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Extended Scalars 

1. Direct detection of new physics - Motivate searches at the LHC in simple extensions 
of the scalar sector – benchmark models for searches. 

2. Indirect detection of new physics (via measurements of the 125 GeV Higgs couplings) 

a) Mixing effects with other Higgs bosons, 
e.g. singlet, doublet, CP admixtures.  

b) How efficiently can the parameter  
space of these simple extensions  
be constrained through measurements 
of Higgs properties? Focus on CP. 

c) What are higher order EW  
corrections (of extended models)  
good for? 

3. Distinguishing models - Need to find something 
first!

LHC

RxSM 
CxSM NMSSM

2HDM
C2HDM

N2HDMGM
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Extensions of the scalar sector

• Should contain a SM-like Higgs boson

• Electroweak ρ parameter should be close to 1

ρ =
m2

W

m2
Z cos θ2

W
=

∑i [4Ti(Ti + 1) − Y2
i ] |vi |

2 ci

∑i 2Y2
i |vi |

2

Ti SU(2)L Isospin
Yi Hypercharge
vi VEV
ci 1(1/2) for complex (real) representations

Q = T3 + Y/2



Tree-level Unitarity
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In the SM the Higgs unitarises WW scattering if the Higgs mass is below 700 GeV. In extensions of the 
scalar sector with   neutral scalar fields   with VEVs  , the same unitarity condition leads to a sum 
rule. 

The “unitarity sum rules” are required for the cancelation of the perturbatively unitary violating high 
energy scattering amplitudes of weak gauge bosons and the neutral Higgs bosons at tree level.

N0 ϕ0
n v0

n
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with U being the non-linear sigma model field which includes would-be Nambu-Goldstone bosons. Here τa (a =
1, 2, 3) are the Pauli matrices. The definition of U and its covariant derivative DµU are given by Ref.[1]. The
coefficient β in Eq.(2) is related with the tree level ρ parameter, ρ0, as follows: ρ0 = (1− 2β)−1.
The neutral Higgs bosons (φ0

n, n = 1, · · ·N0) are introduced as “matter” particles in the chiral Lagrangian.
Interactions of these Higgs particles with the weak gauge bosons are described by
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with τ± ≡ (τ1±iτ2)/2 and φ0
n

↔

∂ µφ0
m ≡ φ0

n(∂µφ
0
m)− (∂µφ0

n)φ
0
m. Each κ denotes the magnitude of the interaction

of the neutral Higgs bosons.
We are now ready to investigate perturbative unitarity in the present framework. Evaluating the high energy

scattering amplitudes of the longitudinally polarized weak gauge bosons and the neutral Higgs bosons, we can
obtain a set of conditions among the Higgs coupling strengths which are needed to cancel the unitarity violating
high energy scattering amplitudes. The unitarity sum rules at tree level are given by
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Notice that if we combine Eq.(4), Eq.(5), and Eq.(6), we obtain a condition on ρ0,

1

ρ0
(ρ0 − 1) = 0. (9)

Thus the unitarity sum rules require ρ0 to be unity or infinity in any electroweak symmetry breaking model if
it only possesses neutral Higgs bosons.
Thanks to the gauge invariance of the non-linear sigma model Lagrangian we use, we can also study radiative

corrections in the present framework. Let us focus on electroweak oblique corrections, which can be expressed
by S, T and U parameters for the model satisfying ρ0 = 1[4]. Since the non-linear sigma model Lagrangian
is not renormalizable, non-renormalizable UV divergences appear in the electroweak oblique corrections. We
can therefore investigate what conditions are required to cancel these non-renormalizable UV divergences. At
one-loop level, the finiteness of the S, T and U parameters requires the following conditions among the Higgs

N0

∑
n=1

κϕ0
n

WWκϕ0
n

WW = 1

Using all possible 2 to 2 scattering amplitudes we can constrain the parameter space of the models. For 
instance for the softly broken   2HDM we getZ2



u-type d-type leptons

Type I �2 �2 �2

Type II �2 �1 �1

Lepton-specific �2 �2 �1

Flipped �2 �1 �2

Table 1: The four Yukawa types of the Z2-symmetric 2HDM defined by the Higgs doublet that couples to each

kind of fermions.

CxSM (RxSM) 2HDM C2HDM N2HDM

Model SM+Singlet SM+Doublet SM+Doublet 2HDM+Singlet

Scalars h1,2,(3) (CP even) H, h, A, H±
H1,2,3 (no CP), H±

h1,2,3 (CP-even), A, H±

Motivation DM, Baryogenesis + H
± + CP violation + ...

Table 2: Components of the Yukawa couplings of the Higgs bosons Hi in the C2HDM. The expressions correspond

to [c
e
(Hiff) + ic

o
(Hiff)�5] from Eq. (2.6) and t� stands for tan�.

and gHSMV V denotes the SM Higgs coupling factors. In terms of the gauge boson massesMW and
MZ , the SU(2)L gauge coupling g and the Weinberg angle ✓W they are given by gHSMV V = gMW

for V = W and gMZ/ cos ✓W for V = Z.
Both the 2HDM and C2HDM are free from tree-level FCNCs by extending the global Z2

symmetry to the Yukawa sector. The four independent Z2 charge assignments of the fermion
fields determine the four types of 2HDMs depicted in Table 1. The Yukawa Lagrangian is defined
by

LY = �
3X

i=1

mf

v
 ̄f [c

e(Hiff) + ic
o(Hiff)�5] fHi , (2.6)

where  f is the fermion field with mass mf . In Table 2 we present the CP-even and the CP-odd
components of the Yukawa couplings, ce(Hiff) and c

o(Hiff), respectively [?].
All Higgs branching ratios can be obtained from C2HDM HDECAY [?]1 which implements the

C2HDM in HDECAY [?, ?]. These include state-of-the art higher order QCD corrections and
possible o↵-shell decays. The complete set of Feynman rules for the C2HDM is available at:

http://porthos.tecnico.ulisboa.pt/arXiv/C2HDM/

where for the SM subset the notation for the covariant derivatives is the one in [?] with all ⌘’s
positive, where the ⌘’s define the sign of the covariant derivative (see [?]). Note that the 2HDM
branching ratios are part of the HDECAY release (see [?,?,?] for details).

