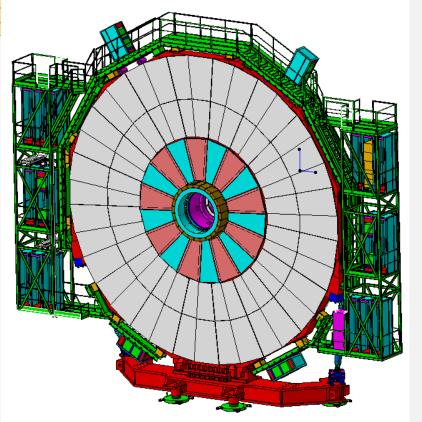
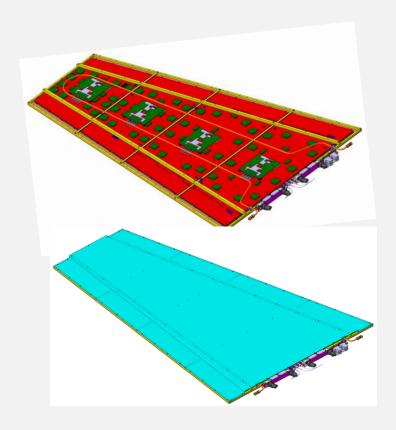


LUIGI BENUSSI

GEM WORKSHOP

September 24, 2019



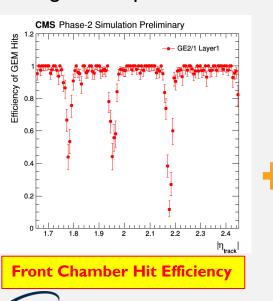

OVERVIEW

- GE2/I Project Status
 - Updates since EDR
 - Integration tests with prototypes
 - Mechanical tests
 - Electronics Integration
 - Production overview
 - Production Readiness and Planning
 - Risk Management
 - Summary

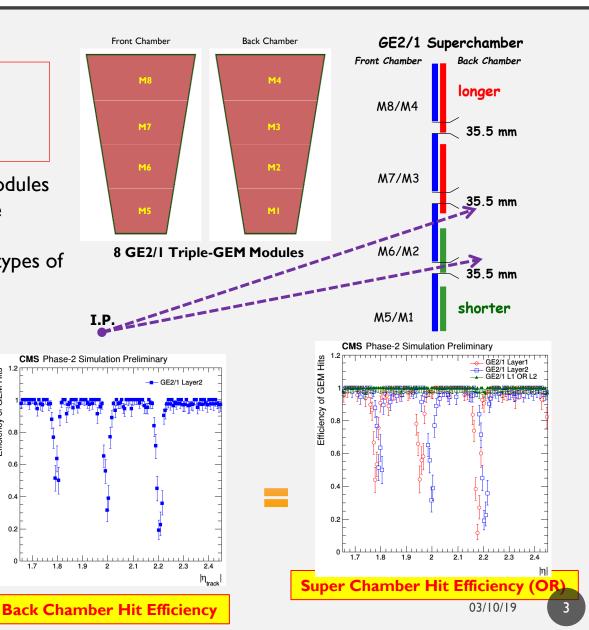
GE2/I PROJECT OVERVIEW

- GE2/I station consists of 36 20° chambers
- Same technical solution as for GEI/I
- Two independent GE2/I chambers will form on the YEI/I disk a Super Chamber

GE2/I CHAMBERS LAYOUT


With a single layer, the average acceptance × efficiency would be reduced to 92% due to gaps.

To achieve maximum coverage, modules in front and back chambers will be staggered.


As a consequence, eight different types of modules will be

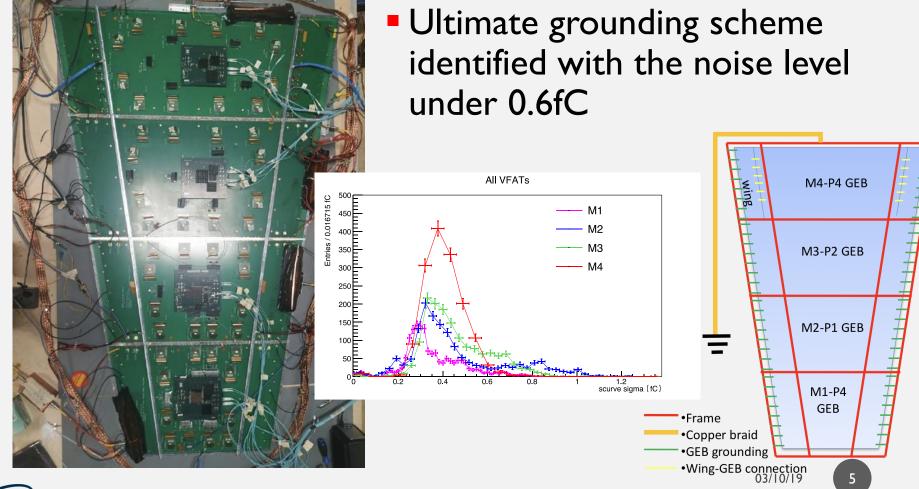
Efficiency of GEM Hits

designed and produced.

Istituto Nazionale di Fisica Nucleare

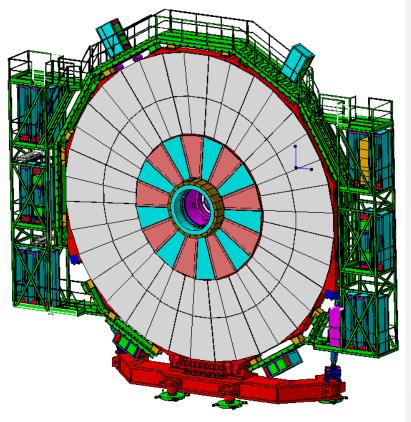
GE2/I MECHANICAL TEST

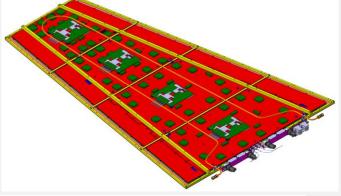
- Two GE2/I chambers forming a Super Chamber fully assembled, tested and mechanically integrated
- Mechanics for chamber installation validated in situ

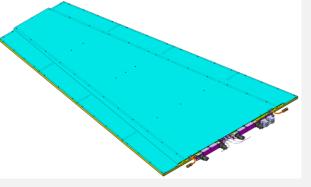


GE2/I ELECTRONICS INTEGRATION

 GE2/I MI-M4 prototype modules with all mezzanine components are produced and integrated

