RF Cavity Design - an introduction -

EUROPEAN SPALLATION SOURCE

Oxford – John Adams Institute

21 November 2019

Ciprian Plostinar

Lecture Structure

- RF Cavity Design
 - Design Criteria
 - Figures of Merit
- Introduction to Superfish (2D)
- Examples:
 - Pill-box type cavity
 - DTL type cavity
 - Elliptical cavity
 - A ferrite loaded cavity
- Study of a simple cavity model
- A small RF measurement
 - (If equipment is available)

- Later in Hilary Term:
- CST MicroWave Studio Demo (3D)
 - Open to all
 - Project work

RF Cavity Design - the basics -

- In most particle accelerators, the energy is delivered to the particle by means of a large variety of devices, normally know as cavity resonators.
- The ideal cavity: volume of perfect dielectric limited by infinitely conducting walls.
- Hollow cylindrical resonator excited by a radio transmitter -> standing wave -> accelerating fields (the pillbox cavity).

Why Cavity Design Is Important? Acceleration Profile in Several Linacs

Design Process and Criteria

• Define the requirements:

- Intended application
- RF frequency
- NC/SC
- Voltage
- Tuning
- Etc.

- General design criteria:
 - Power Efficiency & RF Properties
 - Beam Dynamics considerations (control of loss and emittance growth, etc.) – especially true for linacs
 - Technologies and precisions involved
 - Tuning procedures (frequency, field profile, stability against perturbations)
 - Sensitivity to RF errors (phase and amplitude)
 - Etc.

The "Magic Pentagon" of Cavity Design Interdependent Technologies

Cavity "Zoo"

Figures of Merit The Transit Time Factor, T

- While the particle crosses the cavity, the field ٠ is also varying
- The particle sees only a fraction of the peak ٠ voltage
- T is a measure of the reduction in energy gain ٠ cause by the sinusoidal time variation of the field in the cavity.

$$T = \frac{\int_{-L/2}^{L/2} E(0, z) \cdot \cos \frac{2\pi z}{\beta \lambda} dz}{\int_{-L/2}^{L/2} E(0, z) dz}$$

8

- To first order, the Q-value will depend on the conductivity of the wall material only
- High Q -> narrower bandwidth -> higher amplitudes
- But, more difficult to tune, more sensitive to mechanical tolerances (even a slight temperature variation can shift the resonance)
- Q is dimensionless and gives only the ratios of energies, and not the real amount of power needed to maintain a certain resonant mode
- For resonant frequencies in the range 100 to 1000 MHz, typical values are 10,000 to 50,000 for normal conducting copper cavities; 10⁸ to 10¹⁰ for superconducting cavities.

$$Q_0 = \frac{2\pi \cdot \text{stored energy}}{\text{energy consumed per period}} = \frac{2\pi W}{TP_0} = \omega \frac{U}{P_0}$$

- A measure of the effectiveness of producing an axial voltage V₀ for a given power dissipated
- Typical values of ZT^2 for normal conducting linacs is 30 to 50 M Ω /m. The shunt impedance is less relevant for superconducting cavities.

Shunt Impedance

$$ZT^{2} = \frac{r}{L} = \frac{(E_{0}T)^{2}}{P_{0}/L}$$

Effective Shunt Impedance per unit length

Figures of Merit Shunt Impedance

- Measures the efficiency of acceleration per unit of stored energy at a given frequency
- It is a function only of the cavity geometry and is independent of the surface properties that determine the power losses.

$$\frac{r}{Q} = \frac{\left(V_0 T\right)^2}{\omega U}$$

Figures of Merit The Kilpatrick Factor

- High Field -> Electric breakdown
- Maximum achievable field is limited

Figures of Merit The Kilpatrick Factor

SC Cavities ... some other factors to consider

- Epeak/Eacc field emissions limit (Eacc limit)
- Bpeak/Eacc quench limit (SC breakdown)
- G (Geometric Factor the measure of energy loss in the metal wall for a given surface resistance)
- Higher Order Modes manage and suppress HOM (e.g.: dipole modes can degrade the beam -> suppression scheme using HOM couplers)
- Multicell cavities: Field Flatness
- Kcc Cell to cell coupling
- Etc.

