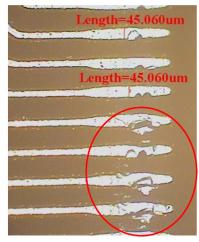
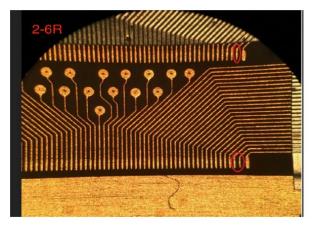


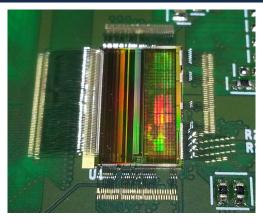
24th GEM Workshop

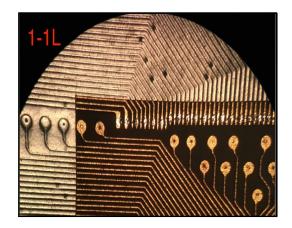

VFAT3b package

Francesco Licciulli INFN Sezione di Bari

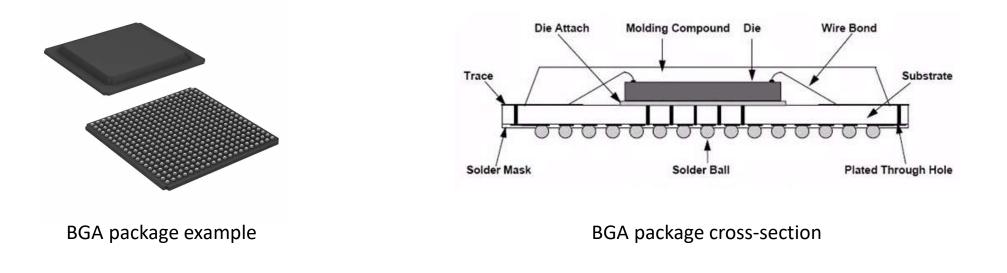


Why packing? The package will improve the plugin card production yield thanks to an easier design, less constrains for the board production and the replacement of the VFAT3 bonding phase with a much more reliable soldering procedure.


Some problems encountered during hybrid production*:

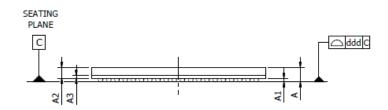

Pad catering

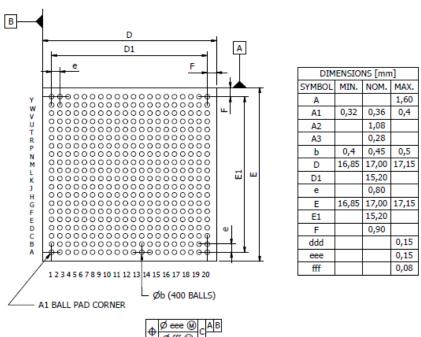
Over-etching on the channel pads: pads width about 37 μ m < IPC standard for wire bonding 48 μ m.


VFAT3 bondend on the hybrid

Breakage on the PCB surface/tracks and scratches of the landing pads/vias.

VFAT3 will be packaged in a full Ball Grid Array (BGA) package.


- The substrate is a small PCB, realized by means of advanced techniques, that hosts the die and provides the connections between the bonding wires and the solder balls.
- Solder balls are used for the electrical connection with an external PCB, mechanical support and heat transfer.
- Molding compound, plastic in this case or a metal coverage in others, protect the die and the wire bonding.

