expect \(\sim 1000 \) NC elastic events in the collected data)
- Goal: cross-section and axial mass measurement

\[Q_p^2 = 2T_p M_p \]
\(\nu_e \mathrm{CC\ inclusive} \)

\[\nu_e / \bar{\nu}_e + \text{Ar} \rightarrow e^\pm + X \]

- **Using NuMI** (5% \(\nu_e \) in NuMI flux comparing <1% \(\nu_e \) in BNB flux) to measure \(\nu_e \) inclusive cross-section
- **Automated selection**
 - Identify electron shower
 - \(\sim 100 \) signal events
- **Verified with closure test in measuring cross-section**

\[\sigma_{\text{MC}} = 4.83 \pm 0.69 \text{ (stat)} \pm 1.20 \text{ (sys)} \times 10^{-39} \text{ cm}^2 \]

Paper in preparation
Work in Progress - Near Future Measurements

Mostly topology-based measurement

- ν_μ CC inclusive (with updated simulation, detector calibration and cosmic ray tagger)
- ν_μ CC π^+
- ν_μ CC π^0 (differential cross-section measurement)
- ν_μ CC 0π 0p
- ν_μ CC 0π 1p
- Transverse variables in ν_μ CC0π
- ν_μ CC kaon production
- NC elastic scattering

BNB

- ν_e CC inclusive
- ν_e CC Np
- Kaon decay at rest

NuMI

MicroBooNE Cross-section 16

Yifan Chen, University of Bern
MicroBooNE v-Argon cross-section measurements are important for:
- Constraining model systematics for future oscillation experiments (SBN/DUNE)
- The development of neutrino interaction generators
- Understanding backgrounds for beyond standard model physics

MicroBooNE published cross-section measurements:
- ν_μ CC inclusive (first double differential measurement on argon, first inclusive measurement in $O(1$ GeV) neutrino energy on argon)
- ν_μ CC π^0 (first π^0 cross-section measurement on argon)

Preliminary results (public)
- ν_μ CC $0\pi 2p$
- ν_μ CC $0\pi Np$
- NC elastic
- ν_e NC inclusive (NuMI)

More results coming soon!
Back Up
νμ Charge Current Inclusive: Migration Matrix

MicroBooNE Simulation

Generated Bin Number

\(E_{\text{syst}} = E_{\text{flux}} + E_{\text{xsec}} + E_{\text{detector}} \)

\[
E_{ij} = \frac{1}{N_s} \sum_{s=0}^{N_s} (\sigma_i^s - \sigma_i^{cv})(\sigma_j^s - \sigma_j^{cv})
\]

\[
E_{ij}^{\text{det}} = \sum_{m=1}^{u} (\sigma_i^{cv} - \sigma_i^m)(\sigma_j^{cv} - \sigma_j^m)
\]

Systematic Sample

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Relative uncertainty [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam flux</td>
<td>12.4</td>
</tr>
<tr>
<td>Cross section modeling</td>
<td>3.9</td>
</tr>
<tr>
<td>Detector response</td>
<td>16.2</td>
</tr>
<tr>
<td>Dirt background</td>
<td>10.9</td>
</tr>
<tr>
<td>Cosmic ray background</td>
<td>4.2</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.2</td>
</tr>
<tr>
<td>Statistics</td>
<td>1.4</td>
</tr>
<tr>
<td>Total</td>
<td>23.8</td>
</tr>
</tbody>
</table>

MicroBooNE Cross-section

Yifan Chen, University of Bern
ν_μ Charge Current Inclusive: Covariance Matrix

MicroBooNE Cross-section

\(\nu_\mu \) **Charge Current Inclusive**

\[
\left\langle \frac{d^2\sigma}{dp_\mu^{\text{reco}} d \cos \theta_\mu^{\text{reco}}} \right\rangle_i = \frac{N_i - B_i}{\tilde{\epsilon}_i \cdot N_{\text{target}} \cdot \Phi_{\nu_\mu} \cdot (\Delta p_\mu \cdot \Delta \cos \theta_\mu)_i},
\]

Forward folding with detector smearing and efficiency published

\[
\tilde{\epsilon}_i = \frac{\sum_{j=1}^{M} S_{ij} N_{j}^{\text{sel}}}{\sum_{j=1}^{M} S_{ij} N_{j}^{\text{gen}}},
\]

ν_μ Charge Current Inclusive: Results

Flux integrated cross-section per nucleon

$$\sigma = 0.693 \pm 0.010 \text{(stat)} \pm 0.165 \text{(syst)} \times 10^{-38} \text{ cm}^2$$
νμ Charge Current Inclusive: Model Comparison

<table>
<thead>
<tr>
<th>Model Element</th>
<th>GENIE v2 + MEC (v2.12.2)</th>
<th>GENIE v3 (v3.00.04 G1810a0211a)</th>
<th>NuWro (19.02.1)</th>
<th>GiBUU (2019)</th>
</tr>
</thead>
</table>

MicroBooNE Cross-section

Yifan Chen, University of Bern
ν_μ Charge Current Inclusive: Results

MicroBooNE Cross-section

\(\nu_\mu \text{ CC } 0\pi 2p: \text{ Model Comparison} \)

<table>
<thead>
<tr>
<th>Model element</th>
<th>GENIE Default</th>
<th>GENIE Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Model</td>
<td>Bodek-Ritchie Fermi Gas</td>
<td>Local Fermi Gas</td>
</tr>
<tr>
<td>Quasi-elastic</td>
<td>Llewellyn-Smith</td>
<td>Nieves</td>
</tr>
<tr>
<td>Meson-Exchange Current</td>
<td>Empirical</td>
<td>Nieves</td>
</tr>
<tr>
<td>Resonant</td>
<td>Rein-Seghal</td>
<td>Berger-Seghal</td>
</tr>
<tr>
<td>Coherent</td>
<td>Rein-Seghal</td>
<td>Berger-Seghal</td>
</tr>
<tr>
<td>FSI</td>
<td>hA</td>
<td>hA2014</td>
</tr>
</tbody>
</table>
ν_μ CC 0π 2ρ

Angle in between the two protons