Acceleration in plasma wakefield driven by lasers

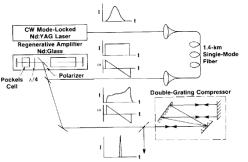
Brigitte CROS

Laboratoire de Physique des Gaz et des Plasmas, UMR 8578

CNRS- Université Paris Sud - Orsay

Université Paris Saclay

LWFA associates new concepts to innovative technology



Tajima et Dawson, Phys. Rev. Lett. 1979

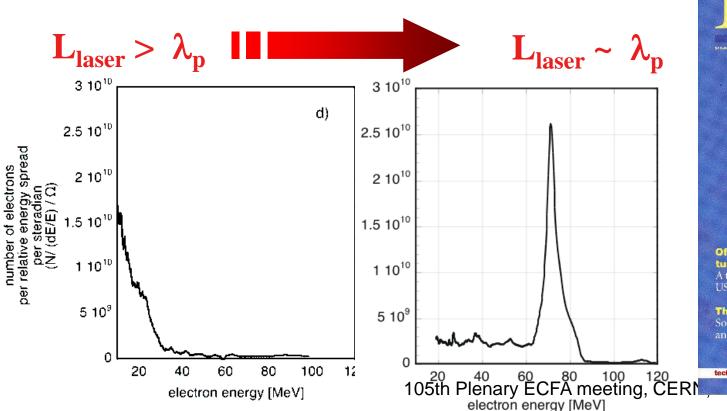
- A plasma wave can be associated to very high accelerating gradients
- Concept of laser wakefield to excite a relativistic plasma wave

Strickland et Mourou, Opt. Comm. 1985

- Concept of laser system using laser chirped pulse amplification (CPA)
- Short and intense laser pulse facilities became available at the beginning of the 1990s

The field of LWFA is young and its progress is linked to the progress of lasers

First resonant demonstration of LWF electron acceleration in 2004 when intense short-enough laser pulses became available



Breakthrough in 2004: from Maxwellian to peaked e- spectra

Obtained by 3 groups

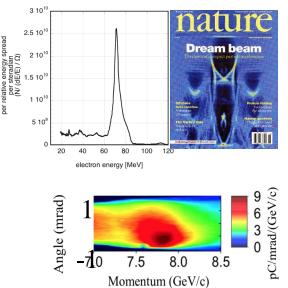
- RAL/IC/UK: Mangles et al.
- LOA/France: Faure et al.
- LBNL/USA: C.G.R. Geddes et al.

Today PW class lasers drive multi-GeV electron beams in plasma channels Laser-plasma accelerated electron beam to 8 GeV in 20 cm at LBNL **BELLA driver laser** Laser driver: 60 um spot 35-fs 31 J Capillary discharge waveguide Guiding of PW laser in laser-heated, Off-axis paraboloid discharge capillary $\sim 15 Z_{P}$ spot size 60 micron Vacuum Laser heater: Telescope ~few ns ~0.5 J Heater laser

 Laser heater (inverse Bremsstrahlung heating) implemented on BELLA laser system: improves guiding at low density; yields 8 GeV generated at plasma density of 2.7x10¹⁷ cm⁻³