SC Cavities Basic design guidelines

- Optimise geometry to increase both r/Q and G resulting in less stored energy and less wall loss at a given gradient (low cryogenic losses)
- Optimise geometry to reduce Epeak/Eacc and Bpeak/Eacc
- Find optimum Kcc. (e.g.: a small aperture increases r/Q and G (!), but reduces Kcc. A small Kcc increases the sensitivity of the field profile to cell frequency errors.)

Introduction to Poisson Superfish Before you start

- You will need a laptop running Windows. If you have Linux/MacOS install VMWare/Wine.
- Please download and install Poisson Superfish. To do this go to the following address and follow the instructions:
 - <u>http://laacg.lanl.gov/laacg/services/download_sf.phtml</u>
- Please download the example files to your computer from the JAI website.
- An extensive documentation can be found in the Superfish home directory (usually C:/LANL).
 - Have a look at the SFCODES.DOC file. Table VI-4 explains how the object geometry is defined in Superfish (page 157).
 - For a list of Superfish variables, see SFINTRO.doc, Table III-3 (page 76)
- For any questions, email Ciprian (<u>ciprian.plostinar@esss.se</u>) or Emmanuel (<u>emmanuel.tsesmelis@cern.ch</u>). Good luck!

Introduction to Poisson Superfish The basics

- Poisson and Superfish are the main solver programs in a collection of programs from LANL for calculating static magnetic and electric fields and radio-frequency electromagnetic fields in either 2-D Cartesian coordinates or axially symmetric cylindrical coordinates.
- Finite Element Method

19

Introduction to Poisson Superfish Solvers

- Automesh generates the mesh (always the first program to run)
- Fish RF solver
- **Cfish** version of Fish that uses complex variables for the rf fields, permittivity, and permeability.
- Poisson magnetostatic and electrostatic field solver
- **Pandira** another static field solver (can handle permanent magnets)
- **SFO, SF7** postprocessing
- Autofish combines Automesh, Fish and SFO
- DTLfish, DTLCells, CCLfish, CCLcells, CDTfish, ELLfish, ELLCAV, MDTfish, RFQfish, SCCfish – for tuning specific cavity types.
- Kilpat, Force, WSFPlot, etc.

A Pillbox Cavity The simplest RF cavity

- For the accelerating mode (TM₀₁₀), the resonant wavelength is:
 - -independent of the cell length
- Example: a 40 MHz pillbox type cavity would have a diameter of ~ 5.7 m
- In the picture, CERN 88 MHz

$$\lambda = \frac{\pi D}{x_1}$$
$$x_1 = 2.40483$$

 x_1 - first root of the zero-th order Bessel function $J_0(x)$

A Pillbox Cavity Superfish Implementation

Superfish input file

Lister - [c:_Current Projects\Superfish Courses	rse Oxford\Exam 🔳 🗖 🔀
File Edit Options Help	100 <u>%</u>
PS2 40 MHz Pillbox Cavity	~
PARTICLE H-, \$reg kprob=1, ; Superfish dx=5, ; X mesh spac freq=40., ; Starting fre icylin=1	problem ing quency in MHz
xdri=46.,ydri=287 \$; Drive poi	nt location
\$po x=0.0,y=0.0 \$; Start of t \$po x=0.0,y=287 \$ \$po x=92,y=287 \$ \$po x=92,y=0.0 \$ \$po x=0.0,y=0.0 \$	he boundary points
< -	>

