P. Iaydjiev, INRNE, BAS, Sofia,

One important task was to study the radiation level distribution around the GEM working places.

WORKPLACES OF THE GEMs in CMS and RADMON positions

RADIATION MONITORING SYSTEM - STRUCTURE

A monitoring system is designed to control the radiation absorbed by the GEM detectors during their operation.

The system consists of a Main Controller and a basic radiation sensor unit, called RADMON. Up-to 12 RADMONs can be connected to the main controller.

Plamen laydjiev INRNE-Sofia, GEM Workshop 10.2019

RADIATION MONITORING SYSTEM - RADMON

4 SENSORS: 2 RadFETs – absorbed dose 2 p-i-n diodes – 1 MeV neutron equivalent fluence

Function	Туре	Device	Operating range	Sensitivity / Resolution	I _{read}
Total Dose Sensor (high doses)	RadFET	REM 250	A few 10^{-1} Gy to > 2x10 ⁴ Gy	~ 20 mV/Gy (initial)	160 μA
Total Dose Sensor (very high doses)	RadFET	REM 130	A few Gy to > 2×10^5 Gy	~ 3 mV/Gy (initial)	160 µA
1 MeV n eq. Fluence Sensor (high sensitivity)	p-i-n diode	LBSD Si-1	10^{10} cm ⁻² to ~ 2x10 ¹² cm ⁻² (almost linear)	$\sim 2.1 \times 10^8 \mathrm{cm}^{-2} / \mathrm{mV}$	10 mA
1 MeV n eq. Fluence Sensor (low sensitivity)	p-i-n diode	BPW34S	$\sim 2.10^{12} \text{ cm}^{-2} \text{ to} \sim 4 \text{x} 10^{14} \text{ cm}^{-2}$ (linear)	~ 1x10 ¹⁰ cm ⁻² /mV	1 mA
Temperature sensor	Thermistor	NTC 10 k	-55 °C to 125 °C	0.1 ⁰ C	10 µA
Line checking	Resistor	1 k		1%	1 mA

1 October 2019

Plamen laydjiev INRNE-Sofia, GEM Workshop 10.2019

RADIATION MONITORING SYSTEM – MAIN CONTROLLER

GEM SLICE TEST: 2017-2018

CMS INTEGRATED LUMINOSITY 2017-2018

 $49,8 + 67,9 = 117,7 \text{ fb}^{-1}$

ALL EXPERIMENTAL AND SIMULATED DATA

Date of measurement	Integrated	D	ose	Fluence		
	luminosity	REM 250	FLUKA v.3.0.0.0	LBSD Si-1	FLUKA v.3.0.0.0	
	fb⁻¹	Gy	Gy	cm ⁻²	cm ⁻²	
07.08.2017	14,5	0,132	0,15	4,42E+09	3,10E+09	
15.08.2017	17,3	0,134	0,15	4,63E+09	4,00E+09	
05.09.2017	21,7	0,218	0,20	6,50E+09	5,00E+09	
18.10.2017	39,3	0,361	0,35	1,13E+10	1,00E+10	
01.11.2017	46,0	0,448	0,45	1,43E+10	1,20E+10	
31.07.2019	117,6	1,073	1,1	3,52E+10	3,40E+10	

No data from REM 130 and BPW34S – low sensitivity

CMS FLUKA Study v.3.7.2.0 | RSP tool v.2.3 simulation author: BRIL Rad Sim

CMS FLUKA Study v.3.7.2.0 | RSP tool v.2. simulation author: BRIL Rad Sim

FLUKA v3.7.7.0 PHASE 2 - Dose and 1 MeV neq. Si Simulation at 3000 fb⁻¹

Plamen laydjiev INRNE-Sofia, GEM Workshop 10.2019 FLUKA SIMULATION SHOW AN AVERAGE ABSORBED DOSE OF 20 Gy FOR THE PHASE 2 (AT 3000 fb⁻¹)

REPLACING REM 130 BY A SECOND

REM 250?

LBDS Si-1 sensor sensitivity corresponds to the Run 3 simulation for the 1 MeV neq. Si fluence

Radmon cables routing completed, to be connectorized UXC side

CONCLUSIONS

- The experimental results obtained confirm the good qualities of the selected radiation sensors for the control of the total absorbed dose and the 1 MeV neutron equivalent fluence.
- Our results show also that for this region of CMS (around the slot GE1/1) the BRILL simulations by FLUKA v. 3.0.0.0 estimates well the dose and fluence distribution.
- Control of the cable resistance from the controller to the RADMON is needed
- First test of the full chain -> controller RADMON should be made when the first superchamber with sensor is installed (ongoing)

ACKNOWLEDGEMENTS

This work was sponsored by the Bulgarian National Science Fund - Ministry of Education and Science