
Electroweak and Strong Physics

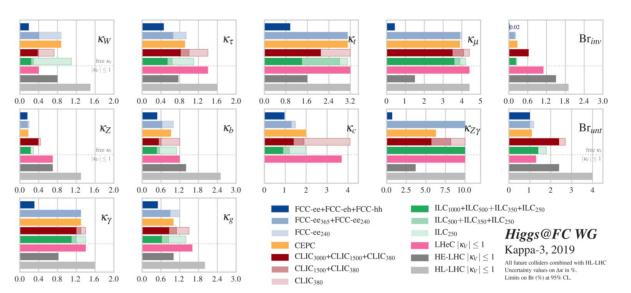
ECFA Early Career Researchers Meeting Friday 15th November 2019

Agni Bethani, Geoffrey Gilles, Loukas Gouskos, Emanuel Gouveia, Adrian Irles, Josh McFayden, Michaela Queitsch-Maitland, <u>Elliot Reynolds</u>, Pawel Sznajder, Adam Takacs, Nils Hermansson Truedsson

Timeline of Several Collider Options

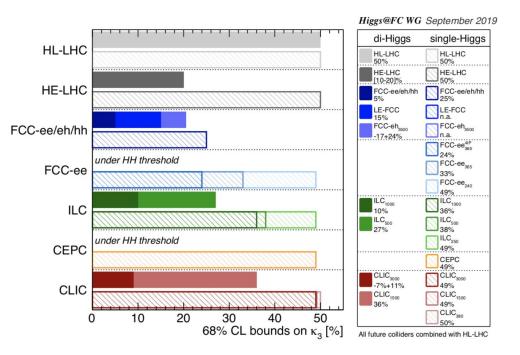
The Five "Strawman" Scenarios

	2020-2040		2040-2060	2060-2080	
			1st gen technology	2nd gen technology	
CLIC-all	HL-LHC		CLIC380-1500	CLIC3000 / other tech	
CLIC-FCC	HL-LHC		CLIC380	FCC-h/e/A (Adv HF magnets) / other tech	
FCC-all	HL-LHC		FCC-ee (90-365)	FCC-h/e/A (Adv HF magnets) / other tech	
LE-to-HE-FCC-h/e/A	HL-LHC		LE-FCC-h/e/A (low-field magnets)	FCC-h/e/A (Adv HF magnets) / other tech	
LHeC-FCC-h/e/A	HL-LHC	+ LHeC	LHeC	FCC-h/e/A (Adv HF magnets) / other tech	

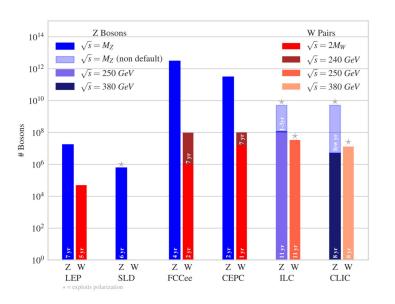

- Nothing set in stone!
- What other scenarios we can come up with that better suit our physics interests?
- Is the European project decision decoupled from decisions elsewhere?
 - The challenges to our discipline require worldwide cooperation

Comments on the Briefing Book - General Comments (http://cds.cern.ch/record/2691414)

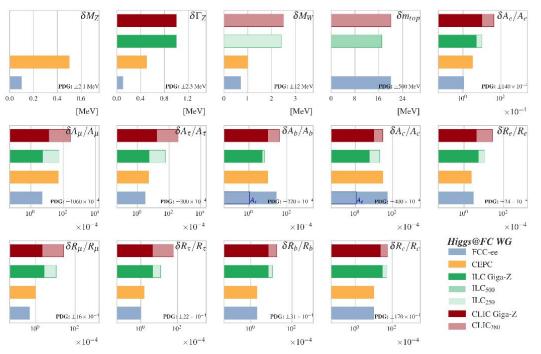
- How will this strategy shape our career prospects?
 - Is the layout of the strategy likely to increase our chances of a career in fundamental research?
 - How to foster the career of ECRs working on instrumentation and computing?
 - Long periods for significant increase in luminosity
 - Long periods with no major colliders operating in Europe
- ECRs should be more involved in the decision making
 - General feeling that we came into this late