2.2 The N2HDM

The version of the N2HDM used in this work was discussed in great detail in [?]. This extension
consists of the addition of an extra doublet and an extra real singlet to the SM field content.

1
The program C2HDM HDECAY can be downloaded from the url: https://www.itp.kit.edu/~maggie/C2HDM.

2

There is a 125 GeV Higgs (other scalars can be lighter and/or heavier). 
From the 2HDM on, tan β=v2/v1. Also charged Higgs are present. 
Models (except singlet extensions) can be CP-violating. 
They all have ρ=1 at tree-level. 
You get a few more scalars (CP-odd or CP-even or with no definite CP) 
In case all neutral scalars mix there will be three mixing angles  
They can have dark matter candidates (or not)

Many simple models with new physics

Similar neutral Higgs sector but different underlying symmetries

All the points presented respect: tree-level unitarity,  
potential is bounded from below, absolute minimum… 

and “most relevant” experimental constraints.

Automatic in the 2HDM 
but not in  

all other models.



The potential(s)

Potential

Φ1 =
ϕ+

1
1

2
(v1 + ρ1 + iη1) Φ2 =

ϕ+
2

1

2
(v2+ρ2 + iη2) ΦS = vS+ρS

magenta + blue ⟹ RxSM (also CxSM)

with fields

V = m2
11 |Φ1 |2 +m 2

22 |Φ2 |2 − m2
12 (Φ†

1Φ2 + h . c.)+
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2
(Φ†

2Φ2)Φ2
S

magenta + black ⟹ 2HDM (also C2HDM)

magenta + black + blue + red ⟹ N2HDM

magenta ⟹ SM
Particle (type) spectrum 

depends on the symmetries imposed 
on the model, and whether they are  

spontaneously broken or not.

softly broken Z2 : Φ1 → Φ1; Φ2 → − Φ2

softly broken Z2 : Φ1 → Φ1; Φ2 → − Φ2; ΦS → ΦS

exact Z′�2 : Φ1 → Φ1; Φ2 → Φ2; ΦS → − ΦS• m2
12 and λ5 real 2HDM

• m2
12 and λ5 complex C2HDM
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singlet component
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SM + Complex singlet

ghVV
2HDM = sin(β − α)ghVV

SM

ghVV
C2HDM = cos α2 ghVV

2HDM

ghVV
N2HDM = cos α2 ghVV

2HDM

ghVV
RxSM = cos α1 ghVV

SM
ghVV

CxSM = cos α1 cos α2 ghVV
SM

h125 couplings (gauge)



IV = II’ = X = Lepton Specific= 3…III = I’ = Y = Flipped = 4… 

h125 couplings (Yukawa)

€ 

κU
I =κD

I =κL
I =
cosα
sinβType I

Type II

€ 

κU
II =

cosα
sinβ

€ 

κD
II =κL

I I = −
sinα
cosβ

Type F(Y)

Type LS(X)
€ 

κU
F =κL

F =
cosα
sinβ

€ 

κU
LS =κD

LS =
cosα
sinβ

€ 

κL
LS = −

sinα
cosβ€ 

κD
F = −

sinα
cosβ

YC2HDM = cos α2Y2HDM ± iγ5 sin α2 tan β(1/tan β )

YN2HDM = cos α2Y2HDM



2HDM	(CP-conserving	and	no	tree-level	FCNC)

Assumptions:	alignment,	lightest	Higgs	125	GeV,	mH+	=	mA,	U(1)	symmetry	(fixes	m12
2).

Upper	bounds	at	95%	CL	on	the	production	cross-section	times	the	branching	
ratio	Br(A	→	ZH)×Br(H	→	bb)	in	pb	for	gluon–gluon	fusion.	Left:	expected;	

right:	observed.

Observed	and	expected	95%	CL	
exclusion	regions	in	the	(mA,mH	
)	plane	for	various	tan	β	values	
for		Type	I	(left),	and	Type	II	

(right).

ATLAS 1804.01126v1

Searches - the results can easily be used for most models



N2HDM	(CP-conserving)

CMS PAS HIG-17-024

Expected	and	observed	95%	CL	limits	on		
σ(h)B(h	→	aa	→	2τ2b)	in	%.	Combined	eμ,	

eτ	and	μτ	channels.	The	inner	(green)	band	and	
the	outer	(yellow)	band	indicate	the	regions	
containing	68	and	95%,	respectively,	of	the	
distribution	of	limits	expected	under	the	

background-only	hypothesis.		

ATLAS, (γγjj final state),1803.11145

BRs	for	the	4	
different	

versions	of	the	
model.

Exclusion	for	the	different	versions	for	2	
values	of	tanβ.

Searches - the results can easily be used for all the models



The 2HDM (CP-conserving and no tree-level FCNC)

ATLAS 1509.00672

CMS-PAS-HIG-16-007

ATLAS and CMS allowed regions in type I and type 
II for the CP-conserving 2HDM. The central 

region is the SM-like limit (or alignment) where 
the Higgs couplings to the 

other SM particles are just the SM ones. 
The extra leg on the right has the wrong sign in 

the b/tau couplings relative to SM ones.

