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Goal of this course

Introduce you to one of the core topics in accelerator physics.

Explain you the basics of the formalism.

>

>

» Give you and idea of the related phenomenology.
» Full derivations are not included in main lectures.
>

Most important things: learn something and enjoy!
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5. E. Forest, Beam Dynamics: A new Attitude Framework.
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5. E. Forest, Beam Dynamics: A new Attitude Framework.

6

. A. Chao, Handbook of Accelerator Physics and Engineering.

Other courses

1. A. Latina, JUAS lectures on Transverse Dynamics (2019) (main reference).
2. CAS lectures (recent Introductory Course).
3. USPAS lectures.
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| did not know how complex an accelerator was...




Why these lectures?

What do we want to study?

High energy particles travelling through intense magnetic fields (usually periodic).
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Why these lectures?

What do we want to study?
High energy particles travelling through intense magnetic fields (usually periodic).

Why transverse dynamics?

» It covers ~ 2/3 of the phase space (4 out of 6 dimensions).
> Magnets act primarly on the transverse plane.

» Main accelerator parameters are determined (at first order) by transverse
properties:

» Luminosity, emittance, brilliance, beam losses, instabilities, tune...
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Special Relativity recap.
We need to study the motion of charged particles at (very) high energies.

m?c* + p?c? (1)
where m is the mass of the particle and p the particle momentum.

1= )

v2

=
Ultrarelativsitic approximation (y > 1):

E ~ pc (3)
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Special Relativity recap.
We need to study the motion of charged particles at (very) high energies.

m?c* + p?c? (1)
where m is the mass of the particle and p the particle momentum.

1= )

v2

c2

Ultrarelativsitic approximation (y > 1):

E ~ pc (3)

Question: what is faster?

a) An electron/positron at LEP (E ~ 100 GeV)
b) A proton at the LHC (E ~ 7 TeV)
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Lorentz Force

The force experienced by a charge g and speed v under an electric field £ and magnetic
field B.

F=gqg(E+vxB) (4)

» Electric field for increasing (decreasing) speed.

» Magnetic field for bending and focusing the beam trajectory.
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Lorentz Force

The force experienced by a charge g and speed v under an electric field £ and magnetic
field B.

F=gqg(E+vxB) (4)

» Electric field for increasing (decreasing) speed.

» Magnetic field for bending and focusing the beam trajectory.

Question: Why do we use magnets for bending the trajectory of the beam?
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Beam rigidity

Lorentz force:

F[_ = qu (5)
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Beam rigidity

Lorentz force:

Fl = qv[?
Centripetal force:
2
Fc= mY_
p

Null force condition (> F = 0):

ﬁ:a:gzm

(5)

(6)

Beam rigidity:
Bp ~ 3.33p[GeV/(]

Applications

» Given size and magnet technology
determines physics reach.

(8)
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Beam rigidity

Beam rigidity:
Lorentz force:
Bp ~ 3.33p[GeV/c 8

o o) pr33sleev/d  (8)

Centripetal force: Applications
y2 » Given size and magnet technology
Fe = m; (6) determines physics reach.
> Given magnet technology and physics
Null force condition (3 F = 0): goal determine required size.
_ P _
FL—FC:>E_Bp (7)
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Beam rigidity

Beam rigidity:
Lorentz force:
Bp ~ 3.33p[GeV/c 8
o o) pr33sleev/d  (8)
Centripetal force: Applications
y2 » Given size and magnet technology
Fe = m; (6) determines physics reach.
> Given magnet technology and physics
Null force condition (3 F = 0): goal determine required size.
p » Given size and physics goal determines
FL=Fe= q Bp (7) technology needed.
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Take-home exercise

Given current technology (Bmax ~ 10 T):

» What is the maximum energy of a particle accelerator
around the Earth equator?
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Take-home exercise

Given current technology (Bmax ~ 10 T):

» What is the maximum energy of a particle accelerator
around the Earth equator?

» and of an accelerator around the Solar System?
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Harmonic oscillator returns

Restoring force:

Velocity

F = —kx (9) Solution:
Equation of motion: u = acos(wt + @)
k
n_ Kk, (10)
System m Time Series Phase Portrait
i mixilior_
:

(11)
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Frenet-Serret reference system

6D phase space: (x,x',y,y’,z,0)

The coordinates are relative to the
reference particle/trajectory.
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Frenet-Serret reference system

6D phase space: (x,x',y,y’,z,0)

The coordinates are relative to the
reference particle/trajectory.

Reference trajectory: (0,0,0,0,0,0)

,_dx
T ds
p_dy
ds
AP
5—P70

Pay attention! This is not the set of
canonical variables used in Hamilton's

equation.

dede
dt ds
dy dt

dt ds

P

z

XN
Pizw
P,
=L~

(12)
(13)

(14)
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Multipolar expansion

Any magnetic field can be descomposed by:

By +iBe=> calx+iy)" " (15)
n=1
where
Ch = bn + ian (16)

» b, are the normal coefficients.

» a, are the skew coefficients.
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Magnet types?

dipole quadrupole

'L HC magnet types (link)

sextupole

octupole
S N
N S
n=4

w
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https://lhc-machine-outreach.web.cern.ch/lhc-machine-outreach/components/magnets/types_of_magnets.htm

Magnet types: Dipoles

» Two magnetic poles.
» Bend particle trajectory.
» Provide weak focusing.

» Not required in linear colliders.

Take home exercice: LHC dipoles

The LHC contains 1232 dipole magnets.

Each is 15 m long.

» What is the length of the full
circumference?
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Magnet types: Quadrupoles

» Four poles.

» Focus the beam (horizontally or
vertically).