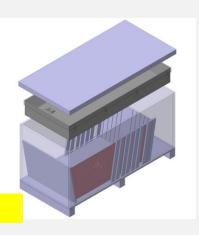

GE2/I R&D STEPS TO COMPLETION

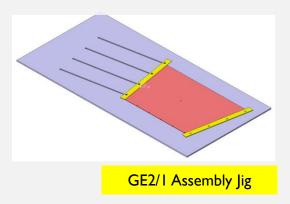

- Complete GEB boards M6-M8
 - Timeline: by the end of 2019
- Minor adjustments and optimization of OptoHybrid and select GEB boards to correct small mechanical issues
- Validate packaged VFAT3 chips
- Optimize VFAT3 chip protection and manufacture PlugIn Cards
 - PlugIn Cards design is almost ready, await for pinout confirmation from manufacturer
- Integrate and test, including proof of principle with ATCA backend
 - ATCA backend ordered, estimated delivery: Nov. 2019



- Components used in GE2/I are almost identical to GE1/I
 - Vendors are already identified
- Small mechanics and electrical components are produced by international companies (e.g. Bossard)
 - Minimal risk of failure or production delay
- Drift and Readout boards: Micropack
 - Experience from GEI/I Production: ~100% yield, in time delivery
- Frames: Eltos
 - Experience from GEI/I Production: >93% yield, in time delivery

- Pre-production activities (central site at CERN)
 - Reception or materials
 - Initial inspection and acceptance test (approval/rejection of materials)
 - Optical inspections
 - Groove measurement on external frames
 - PCB bending measurements
 - RO board connectivity test
 - GEM QC2 fast and long tests at CERN
- Material preparation
 - Coating of the internal/external frames (+ spacers)
 - Sorting of the O-rings
 - GEM foil packing
 - GE2/I kit preparation


- List of tasks is well defined
- · Manpower requirements and responsibilities are clear
- Work plan is established with the production community



Central Site at CERN

- Specific Tooling for GE2/I Module Assembly (adaptors and tools to make GEI/I production sites compatible with the GE2/I design)
 - Assembly Jig with Alignment Pins
 - Protective Plate
 - **Grounding Plate**
 - **Fixation Bars**
 - HV Clips for QC2
 - Adaptor PCB for QC4/QC5
- **Material Transport**
 - Shipment Boxes

- List of items is well defined
- Design is 80% completed
- Work plan is established with the production community

Vendors

Central Site at CERN

	Site	Nb of Production lines	Certified for GEM Production	Infrastructur e ready and tested	Team	Comments
	Belgium	I	YES	YES	2 Physicists 3 Technicians	Produced 30 GEI/I detectors
	Germany	 *	YES	YES	4 Physicists	*QC only (no clean room) Tested 21 GEI/I det.
	Italy	2	YES	YES	8 Physicists 8 Technicians +Students	Produced 26 GEI/I detectors
	India	2 (+2 under approval)	YES (+2 on-going)	YES (+2 on-going)	8 Physicists 5 Engineers/Tech + Students	Produced 17 GEI/I detectors
	Pakistan	l	YES	YES	4 Physicists 8 Engineers/Tech	Produced 13 GEI/I detectors
אורפא	Sri-Lanka	ı	YES	YES	4 Physicists I Engineer + Students	Using CERN infrastructure and tooling
AUZ-	China		On-going	On-going	3 Physicists 2 Engineer + Students	New site, QC Jamboree in progress

Vendors Central Site at CERN Production Sites

Two New Production Sites for GE2/I

Sri-Lanka (UOC and UOR)

- Strong team already involved in the GEI/I production (test, operation and analysis)
- Will use the CERN infrastructure to assemble and test GE2/I modules
- Participated in 6 training sessions
- Approved for GE2/I mass-production China (PKU)
- Strong group already experienced with gaseous detectors and small GEM chambers
- Infrastructure 90% ready
- Ist stage of the QC Jamboree about to be completed (out of three stages)
- Participated in CERN training
- Full Approval is expected during Fall 2019

CMS

GE2/I PRODUCTION PLANNING

GE2/I Module Production (TDR dates)

- Baseline schedule with 4 production sites, each one assembling two types of modules
- Production organized in batches of 6 modules every 10 weeks (including 1 week for shipping)
- Start of the production in October 2019, end in April 2022 (662 working days)

# WBS Code	Title	20	018				2	2019				2020				2021					2022		
_		Q2	Q	3	Q4	Q1	Q2	Q3	Q4		Q1 Q2	Q3	Q4	Q1	Q2	(23	Q4	Q1	Q	2 (23	Q4
446 2.5.2.1.1.5.2	Module Assembly at Production Sites					Module	Assemb	oly at Produc	t 🤝	+													
447 2.5.2.1.1.5.2.1	▼ GE2/1 Module Assembly at Site A					GE2/1	Module	Assembly a	ıt 🤝	+													
448 2.5.2.1.1.5.2.1.7	Batch M4-A1 (6)						Ва	atch M4-A1 (6	6) —		h												
449 2.5.2.1.1.5.2.1.3	Batch M4-A2 (6)							Bato	ch M4-A2	2 (6)													
450 2.5.2.1.1.5.2.1.5	Batch M4-A3 (6)								Batch	h M4	4-A3 (6)	Ъ											
451 2.5.2.1.1.5.2.1.6	Batch M4-A4 (6)									Е	Batch M4-A4 (6))										
452 2.5.2.1.1.5.2.1.8	GE2/1 T3: Site A completes assembly of 33% of modules assigned								GE2/1	1 T3:	Site A complete	3											
453 2.5.2.1.1.5.2.1.4	Batch M4-A5 (6)										Batch Me	I-A5 (6)											
454 2.5.2.1.1.5.2.1.2	Batch M4-A6 (6)										Į.	Batch M4-	A6 (6)										
455 2.5.2.1.1.5.2.1.7	Batch M4-A7 (6)											Ва	tch M4-A7 (6) 📩									
456 2.5.2.1.1.5.2.1.3	Batch M4-A8 (6)												Batch	M4-A8 (6)									
457 2.5.2.1.1.5.2.1.9	GE2/1 T3: Site A completes assembly of 66% of modules assigned											GE	2/1 T3: Site /	A complete	es								
458 2.5.2.1.1.5.2.1.5	Batch M4-A9 (6)													Batch M	14-A9 (6)		Н						
459 2.5.2.1.1.5.2.1.6	Batch M4-A10 (6)													E	Batch M4-A	A10 (6)							
460 2.5.2.1.1.5.2.1.4	Batch M4-A11 (6)														Bat	tch M4-	A11 (6) 📩	h				
461 2.5.2.1.1.5.2.1.2	Batch M4-A12 (6)															Ва	atch M	4-A12 (6)					
462 2.5.2.1.1.5.2.1.10	GE2/1 T3: Site A completes assembly of 100% of modules assigned														GE	2/1 T3:	Site A	complete	s •				
463 2.5.2.1.1.5.2.2	GE2/1 Module Assembly at Site B					GE	2/1 Mod	dule Assembl	ly at														
479 2.5.2.1.1.5.2.3	 GE2/1 Module Assembly at Site C 					(GE2/1 M	lodule Assem	nbly at														
495 2.5.2.1.1.5.2.4	 GE2/1 Module Assembly at Site D 						GE2/1	Module Asse	embly at											\rightarrow			