Models need couplings modifiers - simple in many extensions of the scalar sector

h125 couplings measurements



The allowed region looks very much like 2HDM one
SM-like and wrong-sign regions in the N2HDM type II – the interesting fact 

is that in the alignment region the singlet admixture can go up to 54 %.

SM like
wrong-sign

singlet admixture of Hi (measure the singlet weight of Hi)

Mühlleitner, Sampaio, RS, Wittbrodt, JHEP 1703 (2017) 094

h125 couplings measurements



For	the	2HDM	the	results	obtained	by	ATLAS	and	CMS	can	be	understood	in	terms	of	
the	Higgs	couplings	in	the	Alignment	and	Wrong-sign	Yukawa	limits

Wrong-sign Yukawa coupling – at least one of the couplings of h 
to down-type and up-type fermion pairs is opposite in sign to the 

corresponding coupling of h to VV (in contrast with SM). 

€ 

sin(β −α) =1  ⇒    κD =1;   κU =1;   κW =1

€ 

κDκW < 0     or     κUκW < 0

The Alignment (SM-like) limit – all tree-level couplings to fermions and gauge bosons are 
the SM ones. 

The actual sign of each κi depends 
on the chosen range for the angles.

sin(β + α) = 1

sin(β - α) = 1

at tree-level

€ 

κ i =
g2HDM
gSM

Ferreira, Gunion, Haber, RS, PRD89 (2014) 11, 115003

Ferreira, Guedes, Sampaio, RS, JHEP 1412 (2014) 067



The	wrong-sign	strikes	back!

CERN-LHC Seminar  10 April 2018, A. Gilbert on behalf of the CMS Collaboration 



Because constraints force tanβ to be order 1 or larger, “there is no wrong-
sign Yukawa coupling” in Type I.

Type I

€ 

κU =κD =
cosα
sinβ

= sin(β+α) + cos(β+α)cot β

€ 

sin(β+α) =1  ⇒   κU =1    (κD =1)

€ 

sin(β −α) =
tan2 β −1
tan2 β+1

 ⇒   κV ≤ 0  if  tanβ ≤1

Constraints on   OK!tan β

Type II
κD = κL = −

sin α
cos β

= − sin(β + α) + cos(β + α) tan β

sin(β + α) = 1 ⟹ κD = κL = − 1

sin(β − α) =
tan2 β − 1
tan2 β + 1

⟹ κV ≥ 0 if tan β ≥ 1



Singlet admixture
N2HDM type II N2HDM type I 

tanβ as a function of the singlet admixture for type I N2HDM (left) and type II N2HDM (right)  – in 
grey all points with constraints; the remaining colours denote μ values measured within 5 % of the 

SM. In black all μ's. Singlet admixture slightly below 10 % almost independently of tanβ.

The plot shows how far we can go in the measurement of the singlet component of the 
Higgs.

Mühlleitner, Sampaio, RS, Wittbrodt, JHEP 1703 (2017) 094
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We can now sum the squared couplings of the Higgs (we found another one). Deviations from 
1 will mean no 2HDM or MSSM.

Π(3)
VV = 1

Π(2)
VV = 1

for the CxSM, N2HDM, NMSSM and C2HDM

for the CP-conserving 2HDM and MSSM

Besides h125 only one additional CP-
even (or, for the C2HDM, CP-mixed) 
Higgs boson has been discovered and 
we sum over two instead of three 

Higgs bosons. In the left column, we 
assume that the additionally 

discovered Higgs boson is the H↓, 
and in the right one, it is assumed to 
be the H↑. All the points respect 

main constraints. 

Π(2) cannot drop below about 0.9 in 
the CxSM. This is a consequence of 
enforcing c2(h V V ) > 0.9 or 

equivalently Π(2) > 0.9.
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Figure 12: The partial gauge boson sum ⇧(2)

V V
assuming the only additionally discovered Higgs boson is H# (left)

or H" (right) as a function of their respective mass (upper) and as a function of the mass of the non-discovered
Higgs boson, respectively, (lower), for the CxSM (yellow), the type I N2HDM (fair green) and C2DHM (fair blue),
the type II N2HDM (dark green) and C2HDM (dark blue) and the NMSSM (red).

gauge coupling sum can become as small as 0.73.

In the N2HDM type II (type I) deviations from 1 of up to 55% (25%) in c
2(h125V V ) are

possible, inducing the largest deviations of all models from ⇧V V = 1. They are also larger than
those attained by the outliers in C2HDM type II. Moreover, the few outliers in the C2HDM
that can reach a violation of 35% are likely to be probed before a coupling sum analysis can
be performed. The NMSSM, on the other hand, although featuring the largest Higgs sector, is
the most constrained of our models because of supersymmetric relations. As a consequence, the
coupling sum can deviate by at most a few percent if the second discovered Higgs boson is H#.
In case it is the heavier one, we hardly have any points that fulfil the requirement of rates above
10 fb in the Z boson final state, cf. Fig. 8. In this case, the coupling sum deviates a bit more
from 1, by up to about 5%.

In summary, the answers to our questions are, that all models feature points where the
gauge coupling sum is very close to 1 or equal to 1 making it very hard to distinguish them from
the real 2HDM or the MSSM. This is not surprising as all our models contain the alignment

34



Signal rates for the 
production of H↓ 

(upper) and H↑ (lower) 
for 13 TeV as a function 

of mH. 

h125 takes most of the 
hVV coupling. Yukawa 

couplings can be 
different and lead to 

enhancements relative to 
the SM.

Rates are larger for N2HDM and C2HDM and more in type II because the Yukawa 
couplings can vary independently.  

Mühlleitner, Sampaio, RS, Wittbrodt, JHEP 1708 (2017) 132

Dashed line is the "SM".