Normalized focusing strength:

G

k= pclm ) (17)
21 G[T/m]
k[m™7] ~ 0.3W (18)

k is also known as k3.
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Magnet types: Quadrupoles

The focal lenght of a quadrupole is:

1
f = —Iml (19)

where L is the length of the quadrupole.
Example: Q1 LHC

L=637Tm
kL = —5.54 .10 %m~!
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New HL-LHC quadrupoles

Iron Yoke LHe SS

Vessel
Al Shell
» The LHC upgrade will require stronger
focusing at IP1 and IP5. Aligment
in

» New quadrupole magnets with
stronger grandients are required.

» Successful tests on short models. Bladder
Slot

Pole

Cooling

Pole Key Hole

18 /27



Magnet types: Sextupoles

» Six poles.
» Correct chromatic effects.
» Usually distributed in the arcs.

» Essential for accelerator performance.

Other multipoles

» Octupoles.
» Decapoles.

» Dodecapoles.
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Hamiltonian approach?

Hamiltonian of a particle with mass m, charge g and momentum p in presence of an
electromagnetic field (¢, A):

H= C\/(p —qA)2 + m?c? + q¢ (20)

2This will be extensevely covered in future courses
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Hamiltonian approach?

Hamiltonian of a particle with mass m, charge g and momentum p in presence of an
electromagnetic field (¢, A):

H= C\/(p —qA)2 + m?c? + q¢ (20)
Hamilton equations:
dg OH dp oH
= T =—— 21
dt  Op dt dq (21)

Equation (20) will be explained in future lectures and the derivation of the dynamics.

2This will be extensevely covered in future courses
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Hill's equation

> We expect a solution in the form of a quasi harmonic oscillation: amplitude and
phase will depend on hte position s in the ring.

» The linear motion (dipoles and quadrupoles) of particles can be described by:

v+ K(s)u=0 (22)

where K(s) = (pl—z + k) is composed by linear fields (dipoles and quadrupoles).
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Hill's equation

"+ K(s)u=0 (23)
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Hill's equation

"+ K(s)u=0 (23)

Some remarks

» K(s) is a non-constant (s-dependent) restoring force.

» K(s) is a periodic function with period L = K(s+ L) = K(s)
» Usually in the vertical plane 1/p = 0, therefore K, = k,.
>

In a quadrupole 1/p =0 and K, = —K|, i.e. a horizontal focusing quadrupole
defocuses in the vertical plane (and vice versa).

» In a bending magnet k =0 so K = 1/p°.
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Hill's equation: general solution

General solution
For K(s) = K(s + L):

= V/2Ju4(5) sin(u(5) — uo) (24)
= ﬁ) [cos(¢u(s) — duo) + sin(¢u(s) — buo)] (25)

where u = x, y
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Hill's equation: general solution

General solution
For K(s) = K(s + L):

u=+/2JuBu(s)sin(du(s) — Puo) (24)
F_ ;J(us ) [cos(Gu(s) — duo) + sin(du(s) — duo)] (25)

where u = x, y

Integration constants

» Action: J is a constant (related to
emittance).

» Phase constant: ¢y.
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Hill's equation: general solution

General solution
For K(s) = K(s + L):

U=~/ 2Juﬁu(5) Sin(¢u(5) - ¢u0) (24)
2J .
"= ————[cos(¢u(s) — buo) + sin(¢u(s) — buo)] (25)
Bu(s)
where u = x, y
Integration constants » Beta-function: §(s), periodic function.
» Action: J is a constant (related to B(s+ L) = B(s) (26)
emittance).
» Phase constant: ¢g. > Phase advance: ¢(sols) = fsz ﬂc(li’)
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Weak focusing and cyclotrons (K = 0)

In cyclotrons only dipole magnets are used.
But still, there is some focusing effect:

1 1
u"—|—<2 + k) u=0—— u"—i——2u =0
P P

(27)

» Small and low energy accelerators.

» Example: mass spectrometer.

Figure: PSI cyclotron (250 MeV protons)
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Strong focusing (K > 0)

Initial conditions: x = xp, X' = x{
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X'(s) = —xoVK sin(V'Ks) + xj cos(V'Ks) (29)

25 /27



Strong focusing (K > 0)

Initial conditions: x = xp, X' = x{

Solution:
x(s) = xo cos(VKs) + x{)\/lk sin(VK’s) (28)
X'(s) = —xoVK sin(V'Ks) + xj cos(V'Ks) (29)

Matrix formalism:

cos(VKL) #sin(\/RL) X0

C:/) - <_\/R5”‘(\/RL) cos(VKL) ) <x{,> (30)
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Strong focusing (K < 0)

Initial conditions: x = xp, x' = ]
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Strong focusing (K < 0)

Initial conditions: x = xp, x' = ]

Solution:
1
x(s) = xg cosh(\/|K]s) + xg N sinh(1/|K]|s) (31)
X'(s) = xo\/|K| sinh(v/]K|s) + x§ cosh(y/|Ks) (32)

Matrix formalism:

(X,> _ < cosh(~1/]K]L) \/Tﬂsinh(\/WL)> <X(,)>
VK[ sinh(y/|K]L) cosh(~/]K]L) X0

(33)

X
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Special relativity and magnetic properties.

Reference system and Hill's equation (without derivation).

Solution of linear homogeneus Hill's equations.
Weak and strong focusing.

Matrix formulation for dipoles and quadrupoles.

27 /27



» Special relativity and magnetic properties.

Reference system and Hill's equation (without derivation).

>
» Solution of linear homogeneus Hill's equations.
» Weak and strong focusing.

>

Matrix formulation for dipoles and quadrupoles.

Next episode:

» Generalization of matrix formalism.

Twiss parameters in detail.

Example: FODO.

>
» Phase space.
>
» Dispersion and chromaticity.
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