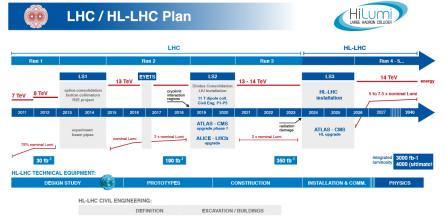
Constraints From Global Fits

A. Onofre

University of Minho, School of Sciences, Portugal

BSM Models in Vector Boson Scattering Processes

Lisbon, 2019, Dec 4th-5th


The Outline

- Constraints from Global Fits of Data
 Improvements from Machine/Experiments
 Improvements from Theory
- Global Fits @ the HL-LHC
 - fitting several observables @ high lumi
- Conclusions

御 と く ヨ と く ヨ と …

Constraints from Global Fits

IN The High Luminosity Phase of the LHC (HL-LHC Schedule)

- pp collisions @ 14 TeV, L=5-7.5×10³⁴cm⁻²s⁻¹
- integrated luminosity: 3000 to 4000 fb⁻¹
- pile-up: 140 \rightarrow 200 / bunch crossing

▶ < Ξ >

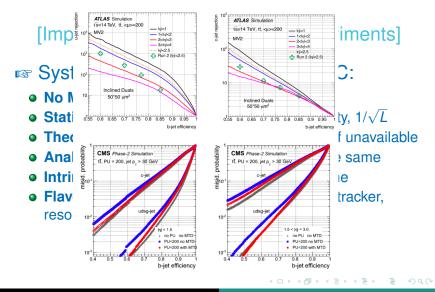
크

[Improvements from Machine/Experiments]

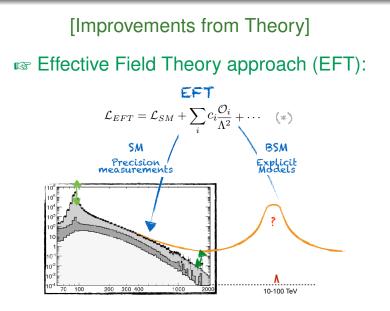
- Projections @ HL-LHC based on:
 - Full simulation of reconstructed objects
 - Extrapolations of existing results (scale factors applied)
 - **Parametrizations** of detector sresponses (particle-leve objects reconstruction i.e., resolution effects, fake rates, etc.)

白 と く ヨ と く ヨ と …

3


[Improvements from Machine/Experiments]

- Systematic Uncertainties @ HL-LHC:
 - No MC simulation uncertainty, in general
 - Statistical uncertainties, scale with luminosity, $1/\sqrt{L}$
 - Theoretical uncertainties \rightarrow reduce by $\times 2$, if unavailable
 - \bullet Analysis methods uncertainties \rightarrow keep the same
 - $\bullet~$ Intrinsic detector response \rightarrow keep the same
 - **Flavour-tag** \rightarrow reduce by 2 (due to improved tracker, resolution and coverage)


回 と く ヨ と く ヨ と

÷.

Constraints from Global Fits

Antonio Onofre

[Improvements from Theory] Effective Field Theory approach (EFT):

• Dimension 6 Operators:

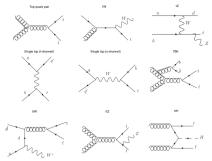
X ³			φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$			
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\overline{l}_{p}e_{r}\varphi)$		
$Q_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\tilde{\varphi})$		
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$						
$X^2 \varphi^2$			$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$			
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \vec{D}_{\mu} \varphi)(\bar{l}_{p} \gamma^{\mu} l_{r})$		
$Q_{\varphi \tilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \varphi)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$		
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{e}_{p} \gamma^{\mu} e_{\tau})$		
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{q}_{p} \gamma^{\mu} q_{r})$		
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}_{\mu}^{I} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{u}_{p} \gamma^{\mu} u_{r})$		
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \varphi)(\bar{d}_{p} \gamma^{\mu} d_{r})$		
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	Q_{qud}	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		