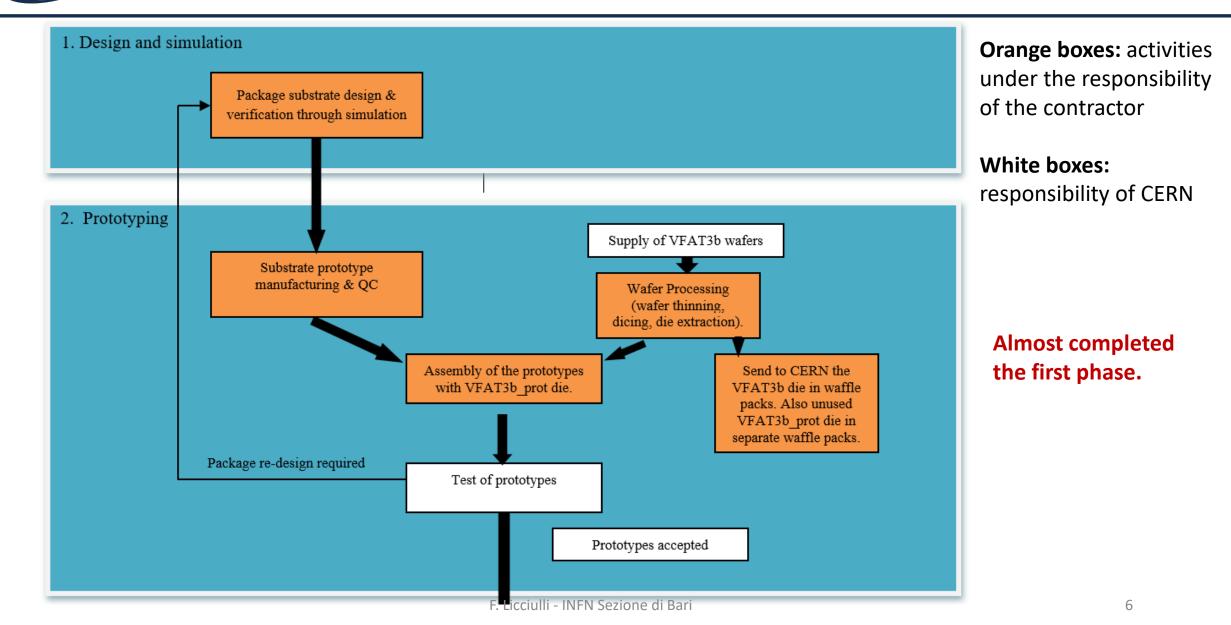

INFN Package specifications

Package specifications:

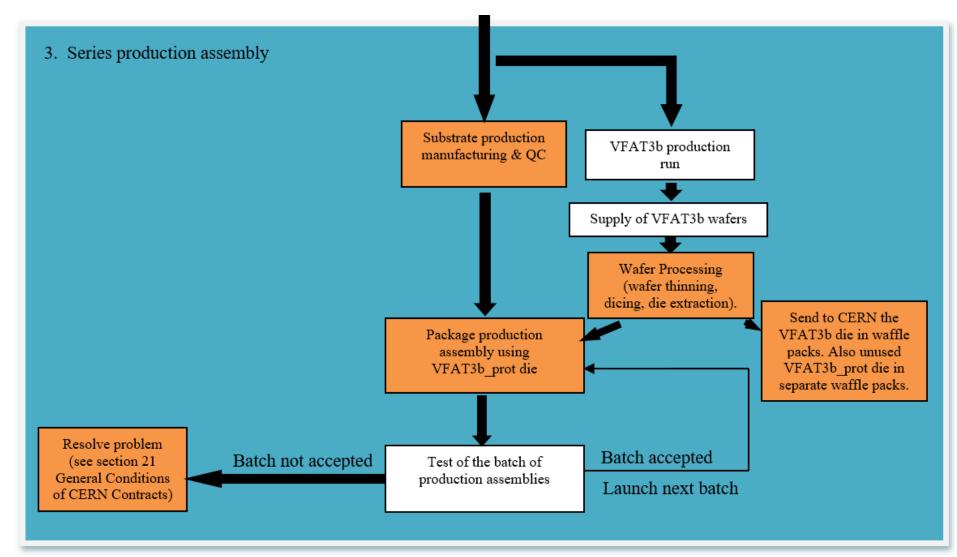
- Ball grid array: 20 x 20
- Size: 17 x 17 mm²
- Ball pitch: 0.8 mm
- Plastic encapsulation
- Ball bonding
- Ball solder composition: SAC 305 (96.5% Sn, 3% Ag, 0.5% Cu)
- 7 SMD passive components inside the package:
 - 4 capacitors for power supply decoupling,
 - 2 capacitors for reference decoupling (ADCs),
 - 1 resistor for current monitoring.

