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MOTIVATION FOR ML IN SEARCHES




ANALYSIS SENSITIVITY

s
® Expected discovery significance can be approximated as %

® Or, more accurately as the Approximate Median Significance

| (s +b) (b + ag) bh2 \ ags
AMS = ,[2(s+b)log ( — —log | 1+ b(b+o2) )

b’ + (s +b)o;

®  For expected signal and background yields of s and b

®  And background yield uncertainty o,

® l.e. sensitivity generally improved by defining region with higher signal to
background ratio (subject to background uncertainty)


https://www.pp.rhul.ac.uk/~cowan/stat/cowan_slac_4jun12.pdf

TRADITIONAL APPROACH

Use physics knowledge to define subset of
possible variables to check manually

Define cut(s) to optimise sensitivity

The variable(s) used are often complex
combinations of basic information

E.g. masses, specific angles in a certain
rest-frame, (s)transverse masses
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TRADITIONAL APPROACH
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TRADITIONAL APPROACH

® Ad absurdum: you can only know your analysis is as sensitive as possible if
you have tested every single possible combinations of variables

® Clearly infeasible, but what if we can get close?



FUNCTIONAL APPROXIMATION

® ldeal scenario: a single variable with perfect signal/background separation y

®  Where y = some value for signal, and a different value for background

® This variable will be a combination of other variables x using some
function f:
y = f(Z)

®  Where x is a vector of other variables such as 3-momenta, masses, and jet
multiplicity



FUNCTIONAL APPROXIMATION

If we know the analytic form for f, then great! But we’re here because we

probably don’t...

Instead we can model f with a parameterised function to get an

approximation of y:

J = fo()

®  Where 0 are the parameters of our model

This approximator is what a machine learning algorithm aims to fit



OVERVIEW OF MACHINE LEARNING




MACHINE LEARNING: TASK & DATA

Signal-background separation is a binary classification task

® Trying to determine which of two classes each event belongs to

Normally performed using supervised learning
® The model is provided with input data and the targets
® Model predictions improved via an iterative learning process

® Requires datasets with known labels, e.g. Monte Carlo simulation
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MACHINE LEARNING: MAIN STAGES

Training: model adjusts parameters 0 to solve the problem using inputs x
and targets y from training data

® Model sees both x and y and uses them to update 0

Validation: model with fixed 0 is applied to data new data to check
performance

® Model only sees x, but the score is used by user to guide training and compare

models

Application/testing: model with fixed parameters is applied to new data
for which the target may not be known

® Model only sees x, the score may be computable but is not used to improve model



DICTIONARY

Machine Learning Physics
Class / target Signal or background
Feature Variable
Ensemble Averaging predictions of many

$  models



ML ALGORITHMS: DECISION TREES

¢ Decision trees recursively split training
data by cutting on the variables in x

® End nodes of tree assigned class

probabilities based on training data
population

®  Can be further improved by ensembling
tens or hundreds of such trees:

Random Forests: learn a set of

decorrelated trees by bootstrap ¢ ¢ o
resampling data and subsampling training

features

Boosted Decision Trees: train each tree

based on the residual prediction of the §= : 3 s r :§

prior tree


https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

but act only on one each time

®  Linear response

ensembling
®  See all features simultaneously
®  Apply series of linear and nonlinear

transformations based on learned
parameters

Direct access to nonlinear responses

ML ALGORITHMS: NEURAL NETWORKS
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https://playground.tensorflow.org/

¢  Although complicated, ML
algorithms can be understood
via interpretation methods

®  Useful to verify training and
response

®  Can help identify problems in
model or data

Feature

PRI_lep_pz
PRI_lep_py
PRI_tau_px
PRI_met_sumet
PRI_tau_py
PRI_jet_leading_pz
DER_met_phi_centrality
DER_pt_tot

DER_pt_h
PRI_jet_num
PRI_met_pt
DER_deltar_tau_lep
DER_pt_ratio_lep_tau
DER_mass_MMC
PRI_jet_all_pt
DER_mass_transverse_met_lep
DER_sum_pt

DER_mass_vis
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ML ALGORITHMS

Summary:
® Decision trees cut on features

® Neural networks combine features together

These are all things which a physicist could do
® Machine learning is not doing anything strange or magical

®  Just automates the task of finding f, the function of the data which provides the
most discriminating high-level feature
®  Well modelled input = well modeled output

® Uncertainties can be propagated by evaluating on perturbed inputs
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POSSIBLE APPLICATIONS TO VBS




EXAMPLE:
SAME-SIGN WWwW

® Published in arXiv:1709.05822

® Main diagrams:

5 final-states: 2 jets, 2 leptons, and MET


https://arxiv.org/abs/1709.05822

EXAMPLE:
SAME-SIGN WWwW

® Possible input features:

4-momenta of final-states (px,p),pz,E), for leptons and jets
Total MET and transverse components

Di-lepton & di-jet invariant masses

Angles between final-states

Number of jets in event

Transverse masses

Flavours of leptons & jets

Target: Signal (EW WW) or background (WZ, non-prompt, others)
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PARAMETRISED LEARNING

Reference also considers modifications to
the quartic couplings

If these then modify the feature
distributions or relative weighting of
events the model may not work well on
data with different couplings
arXiv:1601.07913 presents method of
parametrised learning

Trains a single model on many different
datasets (e.g. different couplings)

Finds it works at least as well as many
dedicated models trained for each
coupling

21


https://arxiv.org/abs/1601.07913

EXAMPLES OF ML IN HEP SEARCHES




SEARCH: DI-HIGGS @ HL-LHC

°* CMS:
CMS-PAS-FTR-18-01
9

o CMS Phase — 2 Simulation Preliminary 30007fb~1 (14 TeV)

®  hh—bbzzr search

®  Neural network used

as event-level |
classifier ‘ it

HH - bbt
Ty Th channel

®  Able to discriminate
well against large

backgrounds
® Advanced training 0.0 0.2 0.4 o o,ed‘ . 0.8 1.0 12
ass prediction
methods further
improved NN 3

performance by 20%


https://cds.cern.ch/record/2652549
https://cds.cern.ch/record/2652549
https://colab.research.google.com/github/GilesStrong/lumin/blob/flat2matrix/examples/Binary_Classification.ipynb

OBJECT ID: JEDI-NET

Moreno et al. arXiv:1908.05318

Sophisticated interaction-based neural
network able to tag jets by flavour:

®  Light quark

¢ Gluon

®  W-boson

®  Z-boson

¢  Top quark

Beats other approaches for inputting jet
constituents (RNN, CNN, & DNN)

Similar approach later used for double-b
jets in Moreno et al. arXiv:1909:12285
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No: # of constituents

|
fo
fo
P: # of features

Ne = No(No-1): # of edges
De: size of internal representations
Do: size of post-interaction internal representation

¢c, fo, fr
expressed as
dense neural

networks
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https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://github.com/eric-moreno/IN

® NNs can be used to regress
quantities, e.g.:
® Invariant masses
®  Particle momenta
®  Energy corrections

® Can also be used in place of transfer

functions for applying the Matrix
Element Method

REGRESSION: DI-HIGGS MASS
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https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.4.0.1/examples/Single_Target_Regression.ipynb

SUMMARY




SUMMARY

ML is a powerful & practical technique to automate the search for a
specific (set of) variable(s)
® Does not do anything a physicist couldn’t do given the time and patience

® ML algorithms are not black boxes; can be interpreted

ML has many applications within HEP and is already being used to give
significant improvements

Requires some extra knowledge, but courses, software, and papers are
freely available (see next section)

27



GETTING STARTED




LIBRARIES

® Most ML development done in Python 3

®  Two main libraries: PyTorch & TensorFlow

® Both relatively low-level = need good understanding of NNs to use
directly; but wrapper libraries exist to provide high-level APIs, e.g.
® Keras - no longer developed standalone, but now included in TensorFlow 2.x

Fast.Al - PyTorch wrapper with best practices for image, text, & tabular data but
doesn’t support weighted data

LUMIN - My own library (in beta) - PyTorch wrapper with best practices for
weighted tabular data, plus utilities for HEP, statistics, and interpretation 29


https://pytorch.org/
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras
https://docs.fast.ai/index.html
https://lumin.readthedocs.io/en/stable/

THEORY & PRACTICE: COURSES

® Fast.Al - free, practical courses; videos + library; top-down experiment
first, theory later teaching style:

® Machine learning - Fundamentals for data science + Python programming

® Deep learning | - Best practices for image, text, & tabular data

® Deep learning Il - Building DNNs from scratch

® Stanford course - YouTube lecture series on theory of NNs

® Yandex MLHEP course - annual week-long intensive introduction to ML
for HEP

30


http://course18.fast.ai/ml.html
https://course.fast.ai/
https://course.fast.ai/part2
https://www.youtube.com/watch?v=i94OvYb6noo
https://github.com/yandexdataschool/mlhep2019

THEORY & PRACTICE: EXPERIENCE

® Kaggle - data science challenge platform; wide range of challenges, get to

see how others approach problems

Paper reimplementation - helps get more familiar with library, and

comfortable changing parts of it, e.g. SELU activation, categorical
embedding, learning-rate annealing, and weight averaging



http://www.kaggle.com
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1604.06737
https://arxiv.org/abs/1604.06737
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1803.05407