Small Mechanics and Electrical Components

# _	WBS Code	Title	Master Schedule	Expected Start	Expected End	18	Q4	/ 2018	Q1/	2019	Q2	/ 201	19	Q3 /	/ 2019	(24/2	019	Q1	/ 2020	Q	2/20	20	Q3 /	202	į
_ ^			reference			09	10	11 12	01 0	2 03	04	05	06	07	08 0	9 10	11	12	01	02 03	04	05	06	07	80)9
1 369	2.5.2.1.1.5.1	Module Assembly Components		23 May 2019	6 Aug 2020			Module /	Assembly	Compor	ne	<u></u>														
1 370	2.5.2.1.1.5.1.5	SMD Components		23 May 2019	5 June 2019				SMD	Compon	ents		M&	S GEN	1 Cham	ber GE	2/1									
1 373	2.5.2.1.1.5.1.30	Procurement (long chamber)		23 May 2019	19 June 2019			Procur	rement (lo	ng cham	ber)															
1 374	2.5.2.1.1.5.1.31	Procurement (short chamber)		23 May 2019	19 June 2019			Procure	ement (sh	ort cham	ber)															
1 375	2.5.2.1.1.5.1.6	► HV Dividers		23 May 2019	4 Sep 2019					HV Divi	ders					M&S GI	EM Ch	amber	GE2/1.							
1 380	2.5.2.1.1.5.1.7	Gas plugs		23 May 2019	4 Sep 2019					Gas p	lugs					M&S GI	EM Ch	amber	GE2/1							
1 385	2.5.2.1.1.5.1.8	► HV Pins		23 May 2019	4 Sep 2019					HV	Pins					M&S GI	EM Ch	amber	GE2/1.							
1 390	2.5.2.1.1.5.1.9	Brass Inserts		23 May 2019	4 Sep 2019				1	Brass Ins	erts				i	M&S GI	EM Ch	amber	GE2/1.							
1 395	2.5.2.1.1.5.1.4	▶ Pullouts		23 May 2019	30 Oct 2019					Pull	outs						M8	S GEN	Cham	oer GE2/	1					
1 400	2.5.2.1.1.5.1.3	▶ O-Rings		23 May 2019	20 Nov 2019					O-R	ings							M&S	SEM C	amber G	E2/1					
1 406	2.5.2.1.1.5.1.10	 Readout Connectors (replace Panasonic connectors) 		23 May 2019	20 Nov 2019			Readout	t Connect	ors (repla	ac							M&S	GEM C	amber G	iE2/1					

PCBs: 304 Readout and Drift Boards

# WBS Code	Title	Master Schedule	Expected Start	Expected End				_	/ 201			/ 2019	_		2019			2020	_	22/2			/ 2020	_	24 / 2020
		reference			1 12	01	02 03	04	05	06 ()7	08	09	10 1	1 12	2 01	02	2 03	04	05	06	07	08 0	9 10	11 12
264 2.5.2.1.1	▼ GE2/1 Detector Components & Assembly	2	23 May 2019	22 Jun 2022	GE2/1	Detector	Compon	ent					$\overline{}$						+						
265 2.5.2.1.1.1	▼ RO PCB	2	23 May 2019	3 July 2020			RO	РСВ					+			+			+						
266 2.5.2.1.1.1.1	Design Completion	2	23 May 2019	19 June 2019		Desi	gn Comp	letion																	
267 2.5.2.1.1.1.12	 Procurement for installing new type Panasonic connectors (excludes cost of the connectors themselves) 	2	23 May 2019	3 July 2020	Procure	ment for	installing	ne					<u> </u>						<u> </u> -			M&S	GEM C	hambei	r GE2/1
268 2.5.2.1.1.1.2	Procurement (long chamber)	2	20 June 2019	14 Aug 2019		Procui	ement (lo	ng cha	mber)			M&	S GEN	M Char	nber Gl	E2/1									
269 2.5.2.1.1.1.3	Procurement (short chamber)	2	20 June 2019	14 Aug 2019		Procure	ement (sh	ort cha	mber)																
270 2.5.2.1.1.2	▼ Drift PCB	2	23 May 2019	27 May 2020			Drift	РСВ					+			+			÷						
271 2.5.2.1.1.2.1	Design Completion	2	23 May 2019	19 June 2019		Desi	gn Comp	letion	-	\Rightarrow															
272 2.5.2.1.1.2.2	▷ GE21 Drift PCB Procurement	2	20 June 2019	14 Aug 2019		GE21 [rift PCB	Procur	ement			N	1&S G	EM Ch	amber	GE2/1.									
273 2.5.2.1.1.2.3	GE21 Drift PCB Manufacturing (in batches)	•	15 Aug 2019	20 May 2020			GE21	Drift F	СВ М	anufact	uri		+						+						
287 2.5.2.1.1.2.4	 Shipping to Production Sites (in batches) 	•	11 Nov 2019	27 May 2020					s	hipping	to Pr	oducti	ion Sit	tes)				