$(\bar{L}L)(\bar{L}L)$			$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$				
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$			
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_\tau)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$			
I		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$			
I		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$			
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
(LA	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating					
Q_{ledg}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	${}^{T}Cu_{r}^{\beta}$ [$(q_{s}^{\gamma j})^{T}Cl_{t}^{k}$]				
$Q_{qupd}^{(1)}$	$(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$					
$Q_{quqd}^{(8)}$	$(\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$					
$Q_{logu}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I \varepsilon)_{jk}(\tau^I \varepsilon)_{mn}$	$[(q_p^{\alpha j})^T C q_r^{\beta k}] [(q_s^{\gamma m})^T C l_t^n]$				
$Q_{logu}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(u_s^{\gamma})^T C e_t\right]$					

• Buchmuller, Wyler Nucl.Phys. **B268** (1986) 621-653, Grzadkowski et al arxiv:1008.4884

[Improvements from Theory]

Seffective Field Theory approach (EFT):

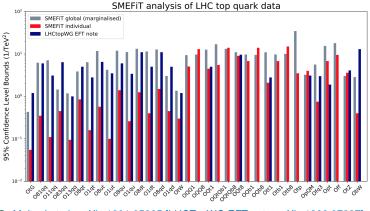

• Example of top quark operators:

$$\begin{array}{c} O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^I Q) \\ O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} = y_{tgw} (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W_{\mu\nu}^I \\ O_{tB} = y_{tgY} (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A , \\ O_{tG} = y_{tgs} (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A , \\ O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ + \text{Four-Fermion Operators} \\ + \text{ non-top operators (mixing)} \end{array}$$

Constraints from Global Fits

[Improvements from Theory]

INT Towards a Global SMEFT Fit:



- Maltoni et al., arXiv:1901.05965
- 34 d.o.f., ≥ 100 observables

Notation					$P(\Lambda^{-2})$				
	tī	single-top	tW	tZ	tīW	tīZ	tīH	tītī	tībb
OQQ1								1	1
8000								1	1
OQt1								1	1
OQt8								1	1
0Qb1									1
00268									1
Ott1								1	
Otb1									1
Otb8									1
OQtQb1									(√)
OQtQb8									(🗸)
081qq	1				1	1	1	1	1
011qq					[/]	[1]	[]	1	1
083qq	1	[/]			1	1	1	1	1
013qq		1		1	M	$[\mathbf{v}]$	[]	1	1
08qt	1				1	1	1	1	1
01qt						$[\mathbf{v}]$	[]	1	1
08ut	1					1	1	1	1
01ut						$[\mathbf{v}]$	[√]	1	1
08qu	1					1	1	1	1
01qu						[1]	[]	1	1
08dt	1					1	1	1	1
01dt	[/]					$\left[\right]$	[√]	1	1
08qd	1					1	1	1	1
01qd	[1]					[1]	[√]	1	1
OtG	1		1		1	1	1	1	1
OtW		1	1	1					
ОЪW		(√)	(√)	(√)					
OtZ				1		1			
Off		(√)	(√)	(√)					
0fq3		~	1	1					
OpqM				1		1			
Opt				1		1			
Otp							1		

[Improvements from Theory]

registration Towards a Global SMEFT Fit: Results

Maltoni et al., arXiv:1901.05965 [LHCTopWG EFT note, arXiv:1802.07237]

Antonio Onofre Constraints From Global Fits

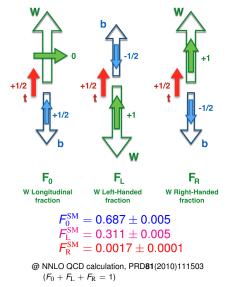
Extrapolation test, from 13 to 14 TeV:

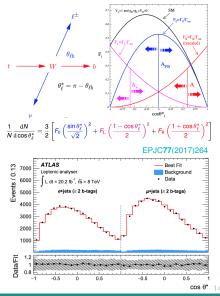
□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ • • • • • • •

The objective: extend the studies already performed at the LHC on top quark Anomalous Couplings/EFT in $t \rightarrow Wb$ decays to HL-LHC

Several processes under study to probe the *Wtb* vertex¹:

- Top quark pair production $(t\bar{t})$
 - (i) semileptonic channel
 - (ii) dileptonic decays
- single top quark physics
 - (i) *t*-channel (single lepton)
 - (ii) Wt-channel (dileptonic decay)
- EFT/anomalous couplings studied associated

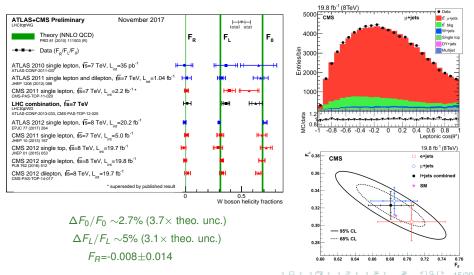

to the Wtb vertex


 $\frac{1}{2} + \frac{1}{2} + \frac{1}$

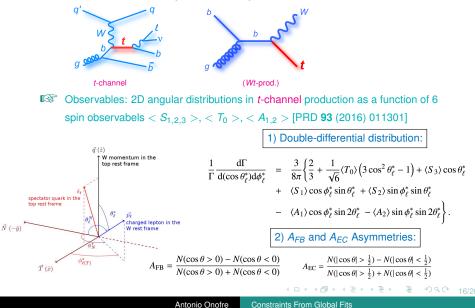
JHEP**1206**(2012)088, EPJC**77**(2017)264, JHEP**04**(2017)124, JHEP**04**(2016)023, JHEP**12**(2017)017, PLB**717**(2012)330, PRD**90**(2014)112006, PLB**716**(2012)142, PLB**756**(2016)228, EPJC**77**(2017)531, JHEP**01**(2016)064, JHEP**04**(2017)086, JHEP**01**(2018)63, EPJC**78**(2018)186

Top quark pair production $(t\bar{t})$

Solution So

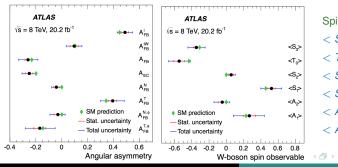


Antonio Onofre


Summary of W-boson helicity meas. @ LHC

Single top quark production

Processes currently under study:



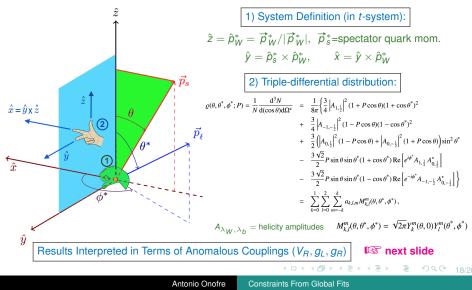
Single top quark production

• Asymmetries with associated angular distributions [JHEP04(2017)124]:

Asymmetry	Angular observable	Polarisation observable	SM prediction
$A_{\rm FB}^{\ell}$	$\cos \theta_{\ell}$	$\frac{1}{2}\alpha_{\ell}P$	0.45
$A_{\rm FB}^{tW}$	$\cos \theta_W \cos \theta_\ell^*$	$\frac{3}{8}P\left(F_{\rm R}+F_{\rm L}\right)$	0.10
$A_{\rm FB}$	$\cos heta^*_\ell$	$\frac{3}{4}\langle S_3\rangle=\frac{3}{4}\left(F_{\rm R}-F_{\rm L}\right)$	-0.23
$A_{\rm EC}$	$\cos \theta_{\ell}^*$	$\frac{3}{8}\sqrt{\frac{3}{2}}\langle T_0 \rangle = \frac{3}{16}(1-3F_0)$	-0.20
$A_{\rm FB}^T$	$\cos \theta_{\ell}^{T}$	$\frac{3}{4}\langle S_1 \rangle$	0.34
$A_{\rm FB}^N$	$\cos \theta_{\ell}^N$	$-\frac{3}{4}\langle S_2 \rangle$	0
$A_{\rm FB}^{T,\phi}$	$\cos\theta^*_\ell\cos\phi^*_T$	$-\frac{2}{\pi}\langle A_1\rangle$	-0.14
$A_{ m FB}^{N,\phi}$	$\cos\theta^*_\ell\cos\phi^*_N$	$\frac{2}{\pi}\langle A_2 \rangle$	0

