GEM Alignment

Hyunyong Kim* On behalf of the GEM DPG

*Texas A & M University <u>GEM Workshop</u>, Oct 2nd 2019

Alignment

- Misalignment causes wrong particle reconstruction
- Why alignment is important for GEM
 - End-cap is opened frequently: it creates misalignment
 - GEM-CSC trigger requires
 precise alignment

Track-based Muon Alignment

Ryan Mueller

• Track-based muon alignment (TBMuAl)

- propagate the tracker path of muons into muon system
- Muon residual: difference between reconstructed position and predicted position on the muon chamber
- The TBMuAI technique is proven to be efficient, robust, and stable in Run1 and Run2
- The algorithm is developed and integrated into CMSSW framework
- Source of possible systematic uncertainties have been investigated and various improvements to reduce their effect are being developed
- Muon system alignments are most important for muon reconstruction and TBMuAl has good accuracy, 100-150 μ m

TBMuAl Process

- Pre-requisite: updated tracker geometry and muon global position record (muon GPR)
- TBMuAl
 - Step1: TBMuAI running workflow \rightarrow 2 days for IOV (at least 2 fb⁻¹)
 - Step2: Looking at the results and 1st step validation → 3 days. If problems are found then re-running the workflow is needed
- **Physics Validation**: 1 week. Re-fit muons in $Z \rightarrow \mu\mu$ and high-p_T samples with new Mu+Trk geometries
- Generating final results (DB payload with geometry) → 1 day. Useful to re-run validation for confirmation
- TBMuAI takes about 2 weeks total (after update tracker geometry and muon GPR)

GEM Alignment

Details on page 15

GE1/1 $\Delta \mathbf{R}\phi$ residual (in z) map in x and y (local coordinates of GE1/1). **Residual for each muon is plotted in** red ($\Delta \mathbf{R}\phi > \mathbf{0}$) and blue ($\Delta \mathbf{R}\phi < \mathbf{0}$). Ideally, one want to symmetric distribution of residual. At boundaries, the residual shows bias due to edge effect, requiring fiducial

Details on page 19

*∆*y: Y_{prediction} - Y_{recHit}

- The TBMuAI algorithm will be developed for GEM base on CSC
 - **For GEM-CSC local** trigger, we also consider using the local muon alignment algorithm
- **GEM** alignment uses $\Delta \mathbf{R} \phi$
 - No geometrical bais
 - GEM has fine ϕ resolution
- Two degree of freedom: δx and $\delta \phi_z$

GEM Alignment Method

Track-based Muon Alignment

- Default option for GEM alignment
- Similar to CSC
- Propagate muon track from ME1/1
 - Same method as TBMuAl but muon track is propagated from ME1/1
 - It has less scattering and well correlated with ME1/1
- Use Millepede algorithm
 - Muon alignment module uses Millepede for local alignment

Propagation Comparison

Muon p_T 30 GeV

- Muon propagation from tracker has strong p_T dependency due to scattering
- Muon propagation from CSC has less p_T dependency then from tracker
- To reduce GEM-CSC alignment uncertainty (GEM and CSC alignment still need TBMuAl), using muon propagation from CSC is considered

GEM Residual Study

- GEM has radial strips
 - Ax residual has geometrical bias
 - CSC uses $\Delta \mathbf{R} \phi$ residual and GEM is similar
- Realistic single muon gun
 - Muon alignment group uses for MC study
 - p_T range: 30 GeV < p_T < 200 GeV
- Misaligned geometry (local coordinate)
 - x: ±0.1 cm, ±0.5 cm, ±1.0 cm
 - y: ±0.1 cm, ±0.5 cm, ±1.0 cm

GEM AR¢ Residual

Since recHit is always at the center of the eta partition Δx is distance to the center $\Delta R\phi$ is the distance to the strip

 Δx residual depends on the strip angle and propagated y, but $\Delta R \phi$ residual is consistence

Devin Aebi

X shift

Devin Aebi

Plan

- Update GEM alignment RCD and aligner
 - Implement rotation and propagation to sub-structure
- Development TBMuAI (target 2021)
 - TBMuAI GEM code is being developed
 - Code test will use MC before collision or slice test data
- Develop local muon alignment (target June 2020)
 - Local muon alignment can use cosmic ray and collision
 - Improve GEM-CSC alignment

Summary

- Track-based GEM alignment development is ongoing
 - Consider other methods for precise GEM-CSC alignment
- GEM $\Delta R\phi$ residual study
 - Realistic single muon samples and several misalignment geometry scenarios are tested
 - ΔRφ residual shows non-geometrical bias distribution and sensitive for x and y shift
- Local GEM alignment will be performed with cosmic ray before collision
- Track-based GEM alignment DB will be available during commissioning

Backup

Calculation $\Delta R \phi$

 $\Delta \mathbf{R} \varphi = \mathbf{cos} \theta * \Delta \mathbf{x} + \mathbf{sin} \theta * \Delta \mathbf{y}$

- **Propagation**
- **Reconstruction**
- Strip angle of recHit $\pi/2$
- ······ $\sim \Delta \mathbf{R} \varphi$

--- **∆x**

- $\cos\theta \star \Delta x$
- ∆y

GEM Local Coordinate

 $\Delta \mathbf{R}\boldsymbol{\varphi} = \cos\theta * \Delta \mathbf{X} + \sin\theta * \Delta \mathbf{y}$

We calculate $\Delta R\phi$ using the strip angle, so our residuals only work if the strips are still radially point to the center

Timeline

Detectors/Trigger

Exercise GE1/1 alignment using CR muons using local alignment (GE1/1 and CSC) with stand-alone muon (from June 2020)

Alignment with collisions (from 2021)

First align ME1/1 with tracker with > 2 fb-1 data (30 < pT (muon) < 200 GeV). This is the current Track-based muon alignment (TBMuAI) processing.

Pre-requisite: updated Tracker geometry and Muon GPR

TB alignment running workflow — 2 days for 1 run through data (2 fb-1)

- Looking at the results + 1st step validation (internal) 3 days. If problems found then re-running of the workflow is needed plan to run alignment frequently (with limited statistics) from Day 1 of Run3
- 2nd step validation (physics) 1 week. re-fit muons in $Z \rightarrow \mu\mu$ and high-pT samples with new Mu+Trk geometries
- generating final results (DB payload with geometry) 1 day. Useful to re-run validation for confirmation

This TBMuAI takes about 2 weeks (after update tracker geometry and muon GPR).

From Jared

Propagation track from inner tracker **doesn't consider scattering** Real muon pass has scattering then smeared

Fiducial Cut $\Delta \phi$

Muon gun with 50 p_T

Taking 1.6 $\sigma_{\Delta\phi}$ cut from the standard deviation

Cut ϕ : | prop. hit angle | < 0.088 - 1.6 $\sigma_{\Delta\phi}$

Cut y : 130 + 1.6 $\sigma_{\Delta x}$ < | prop. hit y | < 235 (long: 250) - 1.6 $\sigma_{\Delta x}$

Cut study is ongoing: with realistic muon p_T distribution and mis-aligned geometries

dx vs dphi

Muon pt 30 GeV

Muon pt 100 GeV

Non misaligned Geometry

X ± 0.1 cm

X ± 0.5 cm

X ± 1.0 cm

X ± 1.5 cm

Y ± 0.1 cm

Y ± 0.5 cm

Y ± 1.0 cm

Y ± 1.5 cm

Z - 1.5 cm