Frames: 304 External/ 304 internal kits

#	WBS Code	Title	Master Schedule Expected Start	Expected End	18	Q4	/ 2018	Q1	/ 201	9	Q2	/ 20	19		23 / :	2019	9	Q4	1/2	019		Q1 /	2020	(22/2	2020	Q	3/2	2020
			reference		09	10	11 12	01	02	03	04	05	06	07	0	8	09	10	11	12	2 0	01 0	2 03	3 04	05	06	07	08	3 09
1 412	2.5.2.1.1.5.1.2	▼ Frames	23 May 2019	24 Jun 2020						Fram	nes	<u></u>	+								÷			+					
1 413	2.5.2.1.1.5.1.2.1	Design Completion	23 May 2019	19 June 2019				Desi	ign Co	mpleti	ion	- -	\Rightarrow	-															
1 414	2.5.2.1.1.5.1.2.2	▷ Procurement	20 June 2019	14 Aug 2019						Pr	ocur	ement		•		¬ N	/&S	SEM (Char	mber (GE2	/1							
1 415	2.5.2.1.1.5.1.2.3	Manufacturing (in batches of XX frames)	15 Aug 2019	17 Jun 2020					Ma	anufac	turin	g (in b	atch	es of	🤇	<u> </u>					+			+					
1 416	2.5.2.1.1.5.1.2.3.1	Batch A1L (15 frames)	15 Aug 2019	11 Sep 2019							Bat	ch A1I	L (15	fram	es) (Ы												
1 417	2.5.2.1.1.5.1.2.3.2	Batch A1S (15 frames)	15 Aug 2019	11 Sep 2019							Bat	h A18	S (15	fram	es) (
1 418	2.5.2.1.1.5.1.2.3.3	Batch A2L (15 frames)	12 Sep 2019	9 Oct 2019								Bato	h A2	2L (15	fram	nes)		Н											
1 419	2.5.2.1.1.5.1.2.3.3	Batch A2S (15 frames)	10 Oct 2019	6 Nov 2019									Bat	ch A2	S (1	5 frar	mes)		Ъ										
1 420	2.5.2.1.1.5.1.2.3.3	Batch A3L (15 frames)	7 Nov 2019	4 Dec 2019										Bat	tch A	3L (1	15 fra	mes)	Ċ										
1 421	2.5.2.1.1.5.1.2.3.3	Batch A3S (15 frames)	5 Dec 2019	1 Jan 2020											Ва	tch A	A3S (15 fra	mes	;)	h								
1 422	2.5.2.1.1.5.1.2.3.3	Batch A4L (15 frames)	2 Jan 2020	29 Jan 2020												В	atch	A4L (1	15 fr	ames))								
1 423	2.5.2.1.1.5.1.2.3.3	Batch A4S (15 frames)	30 Jan 2020	26 Feb 2020													В	atch /	A4S	(15 fr	ame	s) 📺							
1 424	2.5.2.1.1.5.1.2.3.3	Batch A5L (15 frames)	27 Feb 2020	25 Mar 2020														В	Batch	n A5L	(15 f	frames		Ъ					
1 425	2.5.2.1.1.5.1.2.3.3	Batch A5S (15 frames)	26 Mar 2020	22 April 2020																Batch	A55	3 (15 fr	ames)		Ъ				
1 426	2.5.2.1.1.5.1.2.3.3	Batch A6L (15 frames)	23 April 2020	20 May 2020																-	Batc	h A6L	(15 fra	mes)		7			
1 427	2.5.2.1.1.5.1.2.3.3	Batch A6S (15 frames)	21 May 2020	17 June 2020																		Batch	A6S (15 fran	nes)				
1 428	2.5.2.1.1.5.1.2.4	Shipping to CERN (in batches)	12 Sep 2019	24 Jun 2020						SI	hippi	ng to	CER	N (in	batch	nes)	\Box												

RISK MANAGEMENT

Case I: unavailability of detector components

- Late delivery of components
 - Risk: medium
- High rejection rate components outside specifications
 - Risk: medium (GEM foils new vendor)

CORE CBS Number	Merlin WBS Number	Activity	Risk ID	Risk Description	Impact Description	Likelihood (L/M/H)	CORE cost impact (L/M/H)	Schedule Impact (L/M/H)	Mitigation	Action
2.5.2.1	2.5.2.1	GE2/1 Detectors	4.1	external vendors or delays in manufacturing	If quality of GEM foils is inadequate, foils will need to be re- made leading to delays in the schedule and potentially lead to cost increases. If the impact on schedule is severe enough, it can impact readiness of the detector for installation	М	L	М	Mitigation includes (i) putting contracts in place with two vendors to allow adequate floats in the schedule to be able to accommodate potential dealsy in manificaturing, (i) rigorous quality monitoring process of all arriving foils so any problems are discovered immediately to reduce schedule impact, (iii) schedule monistring, (iv) adequate floats in the schedule to allow absorbing potential delays, (v) ensuring that contracts with vemors explicitly account for mechanisms to deal with quality problems to minimize impact on the cost incurred by the project.	Work with the vendors to correct the problem and speed up the foil manufacturing schedule, identify additional manupower to increase the number of shifts at module production sites and the chamber assembly facility at CERN to increase the throughput so that delays compared to original schedule are minimized.
			4.2	Delay in detailed designs of 8 different module types	Delay in completion of the detailed engineering drawings/designs can delay the start of production of GEM modules and impact the schedule.	L	L		periodic reviews) to ensure that falling behind schedule is detected early and additional engineering resources can be directed to ensure any delays are remedied or minimized	identify additional resources (expert engineers) to speed up the completion of the designs. Work with the module production sites so that whatever delay remains can be absorbed by increasing the module produciton throughput to minimize impact on the overall schedule.
			4.3	Delay in production of other module and chamber components	If components required for module or chamber construction arrive late, that can potentially delay production of GEM modules.	М	L	M	production yield while working with vendors on R&D and prototyping, work with vendors on streamlining the process to minimize mistakes in	Work with the vendor to speed up the process. If the delay is signficant, allocate additional resources to use faster shipping options to reduce schedule delay, work on increasing the througput of module production sites, use faster shipping options for shipment of ready modules to CERN.
			4.4	sites	Lower than expected rate of module produciton at one or more pmodule production sites has the potential of delaying completion of GEM modules and the overall schedule of production and manufacturing.	L	L	М	Mitigate by (i) ensuring that the number of production sites and their throughput are sufficient so the schedule can accommodate reasonable delays or lower production rate from some of the production sites, (ii) ensuring sufficient floats in the schedule so the impact on chamber assembly and dector installation is minimal should this risk realize, (iii) plan so that should there be a necessity the production rate at other assembly since the increased by redirecting manopower and going to a larger number of shifts per day to compensate for reduced throughput at other sites, (iv) rigorous smointoring of production sites preparation and certification and later regular monitoing of the production schedule so that any delays are detected early and risks can be responded to minimizing the impact.	imodule production sites and the chamber assembly facility at CERN to
			4.5	GE1/1 production schedule delays impacting GE2/1 schedule	As GE2/1 production relies on the same resources (manpower, module production sites, chamber assembly sites, storage and comists stand facilities at CERN) as GE1/1 production, delays in GE1/1 construction project can reduce the available manpower and access to facilities involved in production of GE2/1 detectors. The risk can realize independently of whether GE1/1 is installed on time and the severity is determined by how much of the delay is accumulated. Up to 6 month delay (max schedule impact associated to this risk) can be absorbed by the available float in the schedule.	L	L	М	Mitigate by (i) ensuring that the number of production sites and their throughut are sufficient so the schedule can accommodate reasonable delays or lower production rate from some of the production sites, (ii) ensuring sufficient floats in the schedule so the impact on chamber assembly and detector installation is minimal should this risk realize, (iii) plan so that should there be a necessity the production rate at other assembly site can be increased by redirecting manopower and going to a larger number of shifts per day to compensate for reduced throughput at other sites, (iv) rigorous monitoring of production sites preparation and certification and later regular monitoring of the production schedule so that any delays are detected early and risks can be responded to minimizing the impact.	