Higgs Couplings

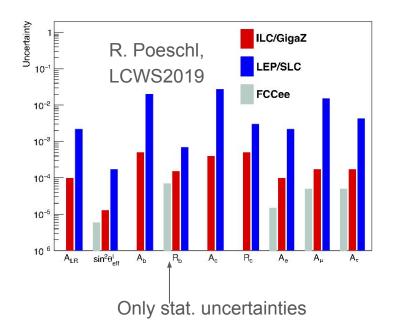
- HH colliders dominant production: gg→H
- e⁺e⁻ colliders dominant production:
 e⁺e⁻ →ZH (WW-fusion) at low (high)
 energies
- Deviations in data from SM would definitively indicate New Physics
- e⁺e⁻ machine gives more direct probe of Higgs couplings, and can directly measure total Higgs width
- FCC-ee and CLIC with similar sensitivities in general
- For many measurements, FCC-hh brings great improvement w.r.t. e⁺e⁻ colliders



Higgs Self-Coupling

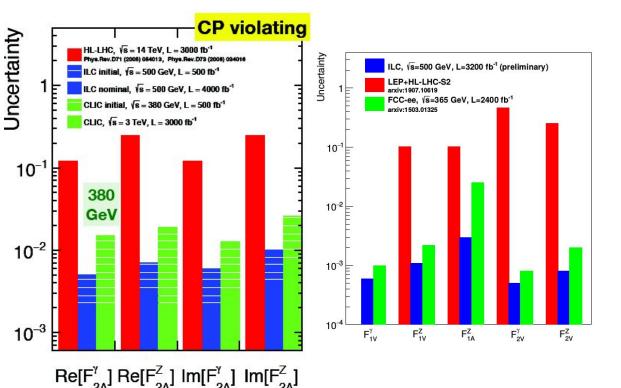

- Defines the Higgs potential
 - Higgs self-interactions λ_3 and λ_4
- Direct via Higgs pair production
- Single Higgs production, indirect
- In hh colliders (HL/HE LHC, FCC-hh) dominant production is gg→HH
- ee colliders dominant production is ZHH (double Higgs-strahlung)
- Circular linear colliders below the HH threshold. Indirect constraint is the only option
- FCC-hh could reach λ_4 Higgs quartic coupling
- General motivation for pp or high energy e⁺e⁻ LC

Z and W Measurements


Numbers of Z bosons and W pairs for different e^+e^- colliders

Uncertainties on various EW observables in e⁺e⁻ colliders

Linear Colliders and Beam Polarisation


- For a number of EW measurements, SLC was more precise than LEP despite having a much lower luminosity
- Beam polarization increases the xsec of various processes, and the number of observables
- New colliders can be 10x better than LEP/SLD
- LC have access to more observables (polarization)
 - + No need of lepton universality assumption
 - + Separation of the contribution from the different chiralities (and also from Z-y couplings)
 - Polarization compensates for ~30 times luminosity
 - A_{IR} can benefit from hadronic Z-decays
- Circular have better expectations for the others

e⁺e⁻ colliders provide deep and unrivaled tests of the EW couplings to all fermions (top-quark in the next slide)

Top Quark Physics (EW Couplings)

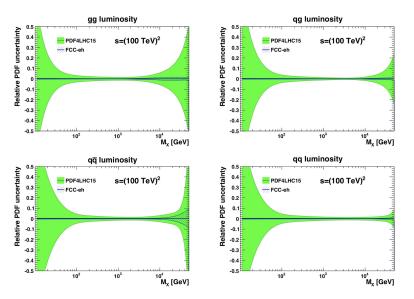
- $e^+e^- \rightarrow tt just above threshold$
 - Little sensitivity to axial couplings
- ILC has best precision on many of the couplings
- Beam polarization disentangle Z-y exchanges (as with the other quarks)
- Upgradability of energy of LCs allows to enhance EW couplings to the top quark
 - Reminder: the top-quark is one of the BSM candles together with the Higgs
- FCC-hh prospects on this?
 - Will it be better than LHC?
 - In what possible time scale?

arXiv:1908.11299, Eur.Phys.J. C78 (2018) no.2, 155

Emphasis on BSM Physics

- Discovery of new resonances requires higher energies
- Focusing in high precision measurements?
- Study of Higgs decays to invisible particles, and measurement of Higgs width possible with e⁺e⁻ machine
- EW measurements test naturalness problem
 - Fine-tuning and naturalness problem two of the main motivations for new physics at the EW-scale
- Benchmark scenarios? How important are they? Can we see ourselves as explorers of the energy frontier or do we need a fixed model goal?