The decays to gauge bosons show what to expect in VBS (relative to a 
SM-like Higgs)



Non-125 to ττ
Signal rates for the 
production of H↓ 
(upper) and H↑ 

(lower) 
for 13 TeV as a 
function of mH.  

Dashed line is the 
"SM".

Region where only 
the N2hDM II 

survives.



Singlet and pseudoscalar components bounded by unitarity

ΣCxSM
i = R2

i2 + R2
i3

ΣN2HDM
i = R2

i3

ΨC2HDM
i = R2

i3

Non-doublet pieces of the SM-like Higgs. CxSM - sum of 
the real and complex component of the singlet. N2HDM - 
singlet component. C2HDM - pseudoscalar component.

Unitarity ⇒ κ2
ZZ,WW + Ψi(Σ1) ≤ 1

The deviations can be written in terms of the rotation matrix from gauge to mass eigenstates.

h1

h2

h3

= R (
ρ
η
ρS) R = [Rij] =

c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3



Predicted precision for CLIC

Parameter Relative precision [76,77]

350 GeV +1.4 TeV +3.0 TeV
500 fb�1 +1.5 ab�1 +2.0 ab�1

HZZ 0.43% 0.31% 0.23%
HWW 1.5% 0.15% 0.11%
Hbb 1.7% 0.33% 0.21%
Hcc 3.1% 1.1% 0.75%
Htt � 4.0% 4.0%
H⌧⌧ 3.4% 1.3% <1.3%
Hµµ � 14% 5.5%
Hgg 3.6% 0.76% 0.54%
H�� � 5.6% < 5.6%

Table 4: Results of the model-dependent global Higgs fit on the expected precisions of the Hii (see text). Entries
marked “�” cannot be measured with su�cient precision at the given energy. We call the first (350 GeV) scenario
Sc1, the second (1.4 TeV) Sc2 and the third (3.0 TeV) Sc3.

which at tree-level is just the ratio of the Higgs coupling in the BSM model and the corresponding
SM Higgs coupling. We have called the three benchmarks scenarios Sc1 (350 GeV), Sc2 (1.4
TeV) and Sc3 (3.0 TeV). In this table we can see the foreseen precisions that are expected to
be attained for each Hii. With these predictions we can now ask what is the e↵ect on the
parameter space of each model presented in the previous section. This in turn will tell us how
much an extra component from either a singlet (or more singlets) or a doublet contributes to the
h125 scalar boson. Clearly, if no new scalar is discovered one can only set bounds on the amount
of mixing resulting from the addition of extra fields. In the case of a CP-violating model it is
possible to set a bound on the ratio of pseudoscalar to scalar Yukawa couplings, where there is
an important interplay with the results from EDM measurements. The results presented in this
section always assume that the measured central value is the SM expectation, meaning that all
Hii in Table 4 have a central value of 1. Small deviations from the central value will not have a
significant e↵ect on our results because the errors are very small. If significant deviations from
the SM predicted values are found the data has to be reinterpreted for each model.

Starting with the simplest extension, the CxSM, there are either one or two singlet compo-
nents that mix with the real neutral part of the Higgs doublet. In the broken phase, where there
are no dark matter candidates, the admixture is given by the sum of the squared mixing matrix
elements corresponding to the real and complex singlet parts, i.e.

⌃CxSM

i = (Ri2)
2 + (Ri3)

2
, (4.43)

with the matrix R defined in Eq. (2.3). If a dark matter candidate is present one of the Rij , j =
2, 3, is zero. In any case the Higgs couplings to SM particles are all rescaled by a common factor.
Therefore, we just need to consider the most accurate Higgs coupling measurement to get the
best constraints on the Higgs admixture. The maximum allowed singlet admixture is given by
the lower bound on the global signal strength µ which at present is

⌃CxSM

max LHC ⇡ 1� µmin ⇡ 11% . (4.44)

In CLIC Sc1 the most accurate measurement is for the scaled coupling HZZ , which would give

⌃CxSM

max CLIC@350GeV
⇡ 0.85% , (4.45)

11

LHC today

Ψi(Σ1) ≤ 0.85 % from κZZ

All models become very similar and 
hard to distinguish.

Azevedo, Ferreira, Mühlleitner, RS, Wittbrodt, PRD99 (2019) no.5, 055013

Abramowicz eal, 1307.5288. 
CLICdp, Sicking, NPPP, 273-275, 801 (2016)

coupling close to one does not require the Yukawa couplings of the other Higgs bosons to be
small. The resulting tt̄H cross sections in the N2HDM and C2HDM can indeed be comparable
or even larger than the ⌫⌫̄H cross section. Therefore, tt̄H production becomes a highly relevant
search channel if no additional Higgs bosons are discovered during the 350 GeV run.

Figure 11: Total rates for e
+
e
� ! tt̄H" ! tt̄bb̄ for the type 1 N2HDM and C2HDM and CxSM. No 350 GeV

CLIC constraints (left) and with constraints (right).

6 Conclusions

We have investigated extensions of the SM scalar sector in several specific models: the CxSM,
the 2HDM, C2HDM and N2HDM in the Type I and Type II versions as well as the NMSSM. The
analysis is based on three CLIC benchmarks with centre-of-mass energies of 350 GeV, 1.4 TeV
and 3 TeV. For each benchmark run, the precision in the measurement of the Higgs couplings
was used to study possible deviations from the – CP-even and doublet-like – expected behaviour
of the discovered Higgs boson. We concluded that the constraints on the admixtures of both a
singlet and a pseudoscalar component to the 125GeV Higgs boson, improve substantially from
tens of percent to well below 1% when going from the LHC to the last stage of CLIC. In fact, as
shown in [5], after the LHC Run 1 the constraints on the admixtures were as shown in table 5,
where ⌃ stands for the singlet admixture and  is the pseudoscalar admixture. As noted in [5]
the upper bound on  for the C2HDM type II is mainly due to the EDM constraints.