RISK MANAGEMENT

rger number of shifts per day to compensate for reduced throughput at

other sites, (iv) rigorous monitoring of production sites preparation and

certification and later regular monitoing of the production schedule so

that any delays are detected early and risks can be responded to

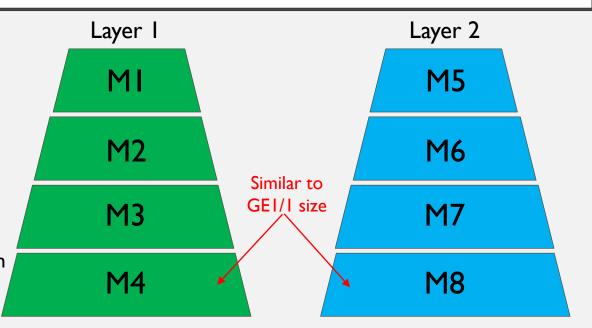
Case II: failure at production sites

everity is determined by how much of the delay is

cumulated. Up to 6 month delay (max schedule impact

ociated to this risk) can be absorbed by the available float

- Assembly/test rate slower than expected
 - Risk: low (based on GEI/I experience)
- One or several sites not ready for mass-production
 - Risk: low (already 7 sites approved out of 4 needed)


CORE CBS Number	Merlin WBS Number	Activity	Risk ID	Risk Description	Impact Description	Likelihood (L/M/H)	CORE cost impact (L/M/H)	Schedule Impact (L/M/H)	Mitigation	Action
2.5.2.1	2.5.2.1	GE2/1 Detectors	4.1	Sub- and d quality of the GEM foils delivered by exter al vindors or delays in manufacturing	If quality of GEM foils is inadequate, foils will need to be re- made leading to delays in the schedule and potentially lead to cost increases. If the impact on schedule is severe enough, it can impact readiness of the detector for installation	М	L	М	Mitigation includes (i) putting contracts in place with two vendors to allow adequate floats in the schedule to be able to accommodate potential dealsy in manificaturing, (i) rigorous quality monitoring process of all arriving foils so any problems are discovered immediately to reduce schedule impact, (iii) schedule monitoring, (iv) adequate floats in the schedule to allow absorbing potential delays, (v) ensuring that contracts with vendors explicitly account for mechanisms to del with quality problems to minimize impact on the cost incurred by the project.	Work with the vendors to correct the problem and speed up the foil manufacturing schedule, identify additional manpower to increase the number of shifts at module production sites and the chamber assembly facility at CERN to increase the throughput so that delays compared to original schedule are minimized.
			4.2	Lelayin detailed designs of 8 different module types	Delay in completion of the detailed engineering drawings/designs can delay the start of production of GEM modules and impact the schedule.	L	L		periodic reviews) to ensure that falling behind schedule is detected early and additional engineering resources can be directed to ensure any delays are remedied or minimized	identify additional resources (expert engineers) to speed up the completion of the designs. Work with the module production sites so that whatever delay remains can be absorbed by increasing the module production throughput to minimize impact on the overall schedule.
			4.3	D say in production of other module and chamber of mponents	If components required for module or chamber construction arrive late, that can potentially delay production of GEM modules.	М	L	M	production yield while working with vendors on R&D and prototyping, work with vendors on streamlining the process to minimize mistakes in	Work with the vendor to speed up the process. If the delay is significant, allocate additional resources to use faster shipping options to reduce schedule delay, work on increasing the through of module production sites, use faster shipping options for shipment of ready modules to CERN.
			4.4	Insufficient module assembly rate at certain production sites	Lower than expected rate of module production at one or more princulae production sites has the potential of delaying completion of JEM modules and the overall schedule of production and manufacturing.	L	L	М	Mitigate by (i) ensuring that the number of production sites and their throughput are sufficient so the schedule can accommodate reasonable delays or lower production rate from some of the production sites, (ii) ensuring sufficient floats in the schedule so the impact on chamber assembly and detector installation is minimal should this risk realize, (iii) plan so that should there be a necessity the production rate at other assembly since the increased by redirecting manopower and going to a larger number of shifts per day to compensate for reduced throughput at other sites, (iv) rigorous monitoring of production sites preparation and certification and later regular monitoing of the production schedule so that any delays are detected early and risks can be responded to minimizing the impact.	Allocate additional resources to increase the number of shifts at one or more module production sites and the chamber assembly facility at CERN to increase the throughput so that delays compared to original schedule are minimized. Allocate resources to use faster shipping options to reduce schedule delays.
			4.5	GE1/1 production schedule delays impacting GE2/1 schedule	As GE2/1 production relies on the same resources (manpower, module production sites, chamber assembly sites, storage and cosmis stand facilities at CERN) as GE1/1 production, delays in GE1/1 construction project can reduce the available manpower and access to facilities involved in production of GE2/1 detectors. The risk can realize independently of whether GE1/1 is installed on time and the	L	L			identify and allocate resources to speed up the completion of the GE1/1

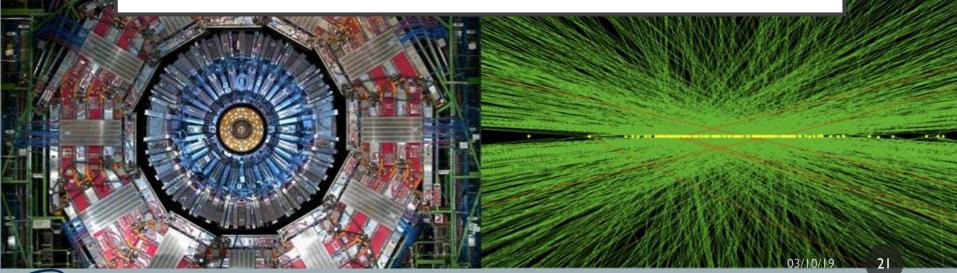
Main risks are related to detector components but the GEI/I experience gives good confidence and knowledge to anticipate possible delays

CMS

RISK MANAGEMENT

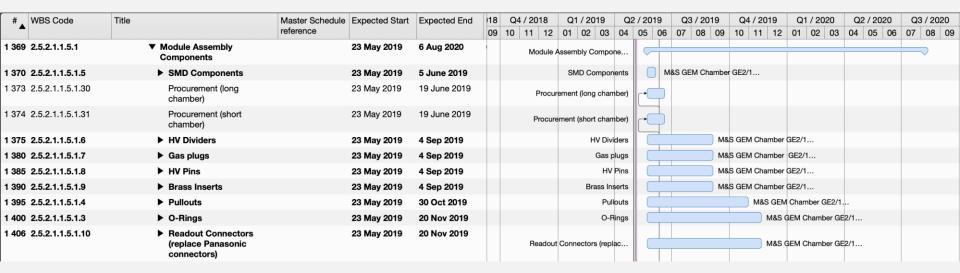
- Sharing of the module production over 8 production sites
- Each production line is assigned one type of GE2/1 modules
- 38 modules/line
- Belgium and Sri-Lanka will produce extra 19 modules, each to be tested in Germany