exit of cap (20 cm) with

plasma channel

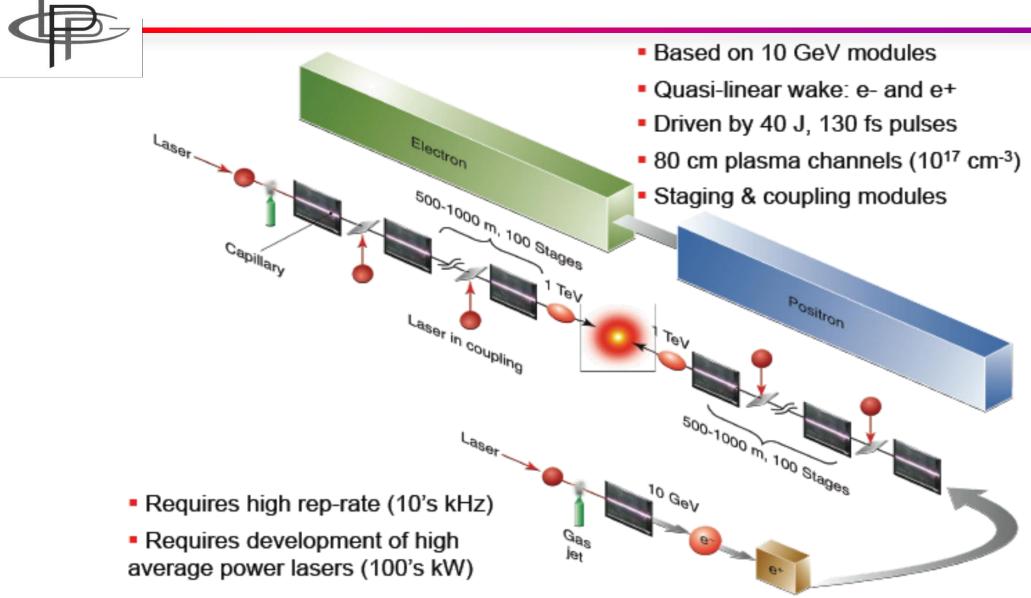

532 nm

20 cm BELLA @ 0.85PW with laser-heated capillary $1 \rightarrow 7.5 \qquad 8.0 \qquad 8.5 \qquad 0.90$ Momentum (GeV/c)

Gonsalves et al., PRL (2019) 105th Plenary ECFA meeting, CERN, B. Cros, 14_11_2019 5

Important milestones for the development of future accelerators have already been achieved

- First resonant demonstration of LWF electron acceleration in 2004 when intense short-enough laser pulses became available
- GeV level reached in 2006, current energy range approaching 10 GeV


Gonsalves et al., PRL (2019)

- Peak accelerating gradients up to ~100 GV/m demonstrated
- Good understanding of physics and agreement with theory
- Several options can be explored to optimise electron beam parameters

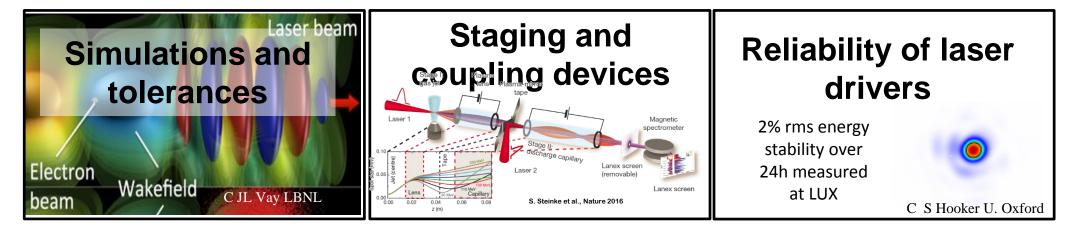
Laser driven plasma wakefield R&D has mostly been performed outside accelerator labs

- LWFA R&D performed mostly by University labs and at laser facilities of various sizes around the world, operating as user facilities (RAL, LOA, LULI, BELLA, LLC, LUX, HZDR,)
- Research is driven by the exploration of new concepts, with a large number of publications in physics journals
- However, over the last ten years the involvement of large accelerator labs has increased (DESY, INFN, CEA, LAL, ...), which should be a game changer

Strawman design for linear e-e+ collider gives a frame for accelerator R&D

Leemans & Esarey, Physics Today, March 2009 8 105th Plenary ECFA meeting, CERN, B. Cros, 14_11_2019

Multi-stage schemes are a way to achieve high energy reliable beams



- Purpose of multiple stages: control properties of the accelerated beams and increase their energy
 - Mitigate laser depletion and dephasing
 - Optimise particle beam properties (energy spread, emittance, reliability)
 - Increase particle energy using successive modules

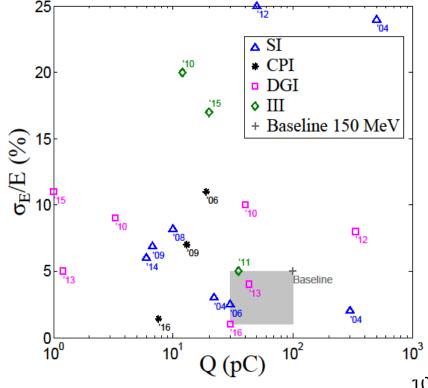
Main challenges

- Laser reliability and performance (efficiency, average power, stability, quality)
- Increase acceleration length
- Inject electrons in the accelerating structure in a precise and controlled way

Work is in progress on components relevant for high energy linear accelerators R&D Based on 10 GeV modules C S Hooker U. Oxford Quasi-linear wake: e- and e+ ong HOFI Cha Driven by 40 J, 130 fs pulses **Electron sources** 80 cm plasma channels (10¹⁷ cm⁻³) Staging & coupling modules Requires high rep-rate (10's kHz) LPA modules Requires development of high average power lasers (100's kW) C Z Najmudin Imperial college London Leemans & Esarey, Physics Today, March 2009