PACKAGE OUTLINE LFBGA 17x17 400 R20x20 PITCH 0,8 BALL 0,45

													10		ar a						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
	IN_128	IN_127	GND_FE	IN_126	IN_125	GND_FE	IN_124	IN_123	GND_FE	DiffBuffOutp	DiffBuffOuts	CFDInn	CFDInp OFD. OUT	SCAH_INO_C	SCAN_ENO_C	SCAN_OUTO_C	SCAN_IN1_A	SCAM_OUT1_C	HDLC_ADDRESS_0	HDLC_ADDRESS_3	
	IN_122	GND_FE	IN_121	IN_120	GND_FE	IN_119	IN_118	GND_FE	IN_117	thaff_ibiar	Shaporin	DiffBuffla	CFD_OUT	SCAN_ENO_A	SCAN_OUTO_A	SCAN_IN1_C	SCAN_EN1_C	SCAM_OUT1_B	HDLC_ADDRESS_1	HDLC_ADDRESS_4	В
	GND_FE	IN_116	IN_115	GND_FE	IN_114	IN_113	GND_FE	IN_112	IN_111	ProAmpOut	ShaperOut	SCAN_INO_A	SCAN_INO_B	SCAN_ENO_B	SCAN_OUTO_B	SCAN_IN1_B	SCAN_EN1_B	SCAH_OUT1_A	HDLC_ADDRESS_2	HDLC_ADDRESS_5	C
	IN_110	IN_109	GND_FE	IN_108	IN_107	GND_FE	IN_106	IN_105	GND_FE	YDD_FE	YDD_FE	AVDD_CFD	AVDD_CFD	DYDD_CFD	DYDD_CFD	YDD	SCAN_EN1_A	BIST_OK	HDLC_ADDRESS_7	HDLC_ADDRESS_6	
	IN_104	GND_FE	IN_103	IN_102	GND_FE	IN_101	IN_100	GND_FE	IN_99	YDD_FE	GND_FE	GND_CFD	GND_CFD	DYSS_CFD	DV\$\$_CFD	YDD	BIST_END	TP_IH_SI	TP_IM_SE	BIST_START	F
	GND_FE	IN_98	IN_97	GND_FE	IN_96	IN_95	GND_FE	IN_94	IN_93	YDD_FE	GND_FE	GND_CFD	GND_CFD	D¥SS_CFD	DV\$\$_CFD	YDD	SPI_EN	SPL_D0	VSS	¥SS	
-	IN_92	IN_91	GND_FE	IN_90	IN_89	GND_FE	IN_88	IN_87	GND_FE	YDD_PROT	GND_FE	GND_FE	GND_FE	¥\$\$	YDD_IO	YDD	SPI_CLK	SPI_DI	VSS	TU_S=T_p	G
	IN_86	IN_85	GND_FE	IN_84	IN_83	IN_82	GND_FE	IN_81	IN_80	GND_FE	GND_FE	GND_FE	GND_FE	884	YDD_IO	YDD	SCAN_CLKO_EN	VSS	¥SS	TU_S=T_N	
	IN_79	IN_78	GND_FE	IN_77	IN_76	IN_75	GND_FE	IN_74	IN_73	GND_FE	GND_FE	GND_FE	GND_FE	¥88	YDD_IO	YDD	SCAN_CLK	VSS	TU_TED_P_0	¥\$\$	J
		IN_71	IN_70	IN_69	GND_FE	IN_68	IN_67	IN_66	IN_65	GND_FE	GND_FE	GND_FE	GND_FE	VSS	YDD_IO	YDD	PDD_EFUSE	VSS	TU_TED_s_0	¥\$\$	<u> </u>
	IN_64	IN_63	GND_FE	IN_62	IN_61	IN_60	GND_FE	IN_59	IN_58	GND_FE	GND_FE	GND_FE	GND_FE	¥\$\$	YDD_IO	YDD	VDD_SLVS	VSS	VSS	TU_TED_P_1	M
		IN_56	GND_FE	IN_55	IN_54	IN_53	GND_FE	IN_52	IN_51	GND_FE	GND_FE	GND_FE	GND_FE	¥88	YDD_IO	YDD	PDD_SLPS	¥\$\$	¥88	TU_TED_s_1	N
		IN_49 IN_40	IN_48	IN_47	IN_46	IN_45	IN_44	IN_43	IN_42	YDD_PROT	GND_FE	GND_FE	GND_FE	VSS	YDD_IO	YDD	¥\$\$ ¥\$\$	VSS	TU_TED_P_2	¥\$\$ ¥\$\$	P
		IN_35	GND_FE IN_34	IN_39	IN_38 IN_33	GND_FE	IN_37 GND_FE	IN_36	GND_FE IN_30	YDD_FE	GND_FE	GND_CFD	GND_CFD	DVSS_CFD DVSS_CFD	DV\$\$_CFD	YDD		¥\$\$	TU_TED_s_2		B
	GND_FE	GND_FE	IN_28	GND_FE	GND_FE	IN_32	_	IN_31 GND_FE		YDD_FE	GND_FE	GND_CFD	GND_CFD		DVSS_CFD	YDD	¥\$\$ ¥\$\$	TU_TED_P_6	¥85 ¥85	TU_TED_P_3	
	IN_29 IN_23	IN_22	GND_FE	IN_21		IN_26 GND_FE	IN_25 IN_19	_	IN_24	YDD_FE	YDD_FE	AYDD_CFD	AYDD_CFD	DYDD_CFD	DYDD_CFD			TU_TED_s_6	755	TU_TED_s_3	U
	GND_FE	IN_17	IN_16	GND_FE	IN_20 IN_15	IN_14	GND_FE	IN_18 IN_13	GND_FE	oxtAC_puiro	Y_BGR	Int_Frof_ADC0	RST_TEST_MODE	¥88	RECLK_P	¥88 ¥88	TED_P	¥\$\$ ¥\$\$	TU_TED_P_5	¥\$\$ ¥\$\$	v
ЦĘ		GND_FE	_			_	GND_FC	GND_FE	IN_12 IN_6	Iman	¶_Trens_ext	Ext_Fref_ADC1	BOR_DISABLE	¥88	RICLK_s		TED_s	492	TU_TED_&_5		÷
		IN_4	IN_10 GND_FE	IN_9 IN_3	GND_FE	IN_8 GND_FE	_	IN_0	GND_FE	En_ozt_lrof	YDD_TSENS_INT	POR_DISABLE	TP_MOH_CLK	¥\$\$ ¥\$\$	¥\$\$ ¥\$\$	RID_P	¥\$\$ ¥\$\$	TU_TED_P_7	¥\$\$ ¥\$\$	TU_TED_P_4	÷
-	(m_)	- IM_4	GNU_FC	IN_3	1m_2 5	GNU_FC	IN_1	1M_U 8	GND_FE 9	Ext_Iref	7mm 11	EXT_RESET	TP_MON_CLK_EN	435	15	RID_s 16	¥35 17	TU_TID_s_7 18	19	TU_TED_s_4 20	<u>–</u> –
		2	3	•	,	0		0	3	10		12	13	14	G	10		10	13	20	