Model CxSM C2HDM II C2HDM I N2HDM II N2HDM I NMSSM

(⌃ or )
allowed

11% 10% 20% 55% 25% 41%

Table 5: Allowed singlet and pseudoscalar (for the C2HDM) admixtures.

With the CLIC results the limits on the admixtures are completely dominated by the mea-
surement of HZZ for Sc1 and by HWW for Sc2 and Sc3 through the unitarity relation


2

ZZ,WW + /⌃  1 (6.49)

where the sum rule includes the factor Ri3, which is either the pseudoscalar, or the singlet
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SM

V V h =
�
g
BSM

V V h /g
SM
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, where V = W,Z. for the

2HDM and N2HDM Type I and the CxSM (left) and for the 2HDM and N2HDM Type II and the NMSSM
(right) for 1.4 TeV.

Figure 6: Same as Fig. 5, but after imposing the constraints on the Higgs couplings from CLIC@350GeV.

Finally, Fig. 6 is the same as Fig. 5 with the extra constraint of imposing the bounds coming
from the CLIC@350GeV run. The results from the 350 GeV run turn out to be so restrictive
that the allowed parameter space is heavily reduced in all models. In particular, all points of the
NMSSM are excluded, considering that the measurements have the SM central values and no
new physics was found 7. The behaviour is very similar for all models and in this case a deviation
from the SM expectation could exclude some models. However, since we are already at the %
level electroweak radiative corrections would have to be taken into account for the di↵erent
models. Note that because e

+
e
� ! t̄th (for which both Yukawa couplings and Higgs gauge

couplings contribute) is not kinematically allowed for 350 GeV, the study of the correlations
between this process and associated or W -fusion cross sections (for which only Higgs gauge
couplings contribute) can only be performed for 1.4 TeV.

7Note that the SM-like limit is only attained for vanishing singlet admixtures.
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If no new physics is discovered and the measured values 
are in agreement with the SM predictions, the singlet and 

pseudoscalar components will be below the % level.

Beware of radiative corrections.

Singlet and pseudoscalar components bounded by unitarity



Triplets and the Georgi-Machacek model

!23

Generate neutrino masses or enhance   (via the doubly charged Higgs loop).  

Interesting benchmark for BSM studies.

h → γγ

i
g2

2
v2

X 2 [T(T + 1) −
Y2

4 ]
If we add to the SM a 

multiplet X the coupling to 
gauge bosons

So to enhance the hWW coupling above the SM value we need a scalar with Isospin 1 or 
above, with a VEV, and that it mixes with the 125 GeV Higgs.

One popular option is the Georgi- Machacek (GM) model where the Higgs sector is composed 
of an isospin doublet field,  , with Y = 1/2, a complex triplet field,  , with Y = 1, and a 
real triplet field,  , with Y = 0.

Φ χ
ξ



X =
χ0 * ξ+ χ++

−χ+ * ξ0 χ+

χ++ * −ξ+ * χ0

Φ = ( ϕ0 * ϕ+

−ϕ+ * ϕ0 )

These fields can be expressed in the   covariant form as:SU(2)L × SU(2)R

The neutral components have VEVs  ,    and  .< ϕ0 > = vϕ / 2 < χ0 > = vχ < ξ0 > = vξ

When the two triplet fields develop aligned VEVs  the   symmetry 

reduces to the custodial   symmetry. In that case the W and Z mass have the same form as 
in the SM and    at tree-level.

vχ = vξ ≡ vΔ SU(2)L × SU(2)R

SU(2)V
ρ = 1

The coupling modifiers to gauge bosons and fermions are given by

κV = cHcα +
8
3

sHsα

Where    and   is the mixing angle between the two neutral states.sH = sin θH = 2 2
vΔ

v
α

κV =
cα

cH
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  and CP-violationpp → ZZ

Gaemers, Gounaris, ZPC1 (1979) 259 
Hagiwara, Peccei, Zeppenfeld, Hikasa, NPB282 (1987) 253  
Grzadkowski, Ogreid, Osland, JHEP 05 (2016) 025

Bélusca-Maïto, Falkowski, Fontes, Romão, Silva, JHEP 04 (2018) 002 

Azevedo, Ferreira, Muehlleitner, Patel, RS, Wittbrodt, JHEP 1811 (2018) 091
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Two doublets + one singlet and one exact Z2 symmetry

with the most general renormalisable potential 

V = m2
11 |Φ1 |2 + m 2

22 |Φ2 |2 +(AΦ†
1Φ2ΦS + h . c.)

+
λ1

2
(Φ†

1Φ1)2 +
λ2

2
(Φ†

2Φ2)2 + λ3(Φ†
1Φ1)(Φ†

2Φ2) + λ4(Φ†
1Φ2)(Φ†

2Φ1)

+
λ5

2 [(Φ†
1Φ2) + h . c . ] +

m2
S

2
Φ2

S +
λ6

4
Φ4

S + +
λ7

2
(Φ†

1Φ1)Φ2
S +

λ8

2
(Φ†

2Φ2)Φ2
S

Φ1 =
G+

1

2
(v + h + iG0) Φ2 =

H+

1

2
(ρ + iη) ΦS = ρS

and the vacuum preserves the symmetry 

The potential is invariant under the CP-symmetry

Φ1 → Φ1, Φ2 → − Φ2, ΦS → − ΦS

ΦCP
1 (t, ⃗r ) = Φ*1 (t, − ⃗r ), ΦCP

2 (t, ⃗r ) = Φ*2 (t, − ⃗r ), ΦCP
S (t, ⃗r ) = ΦS(t, − ⃗r )

except for the term (AΦ†
1Φ2ΦS + h . c.)