Electron sources driven by laser in plasmas can reach the quality required for an injector

Available laser systems allow to develop laser driven injectors in plasmas:


Electrons generated during laser plasma interaction :

- Energy can be selected in the range 100-500MeV
- Short pulse duration <10fs</p>
- 1pC to 10pC/MeV range
- Peaked spectra with energy spread 1-10% FWHM
- Divergence mm mrad

Experimental achievements in the energy dispersion versus charge plane

SI : Self Injection CPI : Colliding Pulse Injection DGI : Density Gradient Injection III : Ionization Induced Injection

105th Plenary ECFA meeting, CERN, B. Cros, 14_11_2019

Current Status of LWFA Electron Bunch Properties

M. Downer intro talk ANAR2017

			//////2017	
Property State of Ar		Reference	Remarks	
Energy	2 GeV (± 5%, 0.1 nC) 3 GeV (±15%, ~0.05 nC) 8 GeV (±2%, 0.005 nC)	Wang (2013) - Texas Kim (2013) – GIST <mark>Gonsalves (2019) - LBNL</mark>	Accelerates from E ≈ 0	
Energy Spread	1% (@ .01 nC, 0.2 GeV) 5-10%	Rechatin (2009a) – LOA more typical, many results	0.1% desirable for FELs & colliders	
Normalized Trans- verse emittance	~ 0.1 π mm-mrad	Geddes (2008) - LBNL Brunetti (2010) - Strathclyde Plateau (2012) - LBNL	Measurements at resolution limit	
Bunch Duration	~ few fs	Kaluza (2010) – Jena (Faraday) Lundh (2011) – LOA; Heigoldt (2015) – MPQ/Oxford (OTR) Zhang (2016) – Tsinghua	Measurements at resolution limit	
Charge	0.02 nC @ 0.19 GeV ±5% 0.5 nC @ 0.25 GeV ±14%	Rechatin (2009b) – LOA Couperus (2017) - HZDR	Beam-loading achieved. FOM: Q/ΔE ?	
Repetition Rate & Repeatability	~ 1 Hz @ > 1 GeV 1 kHz @ ~ 1 MeV	Leemans (2014) - LBNL He – UMIch ('15); Salehi ('17) – UMd; Guénot ('17) LOA	Limited by lasers & gas targets	
 Brunetti, PRL 105, 215007 ('10) Couperus, submitted ('17) Geddes, PRL 100, 215004 ('08) He, Nat. Comms 6, 7156 (2015) 	 * No one achieves all of • Heigoldt, PR-STAB 18, 121302 ('15) • Kaluza, PRL 105, 115002 ('10) • Kim, PRL 111, 165002 (2013) 	Gonsalves, <i>PRL</i> (2019) • Lundh, <i>Nat. Phys.</i> 7 , 219 (2011)	 Rechatin, PRL 103, 194804 ('09b) Salehi, Opt. Lettt. 42, 215 ('17) Wang, Nat. Comms 4, 1988 (2013) Zhang, PRST-AB 19, 062802 (2016) 	

Current Status of LWFA Positron Properties: no results yet

Progress towards a laser driven plasma stage

Plasma den	10^{17}	
Plasma way	0.1	
Plasma cha	25	
Laser wave	1	
Normalized	l laser strength, a_0	1
Peak laser j	power, P_L [TW]	34
Laser pulse	duration (FWHM), τ_L [fs]	133
Laser energ	gy, $U_L[\mathbf{J}]$	4.5
Normalized	0.14	
Peak accele	4.2	
Plasma cha	2.4	
Laser deple	tion, η_{pd}	23%
Bunch phas	$\pi/3$	
Loaded gra	2.1	
Beam beam	2.5	
Charge/bun	0.15	
Length (tria	36	
Efficiency (75%	
e ⁻ /e ⁺ ener	5	
Beam energ	0.75	