Analog Inputs

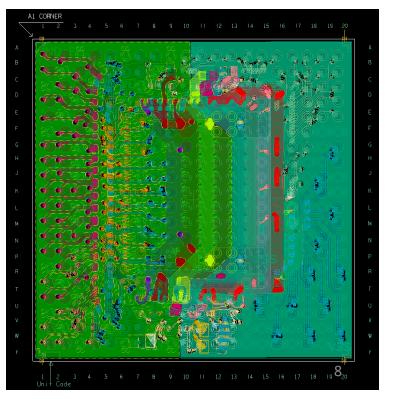
Power Supply & Digital


The proposed signal assignment has been maintained in the substrate design!

F. Licciulli - INFN Sezione di Bari

INFN Flowchart of VFAT3b package production 1/2

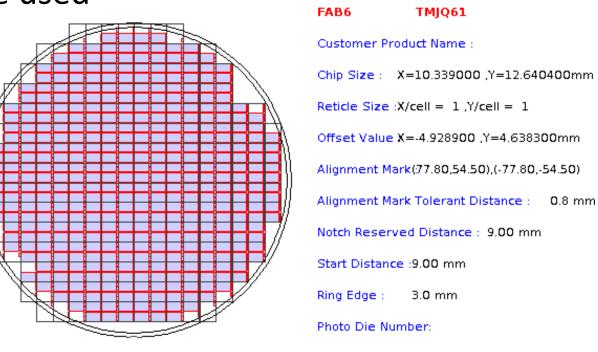
INFN Flowchart of VFAT3b package production 2/2


INFN Package Design: 1st phase

First phase: substrate design completed.

Waiting for:

- RLC parasitic package extraction,
- Characteristic impedance simulation for differential lines,
- Crosstalk simulations,
- Package thermal behaviour simulations.


Once all the simulation results will be collected, the substrate design review will be called.