Lister - [c:\	Current Proj	ects\Superfish (Course Oxford\E	xample 1\PILL	BOX.SF0]			
Eile Edit Option	s <u>H</u> elp							100 <u>9</u>
All calcula	ted values	below refer	to the mesh	geometry of	11y.			
Field norma	lization (NORM = 0):	EZERU =	1.00000	MV/M			
Prequency Doutiolo Ho	st mass on			39.97980	Mall			
Pota = 0.2	SC 11d55 811 1659709	eryy Kinoti	-	930.272029 20 E00	Moll			
Newpolizoti	453/92 op (potow	KINELD	c energy = eee wu/m =	29.590	neo			
Transit-tim	o factor	TUT 20 - 1.	- 10710 -	8 8881159				
Stored oper	au			28 3528063	louloc			
licing ctand	99 ard room-t	emperature c	nnner -	20.0720900	000163			
Surface res	istance	coperature o	-	1.64961	milliOhm			
Normal-cond	uctor resi	stiuitu	_	1 72418	microfibm-cm			
Operation t	ennerature	Straty	=	20.000	C			
Power dissi	nation		-	25,9482	k₩			
0 = 27	4557.	Shunt i	mnedance =	35.466	Mühn/n			
Rs*0 = 45	2.911 Ohm		Z*T*T =	0,000	M0hm/m			
r/0 =	0.000 Ohm	Wake loss p	arameter =	0.00000	V/DC			
Average mag	netic fiel	d on the out	er wall =	1376.86	A/m, 156.361	nW/cm^2		
Maximum H (at Z.R = 7	4.1111.287)	=	1376.86	A/m. 156.361	n₩/cm^2		
Maximum E (at Z,R = 8	9.4444,287)		1.00783E-04	MV/m, 1.2209	1E-05 Kilp.		
Ratio of pe	ak fields	Bmax/Emax	-	17167.7287	mT/(HV/m)			
Peak-to-ave	rage ratio	Emax/E0	=	0.0001				
Wall segmen	ts:							
Segment Z	end	Rend	Emax	Power	P/A	dF/dZ	dF/dR	
- (cn)	(cm)	(MV/m)	(k₩)	(mW/cm^2)	(MHz/mm)	(MHz/nm)	
0.	0000	287.00						
2 92	.000	287.00	1.2258E-04	25.94	156.4	0.000	-1.3933E-02	6
			Total	25.94				
<								>.

100

A Drift Tube Linac-type Cavity (DTL) Basic Geometry

EUROPEAN

SPALLATION SOURCE

35

A Drift Tube Linac-type Cavity (DTL) Superfish Implementation

Solution

Superfish input file

File Edit Options Help	100 %
Title DTL-type cavity Resonant frequency = ENDTitle	324 MHz
PARTICLE	н-
InitialEnergy	3 ; Energies used in program DTLCells
FILEname prefix	DTL
SEQuence number	1
FREQuency	324
BETA	0.079732
LENGTH	7.37748526582
DIAMeter	55.81982579555
G_OVER_Beta_lambda	0.2
GAP_Length	1.475497053164
E0_Normalization	2.5
EOT_Normalization	1.65138369868
CORNER_radius	0.5
INNER_nose_radius	0.15
OUTER_nose_radius	0.3
FLAI_length	0.2
FACE_angle	10
DRIFI_IOBE_Diameter	18
GAP_Change	0.0
SIEM_Diameter	3
STEH_COUNC	
BURE_rauius	1.4
PELTO Exoguancu	10U 8 81
MESH cize	8 82
INCroport	9.04
STORT	2 h
; Start codes for DTI ; 1 No tuning ; 2 Adjust tank diamu ; 3 Adjust drift tubu ; 4 Adjust gap	.fish: eter e diameter (not recommended) o
, > Hujust face allyin	-
EndFile	