Azevedo, Ferreira, Mühlleitner Patel, RS, Wittbrodt, JHEP 1811 (2018) 091

Dark CP-violating sector
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Dark CP-violating sector

The Z2 symmetry is exact - all particles are dark except the SM-like Higgs. The couplings 
of the SM-like Higgs to all fermions and massive gauge bosons are exactly the SM ones.  

The model is Type I - only the first doublet couples to all fermions  

The neutral mass eigenstates are 

h1

h2

h3

= R (
ρ
η
ρS)

h1, h2, h3

R =
c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

But now how do we see signs of CP-violation? 

Missing energy signals are similar to some extent for all dark matter models. They need 
to be combined with a clear sign of CP-violation.

qq̄(e+e−) → Z* → h1h2 → h1h1Z

qq̄(e+e−) → Z* → h1h2 → h1h1h125

Mono-Z and mono-Higgs events.
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Z1

Z2

Z3

hi

hj

hk

ei

ej

ek

mi

mj
mk

p1, µ

p2,↵

p3,�

FIG. 3: Feynman diagram contributing to the CP violating form factor fZ
4 .

regardless of the CP-nature of the particles involved. Therefore, these are not good processes to probe CP-violation
in the dark sector.

However, though CPV occurs in the dark sector of the theory, it can have an observable impact on the phenomenol-
ogy of the SM particles. A sign of CPV in the model – possibly the only type of signs of CPV which might be
observable – can be gleaned from the interesting work of Ref. [34] (see also Ref. [35]), wherein 2HDM contributions to
the triple gauge boson vertices ZZZ and ZW

+
W

� were considered. A Lorentz structure analysis of the ZZZ vertex,
for instance [55–58], reveals that there are 14 distinct structures, which can be reduced to just two form factors on
the assumption of two on-shell Z bosons and massless fermions, the o↵-shell Z being produced by e

+
e
� collisions.

Under these simplifying assumptions, the ZZZ vertex function becomes (e being the unit electric charge)

e�↵�µ

ZZZ
= i e

p
2
1 �m

2
Z

m
2
Z

h
f
Z

4

⇣
p
↵

1 g
µ� + p

�

1g
µ↵

⌘
+ f

Z

5 ✏
µ↵�⇢ (p2 � p3)⇢

i
, (16)

where p1 is the 4-momentum of the o↵-shell Z boson, p2 and p3 those of the remaining (on-shell) Z bosons. The
dimensionless fZ

4 form factor is CP violating, but the fZ

5 coe�cient preserves CP. In our model there is only one-loop
diagram contributing to this form factor, shown in Fig. 3. As can be inferred from the diagram there are three
di↵erent neutral scalars circulating in the loop – in fact, the authors of Ref. [34] showed that in the 2HDM with
explicit CPV (the C2HDM) the existence of at least three neutral scalars with di↵erent CP quantum numbers that
mix among themselves is a necessary condition for non-zero values for fZ

4 . Notice that in the C2HDM there are three
diagrams contributing to f

Z

4 – other than the diagram shown in Fig. 3, the C2HDM calculation involves an additional
diagram with an internal Z boson line in the loop, and another, with a neutral Goldstone boson G

0 line in the loop.
In our model, however, the discrete Z2 symmetry we imposed forbids the vertices ZZhj and ZG

0
hi (these vertices do

occur in the C2HDM, being allowed by that model’s symmetries), and therefore those two additional diagrams are
identically zero. In [34] an expression for f

Z

4 in the C2HDM was found, which can easily be adapted to our model,
by only keeping the contributions corresponding to the diagram of Fig. 3. This results in

f
Z

4 (p21) = � 2↵

⇡s
3
2✓W

m
2
Z

p
2
1 �m

2
Z

f123

X

i,j,k

✏ijk C001(p
2
1,m

2
Z
,m

2
Z
,m

2
i
,m

2
j
,m

2
k
) , (17)

where ↵ is the electromagnetic coupling constant and the LoopTools [59] function C001 is used. The f123 factor
denotes the product of the couplings from three di↵erent vertices, given in Ref. [34] by

f123 =
e1e2e3

v3
, (18)

where the ei,j,k (i, j, k = 1, 2, 3) factors, shown in Fig. 3, are related to the coupling coe�cients that appear in the
vertices Zhihj (in the C2HDM they also concern the ZG

0
hi and ZZhi vertices, cf. [35]). With the conventions of the

current paper, we can extract these couplings from Eq. (15) and it is easy to show that

f123 = (R12R21 �R11R22) (R13R31 �R11R33) (R23R32 �R22R33)

= R13R23R33 , (19)

where the simplification that led to the last line originates from the orthogonality of the R matrix. We observe that
the maximum value that f123 can assume is (1/

p
3)3, corresponding to the maximum mixing of the three neutral

components, ⇢, ⌘ and �S ⌘ s. This is quite di↵erent from what one expects to happen in the C2HDM, for instance –
there one of the mixed neutral states is the observed 125 GeV scalar, and its properties are necessarily very SM-like,

iΓμαβ = − e
p2

1 − m2
Z

m2
Z

fZ
4 (gμα p2,β + gμβ p3,α) + . . .

With one Z off-shell the most general ZZZ vertex has a CP-odd term of the form

that comes from an effective operator (dim-6)

k̃ZZ

m2
Z

∂μZν∂μZρ∂ρZν

in our model it has the simple expression

f123 = R13R23R33

Combining h1h2Z; h1h3Z and h2h3Z

Gaemers, Gounaris, ZPC1 (1979) 259 

Hagiwara, Peccei, Zeppenfeld, Hikasa, NPB282 (1987) 253  

Grzadkowski, Ogreid, Osland, JHEP 05 (2016) 025

Not affected by EDMs

!31
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FIG. 4: The CP-violating fZ
4 (p21) form factor, normalized to f123, for mh1 = 80.5 GeV, mh2 = 162.9 GeV and mh3 = 256.9

GeV, as a function of the squared o↵-shell Z boson 4-momentum p21, normalized to m2
Z .

which implies that the 3⇥ 3 matrix R should approximately have the form of one diagonal element with value close
to 1, the corresponding row and column with elements very small and a 2⇥ 2 matrix mixing the other eigenstates4.
Within our model, however, the three neutral dark fields can mix as much or as little as possible.

