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MOTIVATION FOR ML IN SEARCHES
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ANALYSIS SENSITIVITY
• Expected discovery significance can be approximated as 

• Or, more accurately as the Approximate Median Significance

• For expected signal and background yields of s and b

• And background yield uncertainty 𝜎b

• I.e. sensitivity generally improved by defining region with higher signal to 
background ratio (subject to background uncertainty) 4

https://www.pp.rhul.ac.uk/~cowan/stat/cowan_slac_4jun12.pdf


TRADITIONAL APPROACH

• Use physics knowledge to define subset of 
possible variables to check manually

• Define cut(s) to optimise sensitivity 

• The variable(s) used are often complex 
combinations of basic information

• E.g. masses, specific angles in a certain 
rest-frame, (s)transverse masses
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TRADITIONAL APPROACH

• These high-level variables are inspired by 
theory or experience

• Limits the number of variables to check

• But, limits the performance of the analysis 
if a better feature exists but is not 
considered

• E.g. the natural log of the transverse 
momentum of all jets raised to the power 
of the missing transverse energy can be 
computed, but who would?
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TRADITIONAL APPROACH

• Ad absurdum: you can only know your analysis is as sensitive as possible if 
you have tested every single possible combinations of variables

• Clearly infeasible, but what if we can get close?
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FUNCTIONAL APPROXIMATION

• Ideal scenario: a single variable with perfect signal/background separation y
• Where y = some value for signal, and a different value for background

• This variable will be a combination of other variables x using some 
function f :

• Where x is a vector of other variables such as 3-momenta, masses, and jet 
multiplicity
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FUNCTIONAL APPROXIMATION

• If we know the analytic form for f, then great! But we’re here because we 
probably don’t…

• Instead we can model f with a parameterised function to get an 
approximation of y :

• Where 𝜃 are the parameters of our model

• This approximator is what a machine learning algorithm aims to fit
9



OVERVIEW OF MACHINE LEARNING
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MACHINE LEARNING: TASK & DATA

• Signal-background separation is a binary classification task
• Trying to determine which of two classes each event belongs to

• Normally performed using supervised learning
• The model is provided with input data and the targets

• Model predictions improved via an iterative learning process

• Requires datasets with known labels, e.g. Monte Carlo simulation
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MACHINE LEARNING: MAIN STAGES
• Training: model adjusts parameters 𝜃 to solve the problem using inputs x 

and targets y from training data
• Model sees both x and y and uses them to update 𝜃

• Validation: model with fixed 𝜃 is applied to data new data to check 
performance
• Model only sees x, but the score is used by user to guide training and compare 

models

• Application/testing: model with fixed parameters is applied to new data 
for which the target may not be known
• Model only sees x, the score may be computable but is not used to improve model
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DICTIONARY
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ML ALGORITHMS: DECISION TREES
• Decision trees recursively split training 

data by cutting on the variables in x
• End nodes of tree assigned class 

probabilities based on training data 
population

• Can be further improved by ensembling 
tens or hundreds of such trees:

• Random Forests: learn a set of 
decorrelated trees by bootstrap 
resampling data and subsampling training 
features

• Boosted Decision Trees: train each tree 
based on the residual prediction of the 
prior tree

14

MET 
> 50

Lepton pt > 
75 # jet <= 3

YN

. . . 

Signal Bkg. Bkg.

. . . 
Signal

Interactive Demo

https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html


ML ALGORITHMS: NEURAL NETWORKS

• DTs consider many features at each split, 
but act only on one each time

• Linear response
• Can approximate nonlinear responses via 

ensembling 

• See all features simultaneously

• Apply series of linear and nonlinear 
transformations based on learned 
parameters

• Direct access to nonlinear responses
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Interactive Demo

https://playground.tensorflow.org/


INTERPRETATION

• Although complicated, ML 
algorithms can be understood 
via interpretation methods

• Useful to verify training and 
response

• Can help identify problems in 
model or data
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ML ALGORITHMS

• Summary:
• Decision trees cut on features

• Neural networks combine features together

• These are all things which a physicist could do
• Machine learning is not doing anything strange or magical

• Just automates the task of finding f, the function of the data which provides the 
most discriminating high-level feature

• Well modelled input = well modeled output

• Uncertainties can be propagated by evaluating on perturbed inputs 17



POSSIBLE APPLICATIONS TO VBS
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EXAMPLE:
SAME-SIGN WW

• Published in arXiv:1709.05822

• Main diagrams:

• 5 final-states: 2 jets, 2 leptons, and MET
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https://arxiv.org/abs/1709.05822