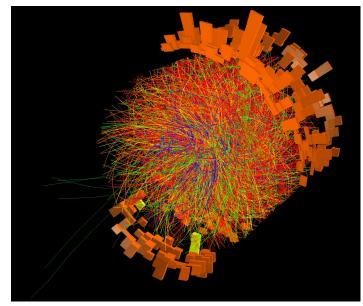
Comments on the Briefing Book - EW Physics


(http://cds.cern.ch/record/2691414)

- Could benefit from better synergy between searches and measurements
 - E.g. unfolding of search CRs used to improve MC modelling
 - General preference for final state-driven physics group structures (rather than model-driven)
 - Discuss EFT more
- Clear need for significant development on the theoretical side to maximise physics potential
 - Will there be more investment for this?
 - Where can better use be made of data-driven techniques for background estimations?
- Not much mention of top measurements
- Are there studies with separate FCC-ee, FCC-eh and FCC-hh results?
- Expected results are missing for the LE-FCC. Would it be preferable to FCC-ee?
- Are the studies of all accelerators compared in equal footing (same level of realism)?
- No mention of colliders probing the extremes of QED, acting as high energy broad-band photon-photon collider (recent observation of light-by-light scattering)
- Currently no distillation of the results into conclusions

Physics Briefing Book on Strong Physics 1

"QCD is not the main driving force behind future colliders. / ... / An incomplete knowledge of PDFs is one of the main limitations in searches of new physics at the LHC." Physics Briefing Book


- 1. Precision QCD program:
 - \circ New constraints on α_s and parton distributions
 - New PDFs are crucial for any new physics e.g. MC simulation and background estimation
 - \circ Lattice QCD: g-2, $\alpha_{_{\! S}}$, quark-mixing, exotic states
 - Low energy: CP problem, dipole moment, nucleon radius
 - ep and e⁺e⁻ colliders are needed
- 2. Hadronic structure
 - Small-x and saturation physics
 - High-x and heavy quark content of PDFs
 - Nucleon spin puzzle
 - Nuclear PDFs
 - ep, pp, eA, pA colliders are needed
 - Polarized beams? Not all colliders have p or A beams

Physics Briefing Book on Strong Physics 2

"The development of a broad QCD programme ... between different machines and collision systems, pp/pA/AA and ep/eA, should be encouraged. / ... / The long-term measurements in heavy-ion collisions will benefit from a sustained support from the theory community." Physics Briefing Book

- 3. Hot and dense QCD program:
 - Thermodynamics of quark-gluon plasma
 - Phase diagram of QCD and neutron stars
 - Collectivity in small system
 - Jet quenching
 - Ultra-strong magnetic fields and chiral magnetic effect
 - Photon-photon collision in ultra peripheral collisions
 - pp, pA, AA collisions are needed, but not all plans provides them
- 4. QCD theory development:
 - MC generators: higher order calculations (fixed order and resummed logs); improve underlying event and hadronization description
 - Lattice QCD: g-2, nucleon structure and high temperature QCD
 - Encouraging EFT formalism

Comments on the Briefing Book - Strong Physics (http://cds.cern.ch/record/2691414)

- No mention of polarized beams in the strong physics part of the book. Will be there any?
- What type of ions and energies could be used in the different collider concepts for heavy-ions?
- More than half of the QCD studies require ion beam, although not all colliders can provide them. Will there be any alternatives for heavy-ion studies at the TeV scale beyond the ECFA proposals?
- Many practical development in theory was mentioned (MC in higher orders, LQCD). How to complete these tasks? How can ECRs contribute?
- Additional low-energy studies were mentioned. What about theory developments in their field?
- Thorough discussion in briefing book on LQCD, but no mention of dispersive techniques e.g. muon g-2 or vacuum polarization

What are Early Career Researchers (YOU!) Excited About?

- Going to higher energy to find new physics?
- Precision measurements are required (specially since no clear hints of new physics are observed)
 - Deviations from expectation could lead to new physics!
- A new collider ASAP or wait after the HL-LHC results?
- A collider in Europe? Happy to be stationed abroad?
 - Further developing of online tools to reduce the need of being physically located in the hosting institute? What is the experience of european ECRs in Belle 2 or other ongoing asian-based projects?
- Less money to massive colliders? Invest more diverse program of smaller experiments?
- Career prospects?
- Star wars movies until 2060 or new sci-fi franchises?

?

Higgs factories comparison (technological)

Shiltsev, Granada Meeting.

Finding Common Denominators * - Three Fact					
	* to be further discussed in the Symposium's accelerator sessions				

Higgs Factories	Readiness	Power-Eff.	Cost
ee Linear 250 GeV			
ee Rings 240GeV/tt			
μμ Collider 125 GeV			*
Highest Energy			
ee Linear 1-3TeV			
pp Rings HE-LHC			
FCC-hh/SppC			
<mark>μμ Coll</mark> . 3-14 TeV			*