In Fig. 4 we show, for a random combination of dark scalar masses (mh1 ' 80.5 GeV, mh2 ' 162.9 GeV and
mh3 ' 256.9 GeV) the evolution of fZ

4 normalized to f123
5 with p

2
1, the 4-momentum of the o↵-shell Z boson. This

can be compared with Fig. 2 of Ref. [34], where we see similar (if a bit larger) magnitudes for the real and imaginary
parts of f

Z

4 , despite the di↵erences in masses for the three neutral scalars in both situations (in that figure, the
masses taken for h1 and h3 were, respectively, 125 and 400 GeV, and several values for the h2 mass were considered).
As can be inferred from Fig. 4, f

Z

4 is at most of the order of ⇠ 10�5. For the parameter scan described in the
previous section, we obtain, for the imaginary part of fZ

4 , the values shown in Fig. 5. We considered two values of
p
2
1 (corresponding to two possible collision energies for a future linear collider). The imaginary part of fZ

4 (which,
as we will see, contributes directly to CP-violating observables such as asymmetries) is presented as a function of
the overall coupling f123 defined in Eq. (19). We in fact present results as a function of f123/(1/

p
3)3, to illustrate

that indeed the model perfectly allows maximum mixing between the neutral, dark scalars. Fig. 5 shows that the
maximum values for |Im(fZ

4 )| are reached for the maximum mixing scenarios. We also highlight in red the points
for which the dark neutral scalars hi have masses smaller than 200 GeV. The loop functions in the definition of fZ

4 ,
Eq. (17), have a complicated dependence on masses (and external momentum p1) so that an analytical demonstration
is not possible, but the plots of Fig. 5 strongly imply that choosing all dark scalar masses small yields smaller values
for |Im(fZ

4 )|. Larger masses, and larger mass splittings, seem to be required for larger |Im(fZ

4 )|. A reduction on the
maximum values of |Im(fZ

4 )| (and |Re(fZ

4 )|) with increasing external momentum is observed (though that variation is
not linear, as can be appreciated from Fig. 4). A reduction of the maximum values of |Im(fZ

4 )| (and |Re(fZ

4 )|) when
the external momentum tends to infinity is also observed.

The smaller values for |Im(fZ

4 )| for the red points can be understood in analogy with the 2HDM. The authors of
Ref. [34] argue that the occurrence of CPV in the model implies a non-zero value for the basis-invariant quantities
introduced in Refs. [60, 61], in particular for the imaginary part of the J2 quantity introduced therein. Since Im(J2)
is proportional to the product of the di↵erences in mass squared of all neutral scalars, having all those scalars with
lower masses and lower mass splittings reduces Im(J2) and therefore the amount of CPV in the model. Now, in our
model the CPV basis invariants will certainly be di↵erent from those of the 2HDM, but we can adapt the argument to

4
Meaning, a neutral scalar mixing very similar to the CP-conserving 2HDM, where h and H mix via a 2⇥ 2 matrix but A does not mix

with the CP-even states.
5
For this specific parameter space point, we have f123 ' �0.1835.

The form factor f4 normalised to f123 for m1=80.5 GeV,  
m2=162.9 GeV and m3=256.9 GeV as a function of the 
squared off-shell Z-boson 4-momentum, normalised to mZ2.
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Motivation, C2HDM Calculation setup Comparison with ZZZ in SM-EFT Summary

hi, hj, G0 loop

The Goldstone can be on each of the internal lines.
All combinations of hi, hj with i 6= j appear.
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Motivation, C2HDM Calculation setup Comparison with ZZZ in SM-EFT Summary

hi, hj, Z loop

The Z can be on each of the internal lines.
All combinations of hi, hj with i 6= j appear.
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In the C2HDM there are two more types of diagrams

Grządkowski, Ogreid, Osland, JHEP 05 (2016) 025.  
Bélusca-Maïto, Falkowski, Fontes, Romão, Silva, JHEP 04 (2018) 002 
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Figure 6. Scatter plots showing the absolute value of the CP violating form factor fZ

4 (q2) for two
values of

p
q2 for points in the parameter space of the type-1 C2HDM satisfying theoretical (unitar-

ity, bounded from below) and experimental (LHC Higgs, electric dipole moments, and electroweak
precision measurements) constraints.

mitigated in the C2HDM because of a combination of two facts. First, we know from the

h125 ! ZZ measurements that the corresponding coupling in the C2HDM lies very close to

the SM value (the so-called alignment limit). Second, the sum rule in eq. (3.24) guarantees

that any heavier scalar will have a very small coupling to ZZ. Nevertheless, once statistics

improve at LHC, a precise constraint on fZ

4
can best be achieved by a detailed simulation

of the C2HDM within the experimental analysis of the collaborations, which is beyond the

scope of this work. Our results for the maximum of |fZ

4
| are slightly below those reported in

Ref. [26]. This is mainly due to the e↵ect of including in our scan the bound on the electron

EDM [52]. The sign di↵erence that we have found does not a↵ect much the absolute value,

because the diagram where it occurs is typically the dominant one (in the gauge ⇠ = 1) [26].

For future reference, we also give the final form of the Z3 vertex before evaluating the

– 12 –

The typical maximal value for f4 seems to be below 10-4.

