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» Optical theorem, unitarity & AGK cuts
» Enhanced Pomeron graphs: resummation

» Phenomenological approach - 2 Pomeron poles:

total, elastic & diffractive x-sections

» 'Semihard Pomeron’
» MC approach (QGSJET II)



"Elementary’ processes:

non-diffr. production virtual rescattering  diffraction

» elastic scattering - coherence of the parton cascade preserved
by the scattering process

> ‘elementary’ inel. process - coherence broken = hadronization

» general interaction - multiple scattering:

Otot = Im




Optical theorem + AGK rules
= relation between elastic amplitude & inelastic final states




Optical theorem + AGK rules
= relation between elastic amplitude & inelastic final states

» AGK rules: no interference between different topologies of
final states




Optical theorem + AGK rules
= relation between elastic amplitude & inelastic final states

» AGK rules: no interference between different topologies of
final states

» = all possible final states - obtained via AGK-cuts of elastic
scattering diagrams




Optical theorem + AGK rules
= relation between elastic amplitude & inelastic final states

» AGK rules: no interference between different topologies of
final states

» = all possible final states - obtained via AGK-cuts of elastic
scattering diagrams

» partial cross sections - expressed via amplitudes for
'elementary’ scattering
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a a

» Pomeron amplitudes - various approaches possible
(purely phenomenological, BFKL, ...)

Intermediate states between Pomeron exchanges include inelastic
excitations: Y; | Xi) (Xi| = [p){p|+ Lizp | Xi) (Xl

» Good-Walker-like scheme - use elastic scattering eigenstates:

‘X _’Z J/X ‘J



E.g., using eikonal vertices for Pomeron emission:

P
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E.g., using eikonal vertices for Pomeron emission:
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E.g., using eikonal vertices for Pomeron emission:

fPP(57b) = iZ /ka/p [1 —e lk(s b)}
.k

~

x}i = Jmﬁ-ﬂ; - eikonal for Pomeron exchange between |j) and |k)

» = allows to calculate X-sections for various final states:

n [Qxl'i(svb)]n _oyF
J.k !

diffr—pro
O,4 P J( ) = I; (Cj/p‘sﬂ_Cj/PC//p) Ck/pCm/p
Js m

X /d2 Sb)} [1 — e’xﬁn(&b)}

» partial x-sections are obtained after resummation of all virtual
(elastic) rescatterings

» if the decomposition in eigenstates is energy-independent:
low mass diffraction (M% < s) only



Higher diffraction = more asymmeric eigenstates

smaller Oyt (Oinel) - inelastic screening
bigger fluctuations of multiplicity / of Npay in pA (AA)



Non-linear effects

Pomeron-Pomeron interactions = rich physics

» e.g. final states with jets:

'fan’ diagrams - low-x PDFs as 'seen’ in DIS & inclusive
cross sections

‘net fans' - 'reaction-dependent PDFs’ (depend on
rescattering on the partner hadron) )




High mass diffraction from enhanced diagrams:

YV AL




High mass diffraction from enhanced diagrams:

YV AL

» sign-indefinite contributions



High mass diffraction from enhanced diagrams:

YV AL

» sign-indefinite contributions
» higher orders - increasingly important with energy



High mass diffraction from enhanced diagrams:

VY A AL

» sign-indefinite contributions
» higher orders - increasingly important with energy
» = all order resummation needed



High mass diffraction from enhanced diagrams:

VY A AL

sign-indefinite contributions
higher orders - increasingly important with energy
= all order resummation needed

vV vV v Y

same applies to other final states

General solution to the problem (e.g. MC implementation) requires:



High mass diffraction from enhanced diagrams:

VY A AL

sign-indefinite contributions
higher orders - increasingly important with energy
= all order resummation needed

vV vV v Y

same applies to other final states

General solution to the problem (e.g. MC implementation) requires:

» knowledge of the Pomeron amplitude



High mass diffraction from enhanced diagrams:

VY A AL

sign-indefinite contributions
higher orders - increasingly important with energy
= all order resummation needed

vV vV v Y

same applies to other final states

General solution to the problem (e.g. MC implementation) requires:

» knowledge of the Pomeron amplitude
» knowledge of multi-Pomeron vertices



High mass diffraction from enhanced diagrams:

VY A AL

sign-indefinite contributions
higher orders - increasingly important with energy
= all order resummation needed

vV vV v Y

same applies to other final states

General solution to the problem (e.g. MC implementation) requires:

» knowledge of the Pomeron amplitude
» knowledge of multi-Pomeron vertices

» complete resummation of enhanced diagrams:
for elastic scattering amplitude & for particular final states



Diagrammatic resummation

Without Pomeron 'loops’ one would have 'net’-like graphs:

(b)

In reality, any 'intermediate’ Pomeron may be replaced by 'loops’:



Introduce 'net fan' contributions via Schwinger-Dyson equation:
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Introduce 'net fan' contributions via Schwinger-Dyson equation:

o+

‘ mz;l, n2>0
m+n, =2
'ylbi y1’b1 22

» correspond to arbitrary Pomeron 'nets’ coupled to given vertex
(for simplicity, loops not shown)

a a a
+ 2’b2 + y2’b2 +
Yyl Yl y,:b; Y0
d d d

» have the meaning of 'reaction-dependent PDFs’



Sum of (almost) all irredicible contributions to elastic amplitude
('Qpp(jk) (S,b))i

m,+n, >2

examples of graphs which are not included in this scheme:

P P P P
p p p P
@ (b) (© (d)



Knowing the amplitude one can calculate Oy, doe/dt, etc.

However, to describe the structure of final states one needs the
complete set of partial cross sections

» one assumes the validity of AGK cutting rules

> one starts from 'building blocks’: AGK-cuts of 'net fans’
- defined by Schwinger-Dyson equations




One obtains the complete system of cuts:
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Obtained contributions satisfy s-channel unitarity (completness):

11
A1) _

» allow to derive x-sections for various topologies of final states
» e.g., diffractive cuts:

(a) (b) (©
» can be applied for a MC generation

» for all that one ONLY (7!) needs to know the Pomeron
amplitude & multi-Pomeron vertices
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Particular (simple) model

Let us assume eikonal multi-P vertices: G(™" = r3p %{,?’*"’3

» 2-component ('soft’ +'hard’) Pomeron:
/ /
DF (s,t) = 87i | %) %Mt (g% @%m"S t]

» dipole form factor for proton elastic eigenstates |}):

Y

)= PN

y=v(1%xx),j=1,2

» Pomeron elkonal
2ie(5,b) = g [d°q e 7P FF(q?) FE(¢%) D¥(s.4)

» P exchange between a proton and a multi-P vertex (y,B):

1y b)= oo [d2qe P () D (e )

87r2 ey



Few parameter sets differ by the fit to CDF/E710 at /s=1800 GeV
and by the P mass cutoff (& = In M?

2 E=2-AC&E=15-B

min
’ ‘ Ap(s) Ap(n) “[’P(s)‘ %(hy v n ‘ /s ‘ Az, Az, r3p; Y,
GeV'3  Gev2| Gev'! GeV™2|  Gev™2?| Gev'!l Gev'!
(A)| 1.145 1.35 0.13 0.075 1.65 0.6 0.06 1.06 0.3 0.14 0.5
(B)| 1.15 1.35 0.165 0.08 1.75 0.6 0.065 1.03 0.3 0.15 0.5
(C)| 114 1.31 0.14 0.085 1.6 0.5 0.09 1.1 0.4 0.14 0.5
» total / elastic cross sections and elastic slope
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Using only 'net’-like (blue) / 'loop’-like (green) enhanced graphs:
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» P-loops only - far insifficient for cross section calculations

> relative importance of P-loops - higher for smaller P-slope and
for non-eikonal multi-P vertices (e.g. in QCD)

5



Differential elastic cross section
106
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do,, /dt (mblGev?)