Example 5GeV stage from ALEGRO work on LWFA ALIC

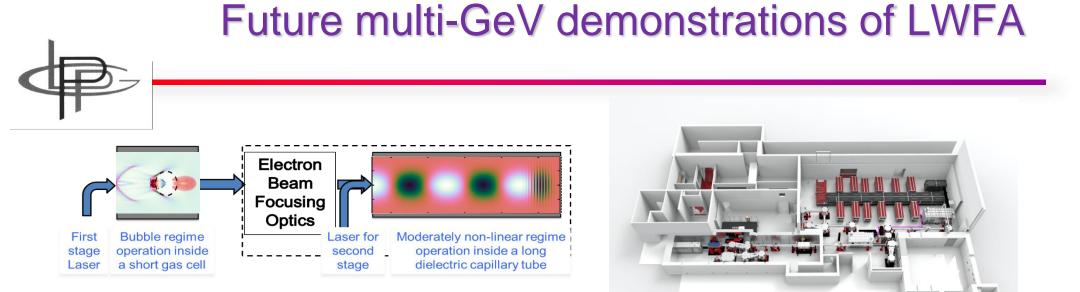
- ALEGRO collaboration arXiv:1901.10370v2
- Plasmas need to be developed over meter scale length and up to kHz rep rate
 - Today discharges can reach 0.2 m long plasma at kHz repetition rate
 - Free standing plasmas are also considered for 24/7 operation
- e- and e+ need to be injected externally,
 e- sources are available and experimental demonstration is pending e+ sources need to be developed

An accelerator test facility based on LWFA is needed for accelerator development

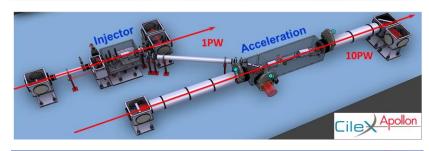
Table 2.1: US laser facilities (>100 TW) performing LWFA R&D.						
Facility	Institute	Location	Gain	Energy	Peak power	Rep. rate
			media	(J)	(PW)	(Hz)
BELLA [7]	LBNL	Berkeley, CA	Ti:sapphire	42	1.4	1
Texas PW [8]	U. Texas	Austin, TX	Nd:glass	182	1.1	single-shot
Diocles [9]	U. Nebraska	Lincoln, NE	Ti:sapphire	30	1	0.1
Hercules [10]	U. Michigan	Ann Arbor, MI	Ti:sapphire	9	0.3	0.1
Jupiter [11]	LLNL	Livermore, CA	Nd:glass	150	0.2	single-shot

Table 2.2: Laser facilities (≥100 TW) performing LWFA R&D in Europe.

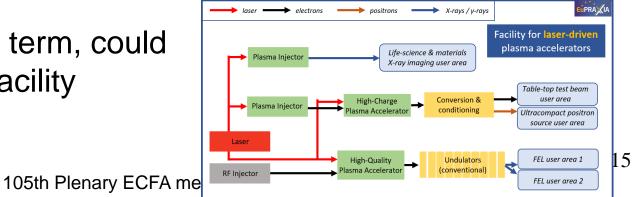
Facility	Institute	Location	Energy	Peak power	Rep. rate
			(J)	(PW)	(Hz)
ELBE [16]	HZDR	Dresden, Ge	30	1	1
GEMINI [17]	STFC, RAL	Didcot, UK	15	0.5	0.05
LLC [18]	Lund Univ	Lund, Se	3	0.1	1
Salle Jaune [19]	LOA	Palaiseau, Fr	2	0.07	1
UHI100 [20]	CEA Saclay	Saclay, Fr	2	0.08	1
CALA* [21]	MPQ	Munchen, Ge	90	3	1
CILEX* [22]	CNRS-CEA	St Aubin, Fr	10-150	1-10	0.01
ELIbeamlines* [23]	ELI	Prague, TR	30	1	10
ILIL* [24]	CNR-INO	Pisa, It	3	0.1	1
SCAPA* [25]	U Strathclyde	Glasgow, UK	8	0.3	5


Table 2.3: Laser facilities ($\gtrsim 100$ TW) performing LWFA R&D in A	sia
--	-----

Facility	Institute	Location	Energy	Peak power	Rep. rate
			(J)	(PW)	(Hz)
CLAPA	PKU	Beijing, PRC	5	0.2	5
CoReLS [28]	IBS	Gwangju, Kr	20-100	1-4	0.1
J-Karen-P* [29]	KPSI	Kizugawa, Jn	30	1	0.1
LLP [30]	Jiao Tong Univ	Shanghai, PRC	5	0.2	10
SILEX*	LFRC	Myanyang, PRC	150	5	1
SULF* [31]	SIOM	Shanghai, PRC	300	10	1
UPHILL [32]	TIFR	Mumbai, In	2.5	0.1	
XG-III	LFRC	Myanyang, PRC	20	0.7	


- R&D on LWFA is performed Today at several laser facilities world wide (tables for lasers with peak power >100TW)
- Laser development lab or laser user facility or university lab
- Existing laser systems are PW class laser systems but low rep rate