$$\begin{split} A_{\rm FB}^{\ell} &= 0.49 \pm 0.03 ~({\rm stat.}) \pm 0.05 ~({\rm syst.}) = 0.49 \pm 0.06 ~, \\ A_{\rm FB}^{tW} &= 0.10 \pm 0.03 ~({\rm stat.}) \pm 0.05 ~({\rm syst.}) = 0.10 \pm 0.06 ~, \\ A_{\rm FB} &= -0.26 \pm 0.02 ~({\rm stat.}) \pm 0.07 ~({\rm syst.}) = -0.26 \pm 0.08 ~, \\ A_{\rm EC} &= -0.25 \pm 0.03 ~({\rm stat.}) \pm 0.05 ~({\rm syst.}) = -0.25 \pm 0.06 ~, \\ A_{\rm FB}^{T} &= 0.39 \pm 0.03 ~({\rm stat.}) \pm 0.09 ~({\rm syst.}) = 0.39 \pm 0.09 ~, \\ A_{\rm FB}^{N,\phi} &= -0.03 \pm 0.03 ~({\rm stat.}) \pm 0.05 ~({\rm syst.}) = -0.03 \pm 0.06 ~, \\ A_{\rm FB}^{T,\phi} &= -0.17 \pm 0.05 ~({\rm stat.})^{\pm}0.01 ~({\rm syst.}) = -0.17^{+0.12}_{-0.11} ~. \end{split}$$

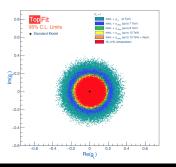
Spin Measurements:

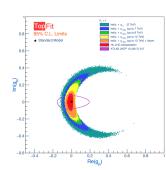

$$< S_3 >= -0.35 \pm 0.10 < T_0 >= -0.55 \pm 0.13 < S_2 >= +0.06 \pm 0.05 < S_1 >= +0.52 \pm 0.12 < A_2 >= -0.05 \pm 0.10 < A_1 >= +0.27 \stackrel{+0.17}{_{-0.19}}$$

▲ 臣 ▶ 臣 • • • • •

Antonio Onofre

Single top quark production


Triple-differential (3D) decay rates of polarised top quarks
 define specific coordinate system (in *t* centre-of-mass):



Anomalous couplings/EFT parameters in global fits

General Wtb vertexEur.Phys.J. C50 (2007) 519-533 $\mathcal{L} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_{L}P_{L} + V_{R}P_{R})t W_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}(g_{L}P_{L} + g_{R}P_{R})t W_{\mu}^{-}$ vector (V_{R}) and tensor like couplings (g_{L}, g_{R}) zero @ tree level in SMImage: EFT parameters: anomalous couplings described by effective operators $\mathcal{O}_{uW}, \mathcal{O}_{dW}^{(3)}, \mathcal{O}_{\phi q}^{(3)}$ and $\mathcal{O}_{\phi u d}$ i.e., constraints on anomalous couplings equivalent to
constraints on EFT parameters (a more integrating framework) [arXiv:1802.07237]

PRD 97 (2018) 1, 013007 (TopFit), arXiv:1811.02492

Fits Using:

σ, W_{hel}, A_{FB} @ 7,8,13 TeV

Antonio Onofre

Global SMEFT Fits to Data:

- 1) SMEFT is a consistent way to look for BSM and test the SM (a bit á la Fermi Physics)
- going global has a direct impact on the Wilson coefficients sensitivity: including more observables is mandatory
- 3) including NLO and $O(1/\Lambda^4)$ have an impact and can be different operator-by-operator
- SMEFT in the top sector, in the interface of the Higgs sector and including EW effects, important
- 5) need to go global

SMEFT Fits @ HL-LHC (the real future):

- 1) the gains from RUN 2 to the HL-LHC exist but,
- new data analysis strategies to improve sensitivity need to be considered
- 3) Gaining less than 1 order of magnitude over a period of 20 years?