10 h I ‘ I I ' ‘ I I — ‘ I | —'\.— ‘ I -
0.1 0.2 0.3 0.4 , 05
Itl (Gev®)

o



Diffractive cross sections

Single (M% /s < 0.15) and double (yg(gl)) > 3) diffraction x-sections
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Diffractive cross sections

Single (M% /s < 0.15) and double (yg(al)) 3) diffraction x-sections
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Diffractive cross sections

Single (M% /s < 0.15) and double (yég) > 3) diffraction x-sections

10 10

cross section (mb)
cross section (mb)
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» high mass diffraction - decreases with energy

» suppression of diffraction - by eikonal RGS factors and by
absorptive corrections from higher order cut enhanced graphs



Examples - partiall resummations of higher order graphs

» dominant contributions to osp:

» lowest order contribution only:
> triple-Pomeron graph only



Examples - partiall resummations of higher order graphs

v

dominant contributions to osp:

v

lowest order contribution only:
triple-Pomeron graph only

v

v

in all the cases - full re-summation of uncut enhanced graphs
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Impact on high mass part of osp and diffraction profile (at 14 TeV):
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> lowest order contribution - order of magnitude difference



Impact on high mass part of osp and diffraction profile (at 14 TeV):
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using dominant contributions only - coincides with the full
re-summation within 5%

lowest order contribution - order of magnitude difference

triple-IP contribution only - violates unitarity:
OSp > Otot, GSD(S,b) >latbh~0



From the Tevatron to the LHC

’ 1.8 TeV ‘ otot ‘ o°! ‘ oSP ‘ PP | oSh ‘ o ‘ oM ‘ oPPE
Set (A) 79.3 | 19.3 | 9.62 3.62 4.52 1.95 1.20 (1.17) 0.19
Set (B) 80.5 | 19.9 | 9.84 4.06 4.78 2.37 1.24 (1.20) 0.23
Set (C) 72.8 | 16.4 | 10.5 3.84 5.74 2.01 1.42 (1.36) 0.28

KMR 73.7 | 16.4 | 13.8 9.7
GLM 73.3 | 16.3 | 9.76 5.36 1.2

’ 14 TeV ‘ otot ‘ ol ‘ oSP ‘ PP | ofh ‘ ohu oM ‘ oPPE
Set (A) 128 | 37.5 | 12.1 461 3.62 2.06 1.40 (1.37) 0.10
Set (B) 126 37.3 12.4 5.18 4.24 2.50 1.60 (1.56) 0.14
Set (C) 108 | 29.7 | 12.3 5.36 5.06 2.81 1.72 (1.68) 0.20
KMR 91.7 | 21.5 | 19.0 14.1
GLM 92.1 | 20.9 | 11.8 6.08 1.28




From the Tevatron to the LHC

DD

’ 1.8 TeV ‘ otot ‘ o°! ‘ oSP ‘ c ‘ ooy ‘ o ‘ oM ‘ oPPE
Set (A) 79.3 | 19.3 | 9.62 3.62 4.52 1.95 1.20 (1.17) 0.19
Set (B) 80.5 | 19.9 | 9.84 4.06 4.78 2.37 1.24 (1.20) 0.23
Set (C) 72.8 | 16.4 | 10.5 3.84 5.74 2.01 1.42 (1.36) 0.28

KMR 73.7 | 16.4 | 13.8 9.7
GLM 73.3 | 16.3 | 9.76 5.36 1.2

’ 14 TeV ‘ otot ‘ ol ‘ oSP ‘ oPP ‘ ooy ‘ ohu oM ‘ oPPE
Set (A) 128 | 37.5 | 12.1 461 3.62 2.06 1.40 (1.37) 0.10
Set (B) 126 37.3 12.4 5.18 4.24 2.50 1.60 (1.56) 0.14
Set (C) 108 | 29.7 | 12.3 5.36 5.06 2.81 1.72 (1.68) 0.20
KMR 91.7 | 21.5 | 19.0 14.1
GLM 92.1 | 20.9 | 11.8 6.08 1.28

» main difference to KMR & GLM - faster rise of Gy




'Semihard Pomeron’

Parton cascades start at low virtualities =

> Q2 - cutoff between 'soft’ and perturbative physics

> (all |g?] - small = as(g?) > 1):
- pQCD is inapplicable ='soft’” Pomeron amplitude
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- 'soft’ Pomeron for |p?‘ < Qg
- DGLAP ladder for ‘pf‘ > Qg
» general interaction = 'general Pomeron:
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Parton cascades start at low virtualities =