Prototyping: 2nd phase INFŃ

- VFAT3 package prototypes: 200 pieces
- At CERN were available 4 wafers from GE1/1
- Each wafer has 205 VFAT3b prot dice
- Prototyping: one wafer of GE1/1 can be used

One wafer was sent to IMEC: received on 19th September 2019

VFAT3B : 201 VFAT3B PROT : 205

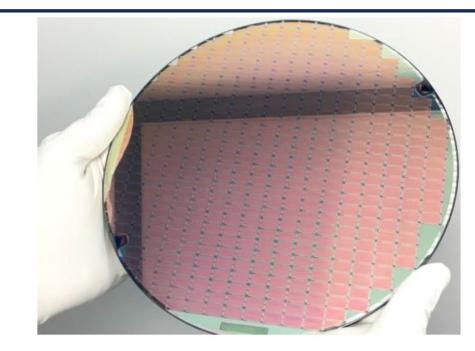
F. Licciulli - INFN Sezione di Bari

SM TID : 863

TMJQ61

3.0 mm

VFAT3 package series production:


- 5000 VFAT3 for GE2/1
- 7000 VFAT3 for ME0

VFAT3 wafer production:

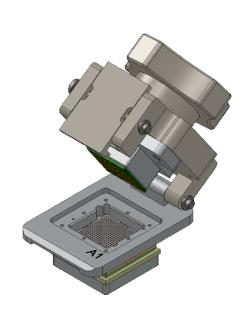
- Wafers are produced in lots of 25,
- The minimum order quantity for production is one lot,
- Orders are placed in terms of lots,
- The cost of one VFAT3b production lot is approximately 42 kUSD,
- Delivery time is about 3 months.

For the full series production 75 wafers are needed! We will get:

- 15375 VFAT3b_prot
- 15075 VFAT3b.

Step	Description	Quantity	Unit Price FCA	Total price		
1	Design files and analysis	1	7,400 (design)			
	reports (substrate design,		2,500 (Elect Sim)	13,900		
	electrical simulation, thermal simulation)		4,000 (Therm Sim)			
2	Prototype chip assemblies	1	7,800 (tooling)			
	including wafer processing (including substrate tooling, manual ball mount kit, grinding, setup and substrates prototype series)	1	5,000 (BMK)	15,794		
		1	2,650 (Setup)			
		200	1.72 (unit package			
			incl substr)			
3	Series production chip assemblies including wafer processing – batch 1	5 000	Including charges			
			to avoid high MoQ	25,394		
			(design and tool			
	(Including substrates for 5K		charges)			
	pcs - Copper wiring – see "13" below)		1.72 (unit package incl substr)			
4	Series production chip	7 000	Including charges			
	assemblies including wafer		to avoid high MoQ	28,831		
	processing – batch 2		(design and tool			
	(including substrates for 7K		charges)			
	pcs - Copper wiring – see "13" below)		1.72 (unit package			
			incl substr)			
TOTAL	83,919					
COST O						
TRANSI	450					
TOTAL						
				84,369		

- The cost of the two series production is almost equal to the design and prototyping due to the high flexibility required by CERN (stop the production in any moment).
- The manufacturer asks for a series production at least of 20k pieces, only the prototyping can be lower.
- Step 3 and step 4 are like new design and prototyping phases.


Deliverable/milestone	Relative timescale	Estimated/actual date
Placement of the order by CERN	Τ _ο	Half July 2019
Design files and associated reports	T ₁	October 2019
Approval by CERN of the substrate design	T ₂	October 2019
Delivery of the prototypes	T ₂ + 8 weeks	December 2019
Approval by CERN of the prototypes	T ₃	June 2020
Approval by CERN to start work on the series production	T ₄	June 2020
Delivery of the series production (first batch)	T ₄ + 4 weeks	July 2020

The test will be done in Bari:

- ✓ Clam shell sockets ordered and arrived,
- ✓ PCB design completed and produced,
- ➢ PCBs will be mounted next week,
- Firmware old code from VFAT3 characterization can be used,
- Software to be done (3 weeks, we need the chip for finalization).

5 test systems will be realized in order to speed up the test of the series production.

INFN VFAT3 package test list

Analogue tests:

- Power supply current absorption for shorts
- VFAT3 internal references, DAC scan, ADCs
- Temperature sensors: internal and external (bias current)
- Channel gains, linearity ranges, noise
- Local channel DACs characterization

Digital tests:

- Differential and common mode measurement of the TX SLVS
- Built in self test (BIST)
- Scan path

Bonding of the input channels by means of external injection.