PLOT from JHEP 04 (2018) 002 

h2 → h1Z CP(h2) = − CP(h1)

h1 → Z Z CP(h1) = 1
h2 → Z Z CP(h2) = 1

−1.2 × 10−3 < fZ
4 < 1.0 × 10−3

−1.5 × 10−3 < fZ
4 < 1.5 × 10−3

CMS collaboration, EPJC78 (2018) 165.

ATLAS collaboration, PRD97 (2018) 032005.

Bounds from present measurements by ATLAS and CMS still two orders of magnitude away.



The unrelated final slide - The strange case of CP-violation in a complex 2HDM

A Type II model where 
H2 is the SM-like Higgs.  

Find two particles of the same mass one decaying 
to tops as CP-even

and the other decaying to taus as CP-odd

Probing one Yukawa coupling is not enough!  

h2 = H; pp → Htt̄

h2 = A → τ+τ−

YC2HDM = aF + iγ5bF

bU ≈ 0; aD ≈ 0

With the new EDM result

Fontes, Mühlleitner, Romão, RS, Silva, Wittbrodt, JHEP 1802 (2018) 073.



Conclusions

If no (other) scalar is found, unitarity will 
lead to a (very) slow death of our faith in 
these extensions; 

Other interesting models with very different 
phenomenology, like the GM, will be 
constrained by other measurements as well; 

CP-violation is still a desperate issue at the 
LHC; 

Interesting scenarios with a CP-odd/CP-even 
scalars? 

So let us just keep on searching! 
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Tree-level Unitarity
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Toyama International Workshop on Higgs as a Probe of New Physics 2015, 11–15, February, 2015 2

with U being the non-linear sigma model field which includes would-be Nambu-Goldstone bosons. Here τa (a =
1, 2, 3) are the Pauli matrices. The definition of U and its covariant derivative DµU are given by Ref.[1]. The
coefficient β in Eq.(2) is related with the tree level ρ parameter, ρ0, as follows: ρ0 = (1− 2β)−1.
The neutral Higgs bosons (φ0

n, n = 1, · · ·N0) are introduced as “matter” particles in the chiral Lagrangian.
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of the neutral Higgs bosons.
We are now ready to investigate perturbative unitarity in the present framework. Evaluating the high energy

scattering amplitudes of the longitudinally polarized weak gauge bosons and the neutral Higgs bosons, we can
obtain a set of conditions among the Higgs coupling strengths which are needed to cancel the unitarity violating
high energy scattering amplitudes. The unitarity sum rules at tree level are given by
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Notice that if we combine Eq.(4), Eq.(5), and Eq.(6), we obtain a condition on ρ0,

1

ρ0
(ρ0 − 1) = 0. (9)

Thus the unitarity sum rules require ρ0 to be unity or infinity in any electroweak symmetry breaking model if
it only possesses neutral Higgs bosons.
Thanks to the gauge invariance of the non-linear sigma model Lagrangian we use, we can also study radiative

corrections in the present framework. Let us focus on electroweak oblique corrections, which can be expressed
by S, T and U parameters for the model satisfying ρ0 = 1[4]. Since the non-linear sigma model Lagrangian
is not renormalizable, non-renormalizable UV divergences appear in the electroweak oblique corrections. We
can therefore investigate what conditions are required to cancel these non-renormalizable UV divergences. At
one-loop level, the finiteness of the S, T and U parameters requires the following conditions among the Higgs

In the SM the Higgs unitarises WW scattering if the Higgs mass is below 700 GeV. In extensions of the 
scalar sector with   neutral scalar fields   with VEVs  , the same unitarity condition leads to a sum 
rule. 

The “unitarity sum rules” are required for the cancelation of the perturbatively unitary violating high 
energy scattering amplitudes of weak gauge bosons and the neutral Higgs bosons at tree level.
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We are now ready to investigate perturbative unitarity in the present framework. Evaluating the high energy

scattering amplitudes of the longitudinally polarized weak gauge bosons and the neutral Higgs bosons, we can
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Notice that if we combine Eq.(4), Eq.(5), and Eq.(6), we obtain a condition on ρ0,
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(ρ0 − 1) = 0. (9)

Thus the unitarity sum rules require ρ0 to be unity or infinity in any electroweak symmetry breaking model if
it only possesses neutral Higgs bosons.
Thanks to the gauge invariance of the non-linear sigma model Lagrangian we use, we can also study radiative

corrections in the present framework. Let us focus on electroweak oblique corrections, which can be expressed
by S, T and U parameters for the model satisfying ρ0 = 1[4]. Since the non-linear sigma model Lagrangian
is not renormalizable, non-renormalizable UV divergences appear in the electroweak oblique corrections. We
can therefore investigate what conditions are required to cancel these non-renormalizable UV divergences. At
one-loop level, the finiteness of the S, T and U parameters requires the following conditions among the Higgs
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Notice that if we combine Eq.(4), Eq.(5), and Eq.(6), we obtain a condition on ρ0,
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Thus the unitarity sum rules require ρ0 to be unity or infinity in any electroweak symmetry breaking model if
it only possesses neutral Higgs bosons.
Thanks to the gauge invariance of the non-linear sigma model Lagrangian we use, we can also study radiative

corrections in the present framework. Let us focus on electroweak oblique corrections, which can be expressed
by S, T and U parameters for the model satisfying ρ0 = 1[4]. Since the non-linear sigma model Lagrangian
is not renormalizable, non-renormalizable UV divergences appear in the electroweak oblique corrections. We
can therefore investigate what conditions are required to cancel these non-renormalizable UV divergences. At
one-loop level, the finiteness of the S, T and U parameters requires the following conditions among the Higgs

Meaning that enforcing unitarity 
leads to  .ρ0 = 1
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