Transverse Beam Dynamics - Tutorial

Hector Garcia Morales

1 Preliminary exercices

1. Watch the Iron Man clip and describe briefly the main accelerator physics concepts involved. (Link: Iron Man builds an accelerator)
2. Go through the short questions presented during the lectures and try to answer them.

2 To think about

1. Can we measure β^{*} (β-function at the IP) in the LHC?
2. What are the possible efects of ground motion in the beam?
3. What can we do if there is a small object blocking part of the beam pipe (without opening the machine)?

3 Exercise: Understanding the phase space concept

1. Phase Space Representation of a Particle Source:

- Consider a source at position s_{0} with radius w emitting particles. Make a drawing of this setup in the configuration space and in the phase space. Which part of the phase space can be occupied by the emitted particles?
- Any real beam emerging from a source like the one above will be collimated. This can be modelled by assuming that a distance d away from the source there is an iris with opening radius $R=w$. Draw this setup in the configuration space and in the phase space. Which part of the phase space is occupied by the beam, right after the collimator?

2. Sketch the emittance ellipse of a particle beam in:
(I) horizontal $x-x^{\prime}$ phase space at the position of a transverse waist,
(II) when the beam is divergent, and
when the beam is convergent.

4 Exercise: Normalised phase space

Let us consider the following phase space vector: $\left(x, x^{\prime}\right)$. The transformation to a normalised phase space $\left(X, X^{\prime}\right)$ is given by:

$$
\binom{X}{X^{\prime}}=\left(\begin{array}{cc}
1 / \sqrt{\beta_{x}} & 0 \\
\alpha_{x} / \sqrt{\beta_{x}} & \sqrt{\beta_{x}}
\end{array}\right)\binom{x}{x^{\prime}}
$$

The normalisation process of the phase space is illustrated in the figure below:

If we know that the transfer matrix between two points 1 and 2 (with phase advance ϕ_{x} between them) in the phase space $\left(x, x^{\prime}\right)$ is given by:

$$
M_{1 \rightarrow 2}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{x 2}}{\beta_{x 1}}}\left(\cos \phi_{x}+\alpha_{x 1} \sin \phi_{x}\right) & \sqrt{\beta_{x 1} \beta_{x 2}} \sin \phi_{x} \\
\frac{\left(\alpha_{x 1}-\alpha_{x 2}\right) \cos \phi_{x}-\left(1+\alpha_{x 1} \alpha_{x 2}\right) \sin \phi_{x}}{\sqrt{\beta_{x 2} \beta_{x 1}}} & \sqrt{\frac{\beta_{x 1}}{\beta_{x 2}}}\left(\cos \phi_{x}-\alpha_{x 2} \sin \phi_{x}\right)
\end{array}\right)
$$

Obtain the transfer matrix between two points 1 and 2 in the normalised phase space.

5 Exercise: Bump and Orbit Control

Given two kickers located at the two ends of a FODO cell with phase advance 45 degrees (the two kickers are located at $L_{\text {cell }}$ distance from each other), compute the strengths of such kickers (in radians) in order to give the beam, initially at $\left(x_{i}, x_{i}^{\prime}\right)=(0,0)$, an arbitrary offset at the end of the cell while preserving its angle, $\left(x_{f}, x_{f}^{\prime}\right)=$ $\left(x_{\text {arbitrary }}, 0\right)$.

6 Exercise: Chromaticity in a FODO cell

Consider a ring made of $N_{\text {cell }}$ identical FODO cells with equally spaced quadrupoles. Assume that the two quadrupoles are both of length l_{q}, but their strengths may differ.

1. Calculate the maximum and the minimum betatron function in the FODO cell. (Use the thin-lens approximations)

2. Calculate the natural chromaticities for this ring.
3. Show that for short quadrupoles, if $f_{F} \simeq f_{D}$,

$$
\xi_{N} \simeq-\frac{N_{\text {cell }}}{\pi} \tan \frac{\mu}{2} .
$$

4. What do we need to correct chromaticity? Draw a sketch of the resulting lattice.

7 Exercise: Low-Beta Insertion

Consider the following low-beta insertion around an interaction point (IP). The quadrupoles are placed with mirrorsymmetry with respect to the IP:

The beam enters the quadrupole with Twiss parameters $\beta_{0}=20 \mathrm{~m}$ and $\alpha_{0}=0$. The drift space has length $L=10 \mathrm{~m}$.
(i) Determine the focal length of the quadrupole in order to locate the waist at the IP.
(ii) What is the value of β^{\star} ?
(iii) What is the phase advance between the quadrupole and the IP?