Geometry	file

Resonant Frequency = 324 MHz	
Adjusting gap, currently = 1.4	754971, g/bl = 0.2000000
*PEC MPDOD-1	· Superfict problem
MAT-1	, Supervisi problem
EPE0=222 0007820720	 Mode Frequency starting Frequency in Fich
FREAD=324	Design frequency, scarcing frequency in fish
RETA=8 879732	· Particle velocity used to compute wave nu
KMETHOD-1	: SFO will use BETA to compute wave number
DPHI=180	; Phase length of the half cavity, used (with
NBSUP=1,NBSL0=0,NBSRT=1,NBSLF=1	; Boundary conditions
LINES=1	; Fix internal points on line regions
ICYLIN=1	; X=>Z,Y=>R, cylindrical coordinates
NORH-0	; Normalize to EZERO
EZER0=2500000	; Accelerating field
DTL-1,	; Cavity is drift-tube linac
RMASS=-3	; Rest mass value or indicator
EPSU=1.0E=0	; Mesh optimization convergence parameter
IRTYPE-0	; KS NETHOD: NORMAL CONDUCTOR FORMULA
XDR1=1.990014697996	; prive point & coordinate
TURI=9.09021035729 DSLOPE1	; prive pullit Y coordinate
• X line-region obusical locatio	, HITOW CONVERGENCE IN TITLETALION
XPEC=0 557758526582 0 6777585265	82 8 957758526582 1 867758526582
: X line-region logical location	
KREG=1.8.11.25.28.	
KMAX=62	: Column number for X = XMAX
; Y line-region physical location	ins:
YREG=0.0282842712475,1.357573593	129,3.698196886483,9.884852813742,
9.367695526217,	
; Y line-region logical location	IS:
LREG=1,3,51,219,418,415,	
LMAX=580 &	; Row number for Y = YMRX
; Start of boundary points	
&P0 X-0.0,Y-0.0 &	; 1
&P0 X=0.0,Y=27.90991289778 &	; 2
&P0 X-3.68874263291,Y-27.9899128	19778 & ; 3
EPU X=3.68874263291,9=9 E	14
&PU X=2.431040968741,Y=9 &	
eru mi=2,30=2.431040968/41,90=8.	
AU.4724036/05001,Y=0.08082 200 Y-0 7523062006702 V-1 002001	40000000 tt
2P0 NT=2 X8=1 837748526599 UA-4	π2223 tt , /
X=-0.2 V=0.0 8	
&P0 X=0.737748526582.Y=1.55 &	- 0
&P0 NT=2.X0=0.887748526582.V0=1.	55. : 10
X-0.0,Y0.15 &	
&P0 X=3.68874263291,Y=1.4 &	; 11
&PR X=3 68874263291 V=8 8 &	; 12
a o n orocor icoocrigi oro a	

DTL-type cavity F = 323.99974 MHz 25 20 15 10 -

An Elliptical-Type Cavity (think SC) Basic Geometry

EUROPEAN

SPALLATION SOURCE

35

An Elliptical-Type Cavity (think SC) Superfish Implementation

EUROPEAN SPALLATION SOURCE

Superfish input file

Ellipitcal Cavity - Notep	ad	
Ele Edit Format View Help		
Title Tuning elliptical cav Design beta = 1 Resonant frequency = ENDTitle	rity NF muon linac 201.49 MHz, Bore radius = 23.00 cm	
REST_mass SUPERConductor	105.658369 2 9.2 1.0E-08	
NumberOfCells FULL_cavity	10 ; used by the ELLCAV code	
THE CANCE PARTY CONTRACT CONTR	111ptical 201.249 14.452065258 137.0491823985 148.148157443775 10 18.16662400282 1 1.1000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
; (Right side only in full cavities for 3, 4, and 5.)		
Envertite		~