Country	Nb of Prod. lines	Module types	Nb of Modules	Comments	Demonstrated
Italy	2	M6 + M8	38 (M6) + 38 (M8)		capability to prod —— large size GEI/I
Belgium	1	M3 +M1	38 (M3) + 19 (M1)		high rate (~3 day per module)
Germany	 *	MI	-	*QC only	per module)
India	2	M2	38 (M2)		Proximity of CEI
China	1	M5	38	To be approved	experts and large infrastructure
Sri-Lanka	I	M4 + M1	38 (M4) +19 (M1)		capacity
Pakistan	I	M7	38		03/10/19 19



SUMMARY

- GE2/I and RnD and prototyping progressing very fast
- Change control performed for GE2/I optical transceivers
 - We are back on track with schedule with a minimal delay
 - Given a new need-by date we have solid floating time
- GE2/I prototype is fully integrated and efficiency studies are ongoing
- Production schedule is well established and production process is under control

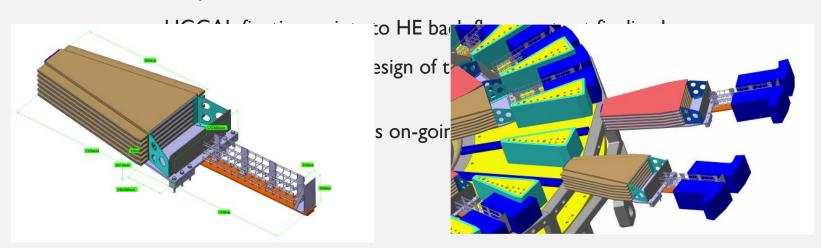

BACKUP

Small Mechanics and Electrical Components

PCBs: 304 Readout and Drift Boards

# .	WBS Code	Title	Master Schedule	Expected Start	Expected End	/ 2018	Q1 /	2019	Q2	/ 201	9	Q3	/ 2019	9	Q4 /	/ 201	9	Q1	/ 2020		Q2 / 2	2020	Q3	/ 202	0	Q4 /	2020
^			reference			1 12	01 0	2 03	04	05	06	07	08	09	10	11	12	01	02 03	3 0	4 05	06	07	80	09 1	0 1	11 12
264	2.5.2.1.1	▼ GE2/1 Detector Components & Assembly		23 May 2019	22 Jun 2022	GE2/1 [Detector (Compone	ent											+							
265	2.5.2.1.1.1	▼ RO PCB		23 May 2019	3 July 2020			RO	РСВ	<u></u>							_			÷							
266	2.5.2.1.1.1.1	Design Completion		23 May 2019	19 June 2019		Desig	n Compl	etion	—																	
267	2.5.2.1.1.1.12	 Procurement for installing new type Panasonic connectors (excludes cost of the connectors themselves) 		23 May 2019	3 July 2020	Procurer	nent for i	nstalling	ne														M&S	GEM	Chamb	er Gl	E2/1
268	2.5.2.1.1.1.2	Procurement (long chamber)		20 June 2019	14 Aug 2019		Procure	ment (lor	ng cha	mber)			M&	S GE	M Cha	mber	GE2/1	1									
269	2.5.2.1.1.1.3	Procurement (short chamber)		20 June 2019	14 Aug 2019		Procurer	nent (sho	ort cha	mber)																	
270	2.5.2.1.1.2	▼ Drift PCB		23 May 2019	27 May 2020			Drift	РСВ	<u></u>							_			÷		\supset					
271	2.5.2.1.1.2.1	Design Completion		23 May 2019	19 June 2019		Desig	n Compl	etion	—	\rightarrow																
272	2.5.2.1.1.2.2	▷ GE21 Drift PCB Procurement		20 June 2019	14 Aug 2019		GE21 Dr	ift PCB F	rocure	ement) N	/&S	GEM С	hamb	er GE2	2/1									
273	2.5.2.1.1.2.3	 GE21 Drift PCB Manufacturing (in batches) 		15 Aug 2019	20 May 2020			GE21	Drift P	СВ Ма	anufac	turi	<u> </u>							+							
287	2.5.2.1.1.2.4	 Shipping to Production Sites (in batches) 		11 Nov 2019	27 May 2020					Sh	nipping	to P	roducti	ion S	ites												

Frames: 304 External/ 304 internal kits


# _	WBS Code	Title	Master Schedule Expected St	art Expected End	18	Q4	4 / 2018	8	Q1/2019		Q2 /	201	9	Q3	/ 20	19	Q.	1/201	9	Q1	/ 202	0:	Q2 /	/ 2020	0 (Q3 /	2020
			reference		09	10	11 1	12	01 02 03	3 04	4 ()5	06	07	80	09	10	11	12	01	02	03	04	05 (06 0	7 0	8 09
1 412	2.5.2.1.1.5.1.2	▼ Frames	23 May 201	9 24 Jun 2020					F	rames	s	<u></u>															
1 413	2.5.2.1.1.5.1.2.1	Design Completion	23 May 2019	9 19 June 2019					Design Comp	pletion	n _(•															
1 414	2.5.2.1.1.5.1.2.2	▷ Procurement	20 June 201	9 14 Aug 2019						Proc	uren	nent				M&S	GEM	Chamb	er G	E2/1							
1 415	2.5.2.1.1.5.1.2.3	Manufacturing (in batches of XX frames)	15 Aug 201	9 17 Jun 2020					Manu	ufactur	ring	(in ba	tche	s of	<u>_</u>										\Rightarrow		
1 416	2.5.2.1.1.5.1.2.3.1	Batch A1L (15 frames)	15 Aug 2019	11 Sep 2019						В	Batch	A1L	(15 1	rames)												
1 417	2.5.2.1.1.5.1.2.3.2	Batch A1S (15 frames)	15 Aug 2019	11 Sep 2019						В	atch	A1S	(15 1	rames)												
1 418	2.5.2.1.1.5.1.2.3.3	Batch A2L (15 frames)	12 Sep 2019	9 Oct 2019								Batch	A2I	. (15 fr	ames) 📺											
1 419	2.5.2.1.1.5.1.2.3.3	Batch A2S (15 frames)	10 Oct 2019	6 Nov 2019									Bato	h A2S	(15 fr	ames)	Ċ										
1 420	2.5.2.1.1.5.1.2.3.3	Batch A3L (15 frames)	7 Nov 2019	4 Dec 2019										Batch	A3L	(15 fra	ames)		٦l								
1 421	2.5.2.1.1.5.1.2.3.3	Batch A3S (15 frames)	5 Dec 2019	1 Jan 2020											Batch	A3S	(15 fra	ames) (Н							
1 422	2.5.2.1.1.5.1.2.3.3	Batch A4L (15 frames)	2 Jan 2020	29 Jan 2020												Batch	A4L	15 fram	es)		1						
1 423	2.5.2.1.1.5.1.2.3.3	Batch A4S (15 frames)	30 Jan 2020	26 Feb 2020													Batch	A4S (15	fran	nes) (1					
1 424	2.5.2.1.1.5.1.2.3.3	Batch A5L (15 frames)	27 Feb 2020	25 Mar 2020													1	Batch A	5L (1	5 fram	es)						
1 425	2.5.2.1.1.5.1.2.3.3	Batch A5S (15 frames)	26 Mar 2020	22 April 2020														Bat	tch A	5S (15	frame	s)					
1 426	2.5.2.1.1.5.1.2.3.3	Batch A6L (15 frames)	23 April 202	0 20 May 2020															Ва	atch A	6L (15 1	frame	s) 📋				
1 427	2.5.2.1.1.5.1.2.3.3	Batch A6S (15 frames)	21 May 202	17 June 2020																Bat	ch A69	S (15	frames) 📩			4
1 428	2.5.2.1.1.5.1.2.4	 Shipping to CERN (in batches) 	12 Sep 2019	9 24 Jun 2020						Ship	ping	to C	ERN	(in ba	tches)						0.	3/10)/19	2		24