> Q2 - cutoff between 'soft’ and perturbative physics
> (all |g?] - small = as(g?) > 1):

- pQCD is inapplicable ='soft’” Pomeron amplitude
> (lg°] > @ = as(q®) < 1)

- 'soft’ Pomeron for |p?‘ < Qg
- DGLAP ladder for ‘pf‘ > Qg
general interaction = 'general Pomeron’:

v

soft Pomeron

QCD ladder

soft Pomeron
>

» same multi-P vertices: G(™" = pp )@ITJ’”_?’
(counle soft Ps & soft 'ends’ of semihard Ps)
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Monte Carlo approach (QGSJET-II)

MC procedure:

choose between low mass diffraction or multiple production

sample impact parameter & elastic scattering eigenstates

sample a particular 'macro-configuration’ of the interaction

for each cut 'net-fan’: generate (recursively) all cut Pomerons

& rapidity gaps

» perform energy partition between all cut Pomerons

» for each cut 'semihard Pomeron’: reconstruct the perturbative
"piece’ (hard process, ISR, FSR)

» for each cut Pomeron: string formation & hadronization

>
>
>
>

Like in the linear (quasi-eikonal) scheme

» interaction configurations are defined by Regge cuts of elastic
diagrams
» the procedure generalizes to hA (AA) in a parameter-free way
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Main differences of the latest version (QGSJET-11-04)
compared to QGSJET-11-03 (released in 2005):

» Pomeron loops included (only net-like graphs in 11-03)

= twice smaller triple-P coupling: rsp ~ 0.1 GeV

» PP-coupling fixed by H1 LPS diffractive data
(in 11-03 - by F;)(?’) from ZEUS rap-gap data)
» parameter fit included data on dcel »/dt, do. /dt d(f,e<1 /dt
> higher soft/hard cutoff: QF =3 GeV? (QZ =2.5GeV? in 11-03)

corresponds to pl ard = 2Q0 = 3.4 GeV for the chosen
factorization scale in the model: M2 = p? /4

Differences between the two versions for particle production:
at fine-tuning level (no drastic modifications induced by LHC)



Total, elastic & diffractive X-sections / slope
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dGﬁL/dt - only for small |t| (Gaussian form-factor used)

do, /dt (mb/Gev?)
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Some results at fixed target energies
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Versions 11-04 (solid) / 11-03 (dashed) at /s =0.2+7 TeV
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But: the influence of detector effects unclear in CMS results
E.g., contradiction with ALICE 'inel>0" selection:
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= no evolution of saturation scale above Q3 =3 GeV?



Outlook

QGSJET-II is based on

optical theorem & s-channel unitarity

all-order resummation of enhanced Pomeron graphs

complete set of partial x-sections (for all possible final states)
self-consistent MC implementation

"'semihard Pomeron’ scheme for hard processes
phenomenological soft Pomeron (= strings) for soft processes
phenomenological vertices for Pomeron-Pomeron interactions

vV VvV VY VY VY VY

Main drawbacks:

» neglects energy-momentum correlations (at amplitude level) in
multiple scattering
» neglects 'hard’ (|¢%| > Q2) Pomeron-Pomeron coupling
= no evolution of saturation scale above Q3 =3 GeV?
(treatment currently in progress (higher twist resummation))



Backup

Procedure for a 'cut net-fan’ reconstruction
(for simplicity, illustrated without Pomeron loops)
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Backup

Procedure for a 'cut net-fan’ reconstruction
(for simplicity, illustrated without Pomeron loops)

m 2 m' >2
——————— : LT s m'>0 |
N /l H < ] 1 s
\\ y : \\{...",—
\\ 'l ..:. Y +
4 = 7t yp

by by by yby

> at each step, one checks if the remaining piece is just a single
cut Pomeron (with all the absorptive effects included):

v v

3 = T \\
Vr,b] . . . .
d

» or a diffractive cut (last graph in the rhs)
» or a splitting into 2 or more cut net-fans (2nd graph in the rhs)




Fixed target pC-collision
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Interferention between double diffraction and double single
diffraction

Example: double high mass diffraction at the lowest order




Comparison with heavy ions (QGSJET-1I-03 - previous

version)
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