Geometry file

Lister - [c:_Current Projects\Superfish	Course Oxford\Example 3\ELLIPTICAL1
Ele Edit Options Help	
Tuning elliptical cavity NF muon	linac
Design beta = 1	
Resonant Frequency = 201.49 MHz,	Bore radius = 23.00 cm
No tuning on this cavity.	
SREG KPROB=1	: Superfish problem
HAT-1	: Material air or emptu space
FRE0-201.2471888163	; Node frequency, starting frequency
FREQD=201.249	; Design frequency, used (with DPH)
BETA=1	; Particle velocity, used to comput
KMETHOD=1	; SFO will use BETA to compute wave
DPHI-180	; Phase length of the cavity, used
NBSUP=1,NBSL0=0,NBSRT=0,NBSLF=0	; Boundary conditions
LINES=1	; Fix internal points on line regio
IGYLIN=1	; X=>2,Y=>R, cylindrical coordinate
E2ED01-1 E+87	, normalize to EZERUI
SCC00=1	 Superconducting alliptical cauits
RMASS=185.658369	: Rest mass value or indicator
EPS0=1.0E-6	: Nesh optimization convergence par
IRTYPE=1	; Rs method: Superconductor formula
TEMPK=2	; Superconductor temperature, degre
TC=9.2	; Critical temperature, degrees K
RESIDR=1.0E-08	; Residual resistance
XDRI=8.531253899282	; Drive point X coordinate
YDRI-56.58146824814	; Drive point Y coordinate
DSLOPE=-1	; Allow convergence in 1 iteration
PA=1 + H line wegies shuries] lesstic	; Hesh spacing in a direction
VREC-1 h1h213562373 h 2h26h06871	19 18 85825253169 28 87867965655
: Y line-region logical location	5:
LREG=1.3.5.10.12.	
LMAX=80 &	; Row number for Y = YNAX
; Start of boundary points	
6FU A-0.0,Y-0.0 6	;]
&PO A37.24140418129,Y=0.0 & &PO X=-37 24148418129 V=32 P	- 2
2P0 NT=2.X0=-37.24148418129.V0=3	R.66951733241. : 4
A-10.96866213269.A0URB-0.7.	
X=9,731750709735,Y=-7,228709	358454 &
&P0 X=-18.79385241572,Y=55.38749	N36551 & ; 5
&PO NT=2,X0=0.0,Y0=48.547091499,	; 6
A-20,A0VRB-1,	
X-0.0,Y-20 &	
&PO NT=2,X0=0.0,Y0=50.3804674961	8, ;7
A=18.16662400282,A0VRB=1,	
x=17.0/104252004,Y=6.2133513	45188 G
6PU X=25.633/6923568,Y=33.067920	4119 6 ; 8
6-42 00204254474 00000-0 7	.0900893/394, ; 9
H-13.003002301/0,HUVKB-0./,	
2PO Y=07 2h1h9h19120 U=22 2	- 18
£P0 X=97 2h1h8h18129 V=0 0 £	11
6P0 X-0.0.Y-0.0 &	12
	=
C	

An Elliptical-Type Cavity (think SC) Two Superfish Examples

EUROPEAN SPALLATION SOURCE

- Example 1: 400 MHz
 - Like the LHC 400 MHz RF
 - 4-cell cavity, 4 cavities/Cryomodule

- Example2: 721.4 MHz
 - SPL-like cavities
 - 5-cell cavity

Ferrite Loaded Cavities The Basics

- Bias current -> Variable magnetic field -> Variable magnetic permeability of the ferrite -> Frequency change
- The structure can be thought of as a resonant transformer in which the beam constitutes a one-turn secondary winding.
- Used when a variable resonant frequency is needed
- The torus of the ferrite encircles the beam path
- Ferrite properties are important (limit the cavity capabilities)
- Frequencies domain: 100 kHz and 60 MHz
- Typical gap voltage of up tens of kV
- Different requirements (large frequency ranges, rapid swings, space, etc) -> various designs.

Ferrite Loaded Cavities The Basics

Ferrite Loaded Cavities Superfish Implementation

Six ferrite blocks: Epsilon = 14.5, Mu = 1.5 Five ceramic-spacers: Epsilon = 10.0, Mu = 1.0 Ceramic vacuum window: Epsilon = 9.0, Mu = 1.0 Cavity length: 116 cm Number of gaps: 1

Now, use your imagination!