ME0 DESIGN

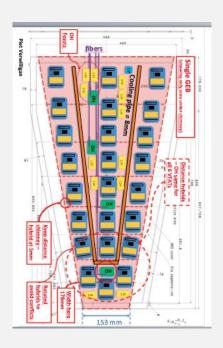
- Mechanical Design
 - HGCAL Envelope has been frozen
 - Space for ME0 stack insertion confirmed

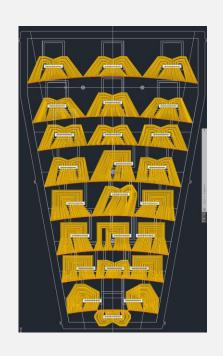
CMS

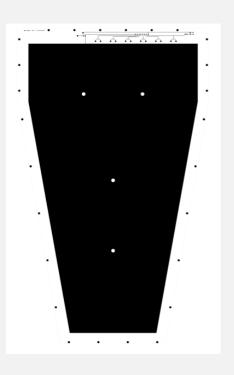
ME0 DESIGN

Eléctronics Design

- FPGA-less on-chamber electronics design is ready
 - Prototypes produced
 - ASIAGO (ME0 OptoHybrid board)
 - PIZZA (Special board to place ASIAGO over GE2/I GEB)
 - Adapter for FireFly transceivers until VIplus aren't available
 - Integration started using GE2/1 detector
 - Communication between LpGBT and VFAT chips is established!

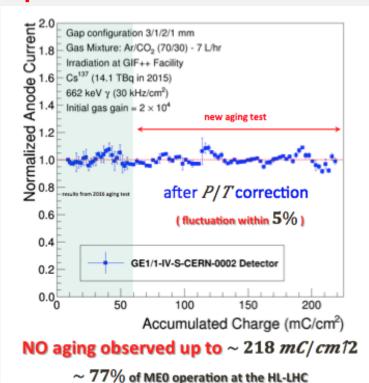



CMS


ME0 DETECTOR PROTOTYPES

Réduced space under the chamber cover

- Foils with double face segmentation layout choosen
- 9 prototype modules production launched at CERN



MEO AGING STUDIES AT GIF++

137Cs Source

Chamber CERN GEM Foils

Total integrated Charge at GIF++ up to 22nd March: ~ 218 mC/cm²

Chamber Korean GEM Foils

Total integrated Charge at GIF++

up to 22nd **March**: ~ 82 *mC/cm*²

NO aging observed up to $\sim 82 \ mC/cm^2$

10 years of GE2/1 operation at the HL-LHC (safety factor 27) $\sim 29\%$ of ME0 operation at the HL-LHC

ME0 MILESTONES FROM TDR

	ID	Milestone title	Date	
	ME0.RD.DET.1 ME0.RD.FE.1 ME0.RD.BE.1	ME0 R&D: Key detector system design parameters are defined based on performance	21.Mar.17	Achieved
Design	ME0.RD.DET.2	requirements ME0 R&D: Irradiation studies and assess- ment of performance and longevity with small prototypes completed	11.Jul.2017	Achieved
	ME0.RD.FE.2 ME0.RD.BE.2	ME0 R&D: On-chamber & off-chamber elec- tronics preliminary principal design com-	25.Jul.17	Achieved
	ME0.RD.DET.3	plete and interfaces defined ME0 R&D: Chamber (stack) prototype me- chanical design completed	18.Dec.2018	Achieved
	ME0. RD. FE.3	ME0 R&D: On-chamber electronics engi- neering design completed and validated	23.Aug.2019	Delayed till 14.01.2020
ping	ME0.RD.DET.4	ME0 R&D: Chamber (stack) prototype me- chanical prototype testing and validation complete	24.Dec.2019	Expect on-time
Prototyping	ME0. RD. FE.4	MEO R&D: On-chamber electronics proto- type electronics manufacturing and testing is complete	21.Aug.2020	Expect on-time
	ME0.RD.BE.3	ME0 R&D: Integration of the on-chamber and off-chamber electronics and perfor- mance assessment complete	8.Jan.2021	Expect on-time
	ME0.RD.DET.5 ME0.RD.FE.5	ME0 R&D: Assessment of the electron- ics performance and integration with the demonstrator chamber completed	30.Mar.2021	Expect on-time
	ME0.RD.DET.6	ME0 R&D: Beams and Cosmics testing of the demonstrator chamber and performance qualification completed	31.Aug.2021	Expect on-time
		ME0 PRR for the Foil Production ME0 ESR ME0 Detector EDR	14.Jun.2021 27.Apr.2021 28.Oct.2021	Projected on-time Projected on-time Projected on time Projected on time