ALEGRO collaboration arXiv:1901.10370v2 105th Plenary ECFA meeting, CERN, B. Cros, 14_11_2019



- Facilities about to start operation where external injection will be studied: LBNL Bella US, Apollon CILEX CNRS-CEA FR
- EUPRAXIA (EU) longer term, could be the first accelerator facility

2nd Beamline Project Underway at LBNI

to be completed early 2021

Conclusion

- Several concepts for electron injector and plasma stage are available, acceleration module to multi-GeV needs to be build and tested
- Positron sources need to be developed
- Next steps: put resources on accelerator development paths:
 - Higher efficiency and repetition rate drivers and concepts
 - Machine oriented designs
 - Test facility for accelerator components and subsystems prototyping
- At present, components are studied by independent small groups, accelerator designs need to be coordinated around larger scale projects

Acknowledgements

Based on input from ALEGRO meetings and documents

http://www.lpgp.u-psud.fr/icfaana/alegro/

arXiv:1901.10370v2 [physics.acc-ph]

Editing Board

Brigitte Cros, Patric Muggli, Carl Schroeder, Simon Hooker, Philippe Piot, Joel England, Spencer Gessner, Jorge Vieira, Edda Gschwendtner, Jean-Luc Vay, Michael Peskin

ALEGRO collaboration members as of September 2018 : Erik Adli¹, Weiming An², Nikolay Andreev³, Oznur Apsimon⁴, Ralph Assmann⁵, Jean-luc Babigeon⁶, Robert Bingham⁷, Tom Blackburn⁸, Christopher Brady⁹, Michael Bussmann¹⁰, Bruce Carlsten¹¹, James Chappell¹², Jian Bin Ben Chen¹³, Sebastien Corde¹⁴, Laura Corner¹⁵, Benjamin Cowan¹⁶, Brigitte Cros¹⁷, Joel England¹⁸, Eric Esarey¹⁹, Ricardo Fonseca²⁰, Brian Foster^{5,21}, Spencer Gessner¹³, Leonida A Gizzi²², Daniel Gordon²³, Edda Gschwendtner¹³, Anthony Hartin⁵, Bernhard Hidding²⁴, Mark Hogan¹⁸, Simon Hooker²¹, T. Hughes ²⁵, Alexei Kanareykin²⁶, Stefan Karsch²⁷, Valentin Khoze²⁸, Pawan Kumar²⁹, Wim Leemans¹⁹, Francois Lemery⁵, Ang Li³⁰, R. Li¹⁸, Vladyslav Libov⁵, Emily Sistrunk Link³¹, Michael Litos³², Gregor Loisch⁵, Nelson Lopes^{20,33}, Olle Lundh³⁴, Alexey Lyapin³⁵, Edu Marin¹³, Mattias Marklund⁸, Timon Mehrling¹⁹, Patric Muggli^{13,27}, Pietro Musumeci², Zulfikar Najmudin³³, Uwe Niedermayer³⁶, Jens Osterhoff⁵, Marc Palmer⁴¹, Rajeev Pattathil⁷, Michael Peskin¹⁸, Philippe Piot³⁸, John Power³⁹, Alexander Pukhov⁴⁰, Heather Ratcliffe⁴¹, Marc Riembau⁴², Veronica Sanz⁴³, Gianluca Sarri⁴⁴, Yuri Saveliev⁷, Levi Schachter⁴⁵, Lucas Schaper⁵, Norbert Schoenenberger³⁰, Carl Schroeder¹⁹, Sarah Schroeder⁵, Daniel Schulte¹³, Andrei Seryi⁴⁶, Sergey Shchelkunov XX, Craig Siders³¹, Evgenya Simakov ¹¹, Christophe Simon-Boisson⁴⁷, Michael Spannowsky²⁸, Christina Swinson³⁷, Andrzej Szczepkowicz⁴⁸, Roxana Tarkeshian⁵, Johannes Thomas⁴⁰, Junping Tian⁴⁹, J.V. Tilborg¹⁹, Paolo Tomassini²², Vasili Tsakanov⁵⁰, Jean-Luc Vay¹⁹, Jorge Vieira²⁰, Henri Vincenti⁵¹, Roman Walczak²¹, Dan Wang⁵², Stephen Webb ⁵³, Glen White ¹⁸ Guoxing Xia⁴, Hitoshi Yamamoto⁵⁴, Tevong You⁵⁵, Igor Zagorodnov⁵