EXAMPLE:
SAME-SIGN WW

• Possible input features:
• 4-momenta of final-states (px,py,pz,E), for leptons and jets

• Total MET and transverse components

• Di-lepton & di-jet invariant masses

• Angles between final-states

• Number of jets in event

• Transverse masses

• Flavours of leptons & jets

• Target: Signal (EW WW) or background (WZ, non-prompt, others) 20



PARAMETRISED LEARNING
• Reference also considers modifications to 

the quartic couplings
• If these then modify the feature 

distributions or relative weighting of 
events the model may not work well on 
data with different couplings

• arXiv:1601.07913 presents method of 
parametrised learning

• Trains a single model on many different 
datasets (e.g. different couplings)

• Finds it works at least as well as many 
dedicated models trained for each 
coupling
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https://arxiv.org/abs/1601.07913


EXAMPLES OF ML IN HEP SEARCHES
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SEARCH: DI-HIGGS @ HL-LHC
• CMS: 

CMS-PAS-FTR-18-01
9

• hh→bb𝜏𝜏 search

• Neural network used 
as event-level 
classifier

• Able to discriminate 
well against large 
backgrounds

• Advanced training 
methods further 
improved NN 
performance by 20%
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Try it yourself

https://cds.cern.ch/record/2652549
https://cds.cern.ch/record/2652549
https://colab.research.google.com/github/GilesStrong/lumin/blob/flat2matrix/examples/Binary_Classification.ipynb


OBJECT ID: JEDI-NET
• Moreno et al. arXiv:1908.05318

• Sophisticated interaction-based neural 
network able to tag jets by flavour:

• Light quark
• Gluon
• W-boson
• Z-boson
• Top quark

• Beats other approaches for inputting jet 
constituents (RNN, CNN, & DNN)

• Similar approach later used for double-b 
jets in Moreno et al. arXiv:1909:12285 24

Github

https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://github.com/eric-moreno/IN


REGRESSION: DI-HIGGS MASS

• NNs can be used to regress 
quantities, e.g.:

• Invariant masses
• Particle momenta
• Energy corrections

• Can also be used in place of transfer 
functions for applying the Matrix 
Element Method
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Try it yourself

https://colab.research.google.com/github/GilesStrong/lumin/blob/v0.4.0.1/examples/Single_Target_Regression.ipynb


SUMMARY
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SUMMARY

• ML is a powerful & practical technique to automate the search for a 
specific (set of) variable(s)
• Does not do anything a physicist couldn’t do given the time and patience

• ML algorithms are not black boxes; can be interpreted

• ML has many applications within HEP and is already being used to give 
significant improvements

• Requires some extra knowledge, but courses, software, and papers are 
freely available (see next section)
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GETTING STARTED
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LIBRARIES

• Most ML development done in Python 3

• Two main libraries: PyTorch & TensorFlow

• Both relatively low-level = need good understanding of NNs to use 
directly; but wrapper libraries exist to provide high-level APIs, e.g.
• Keras - no longer developed standalone, but now included in TensorFlow 2.x

• Fast.AI - PyTorch wrapper with best practices for image, text, & tabular data but 
doesn’t support weighted data

• LUMIN - My own library (in beta) - PyTorch wrapper with best practices for 
weighted tabular data, plus utilities for HEP, statistics, and interpretation 29

https://pytorch.org/
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras
https://docs.fast.ai/index.html
https://lumin.readthedocs.io/en/stable/


THEORY & PRACTICE: COURSES

• Fast.AI - free, practical courses; videos + library; top-down experiment 
first, theory later teaching style:
• Machine learning - Fundamentals for data science + Python programming

• Deep learning 1 - Best practices for image, text, & tabular data

• Deep learning II - Building DNNs from scratch

• Stanford course - YouTube lecture series on theory of NNs

• Yandex MLHEP course - annual week-long intensive introduction to ML 
for HEP 
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http://course18.fast.ai/ml.html
https://course.fast.ai/
https://course.fast.ai/part2
https://www.youtube.com/watch?v=i94OvYb6noo
https://github.com/yandexdataschool/mlhep2019


THEORY & PRACTICE: EXPERIENCE

• Kaggle - data science challenge platform; wide range of challenges, get to 
see how others approach problems

• Paper reimplementation - helps get more familiar with library, and 
comfortable changing parts of it, e.g. SELU activation, categorical 
embedding, learning-rate annealing, and weight averaging
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http://www.kaggle.com
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1604.06737
https://arxiv.org/abs/1604.06737
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1803.05407