The "waterfall" plot for the updated R&D schedule

	<u> </u>				
#▲ Tit	е	Expected Start	Expected End		/ 2020 8 9
626	▼ Milestones	July 11, 2018	Aug 21, 2020	Milestones 🗸	\Rightarrow
627	GE2/1 R&D T4: Special ROB-0A prototype manufactured and ready for installation on chamber	July 11, 2018	July 11, 2018	GE2/1 R&D T4: Special ROB-0A prototype manufactu 🔷	
628	GE21 R&D T4: Gen-1 Prototypes Electronics Designs Complete, Ready for Project Level Review	Sep 13, 2018	Sep 13, 2018	GE21 R&D T4: Gen-1 Prototypes Electronics Designs 🔷	
629	GE2/1 R&D T4: Make a decision on the copper layer on ROB	Sep 20, 2018	Sep 20, 2018	GE2/1 R&D T4: Make a decision on the copper layer 🔷	
630	GE2/1 R&D T5: On-chamber electronics prototypes engineering design complete	Sep 28, 2018	Sep 28, 2018	GE2/1 R&D T5: On-chamber electronics prototype	
631	GE2/1 R&D T4: Special ROB-0B prototype manufactured and ready for installation on chamber	Oct 4, 2018	Oct 4, 2018	GE2/1 R&D T4: Special ROB-0B prototype manufact ◆	/
632	GE2/1 R&D T4: ROB-1B prototype ready for installation on the demonstrator chamber	Nov 29, 2018	Nov 29, 2018	GE2/1 R&D T4: ROB-1B prototype ready for installati •	
633	GE2/1 R&D T4: Initial Testing of GEB-1 and Mechanical Integration Validation Complete	Dec 5, 2018	Dec 5, 2018	GE2/1 R&D T4: Initial Testing of GEB-1 and Mechanic	/
634	GE2/1 R&D T4: ROB-1A prototype ready for installation on the demonstrator chamber	Dec 7, 2018	Dec 7, 2018	GE2/1 R&D T4: ROB-1A prototype ready for installati •	
635	GE2/1 R&D T4: Make a decision on the ROB strip layout configuration	Dec 13, 2018	Dec 13, 2018	GE2/1 R&D T4: Make a decision on the ROB strip lay ◆	
636	GE21 R&D T4: uTCA-based Backend System for Gen-1/2 GE21 electronics is Ready for Trial Integration with Gen-1 on-Chamber Electronics and Preliminary Measurements of Noise with Stage-1 Demonstrator	Dec 21, 2018	Dec 21, 2018	GE21 R&D T4: uTCA-based Backend System for Gen ◆	
637	GE21 R&D T4: uTCA-based Backend System for Gen-1/2 GE21 electronics is Ready for Full Integration Testing with Gen-1 on-Chamber Electronics	Jan 4, 2019	Jan 4, 2019	GE21 R&D T4: uTCA-based Backend System for Gen	
638	with the Stage-1 Demonstrator @ CERN	Feb 19, 2019	Feb 19, 2019	GE2/1 R&D T4: All Gen-1 Electronics Boards for one	
639	Full Module]	Feb 19, 2019	Feb 19, 2019	GE2/1 R&D TS: On-Chamber Prototype Electronic	
640		Feb 20, 2019	Feb 20, 2019	GE2/1 R&D T4: Pre-Integration and GEB production T	
641	* '	Mar 12, 2019	Mar 12, 2019	GE21 R&D T4: ROB-2 Boards Testing @ CERN Comp ◆	
642	GE2/1 R&D T4: Testing and Assessment of the modules for Stage-2A Demonstrator w/ APV electronics Complete		Mar 27, 2019	GE2/1 R&D T4; Testing and Assessment of the modul	
643		May 3, 2019	May 3, 2019	GE2/1 RAD T4: Ready for Foil PRR (Modified due to	
644		May 22, 2019	May 22, 2019	GEZ/1 Ts: PRR for Foil Production	
645	Complete	May 17, 2019	May 17, 2019	GE2/1 R&D T4: Testing and Assessment of Stage-2A	
646	•	May 17, 2019	May 17, 2019	GE2/1 R&D T4: Ready for EDR →	
647	GE2/1 R&D T5: Performance of the Demonstrator chamber with Prototype Electronics is Validated	May 22, 2019	May 22, 2019	GE2/1 R&D TS: Performance of the Demonistrator ◆	
648	GE2/1 E5: EDR (CMS TC - External Constraint)	May 22, 2019	May 22, 2019	GE2/1 E5: EDR (CMS TC - External Constraint) →	
649	GE2/1 R&D T4: All Gen-1 On-Chamber Prototype Electronics Manufacturing and Testing is Complete. Ready for full integration with the Stage-2A Demonstrator @ CERN.	May 29, 2019	May 29, 2019	GE2/1 R&D T4: All Gen-1 On-Chamber Profetype Ele	
650	GE2/1 R&D T4: Testing and Assessment of Stage-2A Demonstrator w/ Gen-1 electronics Complete	Jun 18, 2019	Jun 18, 2019	GE2/1 R&D T4: Testing and Assessment of Stage-2A ♦	
651	with Gen-2 on-Chamber Electronics	Aug 9, 2019	Aug 9, 2019	GE21 R&D T4: uTCA-baseid Backend System for Gen ◆	
652	GE2/1 R&D E5: RISK MANAGEMENT DECISION POINT: LpGBT or GBTX-based readout selected for ESR	Aug 30, 2019	Aug 30, 2019	GE2/1 RAD E6: RISK MANAGEMENT DEC SION PO ♦	
653		Oct 1, 2019	Oct 1, 2019	GE21 R&D T4: Hardware/firmware ready for integrate	
654	Integration	Nov 4, 2019	Nov 4, 2019	GE21 R&D T4: Components of the ATCA-based Back	
655		Oct 31, 2019	Oct 31, 2019	GE21 R&D T4: Gen-2 Electronics Design Complete; R	
656	GE2/1 R&D T4: Packaged Chips Bonding to PlugInCards-2 starts at a European vendor	Nov 28, 2019	Nov 28, 2019	GE2/1 R&D T4: Packaiged Chips Bonding to PlugInCa ♦	
657		Dec 27, 2019	Dec 27, 2019	GE21 R&D T4: Packaged VFAT3 performance testing	
658	mechanical integration studies @ CERN	Jan 31, 2020	Jan 31, 2020	Ready for ESR (GBTX):Apr. 3 2020	
659	· · · · · · · · · · · · · · · · · · ·	April 3, 2020	April 3, 2020		
660		April 3, 2020	April 3, 2020	GE2/1 RAD TS OPTION; Ready for ESR in GBTX-IA.	
661	with Gen-3 on-Chamber Electronics	Mar 23, 2020	Mar 23, 2020	GE21 R&D T4: ATCA-based Backend System for Gen ♦	
662		Mar 27, 2020	Mar 27, 2020	GE21 R8D T4 All Gen-3 Electronics Components De	
663		Jun 19, 2020	Jun 19, 2020	GE21 RAD T4: GEB-3 Boards Arrive to CERN ♦	
664		Jun 26, 2020	Jun 26, 2020	GE21 R&D T4: Development of the Software and Firm	
665	CERN	July 17, 2020	July 17, 2020	Doody for ECD (LaCDT) Aver 21 2020	
666	GE2/1 R&D T4: Testing and Assessment of Stage-3 Demonstrator w/ Gen-3 electronics Complete. Ready for ESR		Aug 21, 2020	Ready for ESR (LpGBT): Aug. 21 2020 GE2/1 RAD T4: Testing and Assessment of Stage-3 D	\Diamond
667	GE2/1 R&D T5: On- and Off-Chamber Readout Prototype Electronics Integration and Performance Studies Completed		Aug 21, 2020	GE2/1 R&D T5: On- and Off-Chamber Readout Pro	<u></u>
668		Aug 21, 2020	Aug 21, 2020	GE2/1 ES: ESR (CMS TO - External Constraint)	\langle
	INFN Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati				