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General matrix formalism (linear systems)

The transformation between x(sp) and x(s) can be expressed in a general way:
x(s) = M(s]s0)x(s0) (1)
where the application M(s|sg) can be expressed in matrix formalism:
(2) = (Se) sty (2) "
X C'(slso) S'(s|so)) \xg

where C and S are the cosine-like and sine-like functions and its derivatives C’ and S’
with respecto to s.
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Element concatenation

The transfer matrices for different elements of the lattice can be concatenated to find
the full transfer matrix between two points sp and s,.

X(Sn) = Mn(Sn|Sn,1) e M3(S3|52)M2(52|51)M1 (S]_|SO)X(50) (3)
Remember to multiply matrices in reverse order.

Lattice design lecture

We will see more of how lattices are design in practice using MADX.

4/35



Thin lens approximation

When the focal length f of the quadrupole is much bigger than the length of the
magnet itself L, the transfer matrices can be rewriten:

Take-home exercise

Derive the limits for the thin lens approximation and find the new matrices for
quadrupoles in thin lens approximation.
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Twiss parameters

u = v/2JuBu(s)sin(du(s) = Puo)

Bu(s) is a perlodlc function given by the focusing properties of the lattice.
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Twiss parameters

u=+/24,Bu(s)sin(¢u(s) — Puo) (10)

Bu(s) is a periodic function given by the focusing properties of the lattice:
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Transfer matrix in terms of Twiss parameters

Express M in terms of initial and final Twiss parameters (instead of magnetic
properties).

Taking s(0) = sp and ¢(0) = 0 we can take Eq. (??) to obtain,

[ /5 (cosés + aosindo) V/BsBosin ¢s ”
(ap—ars) cos ¢Sg_s(glo+aoa5)5in os %(COS bs — agsin ¢s)

This expression is very useful when Twiss parameters are known at two different
locations.
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How do we mesure 5 and ¢7

Phase ¢

» Harmonic analysis of orbit oscillations.

Betatron tune @

» FFT of transverse beam position over
many turns.
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One matrix to rule them all: the one-turn matrix

If we take previous matrix (Eq. [14]) and consider the case of one full turn (i.e.
Bs = Bo, as = ) the matrix simplifies

_ [cospp + assing Bssin ¢y
M= < s Sin ¢ Cos ¢y — s sin ¢L> (15)

remember that the tune is the phase advance in units of 2m:

1 ds 1)
= — —_— Y = 1
@ 2 J B(s) 2« (16)
then, the one turn matrix in terms of tune is,
M= cos(2mQ) + assin(27Q) Bssin(27 Q) (17)
N s sin(27 Q) cos(27Q) — assin(27Q)
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Properties of transfer matrices

1. Phase space area preservation:

det(M) =1 (18)

2. Motion is stable over N — oo turns if;

trace(M) < 2 (19)
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Stability condition (derivation)

Let’s consider a general transfer matrix M for a periodic system:

a b
M =
we want the motion to be stable after N — oo turns:

XN = MNXO

How can we compute M"N?
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Stability condition (derivation)

XN = /\/leo
» det(M)=ad — bc =1
> trace(M)=a+d

If we diagonalise M, we can rewrite it as:

= . Al 0 . T
TN

where U is some unitary matrix and A1 and A\, are the eigenvalues.
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Stability condition (derivation)

After N turns:

AV
M’Vzu.<1 >.UT
0 A

Solve it:
Given that det(M) = 1:
. N —(a+d)A+(ad — bc) =0
)\1)\2 =1— )\1,2 = expi’x ( ) ( )
A2 — trace(M)A+1=0

To have stable motion x € R. To find the ) .
trace(M) = A+ 1/ =exp™ +exp ™ =

eigenvalues we use the characteristic
equation: = 2 cos(x)

b )—O Since x € R:

a—A\
det(M—AH)-det( e d—n

|trace(M)| < 2
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Twiss transport matrix and Twiss parameters evolution

Instead of transporting coordinates x and x’ we can transport Twiss parameters

(/87 a?’)/)

B C? —2CS s? B
al =[-cc cs’+5c -s5) |a (20)
v . C/2 _2cl51 5/2 ol 5

» Given the twiss parameters at any point in the lattice we can transform them and
compute their values at any other point in the ring.

> the transfer matrix is given by the focusing properties of the lattice elements, the
same matrix elements to compute single particle trajectories.
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Phase Space properties

» Area is preserved.
» Beam size: o, = /J,B,.
» When o, is large o), is small.

» In a 8 minima/maxima a = 0 and the
ellipse is not tilted.

Phase space ellipse.

0
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Phase Space properties

VOz=
it = V 02o(1- rzw) \//
X
/ Xmax = ¥ Oty :'V,E

CENTROID Xint = V011(1'r221) ='J%

J = (s)x(s)? + 20x(s)x(s)x'(s) + B(s)x'(s)
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Normalized phase space

Can we use another reference frame so it is simpler to describe the system?

M < cos¢  sin ¢> (22)

—cos¢ sing

/ Normalization
/ X l X

For linear systems is fine but it gets much more complex when non-linearities are
included (we will see more details in the tutorial).
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Beam emittance: single particle definition.
The geometric emittance is a constant of motion only if the beam energy is preserved
(conservative system). This quantity is related to the action J that appeared in the
solution of the Hill's equation.

Normalized emittance takes into account Hoiims
beam energy. It is a constant of motion e
even if energy is not constant: g ]’ oun:
tumn 4 .' .
€nh = /Brel'%rel6 (23) . - x

The beam size at any location of the lattice
is given by,

o= \/eB (24)
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Beam emittance: statistical definition

The beam is composed of particles
distributed in phase space.

¥
A

laX

VB
1

X

Emittance is defined by

2 2
u! Ouut

(25)

— 2
€rms = \/ 0,0

The rms emittance of a ring in phase space,
i.e. particles uniformly distributed in phase
¢ coordinate at a fixed action J, is

€rms = J.

If the accelerator is composed of linear
elements and no dissipative forces act €;ms
is invariant.
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Beam emittance: phenomenology

Sources of emittance growth
What determines beam emittance? > Intrabeam scattering.

. Optics mismatch.
» Amount of particles. P _
: . . Beam-gas scattering.
» Injectors manipulations.

» Beam transfer efficiency.

>

>

» Beam-beam interaction.
> Betatron resonances.

>

Ground motion and PS ripples.
X' x' x x
f , ; X é@ 2 X % % ; X % X
(a) machine phase space (b) unmatched beam injected (c) filamenting beam (d) fully filamented beam
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Liouville’s theorem and symplectic condition

The Liouville equation describes the time evolution of the phase space distribution
function, p.

Liouville's theorem

I

e e

where (g;, p;) are the canonical coordinates and the system is Hamiltonian.
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Symplectic condition
Lioville’s theorem = invariant volume in phase space.

MT M = J

where J is the 6D symplectic matrix

01 0 0 0 O
-10 0 0 0 O
J— 0 0 0 1 0 O
0 0 -1 0 0 O
0 0 0 0 0 1
0 0 0 0 -1 0

Take home exercice
Prove that Eq. (27) holds for the matrices described above.

(28)
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FODO lattice

The FODO lattice is a sequence of a Focusing magnet (F), a Drift space (O), a

Defocusing magnet (D) and a second drift space (0).

F 0 D 0 sample trajectory
T il i [iiaiendadl; & — ‘ \ T S
‘ envelope
| L
cell length

1+L L4 B
Mropo = MoMgetMoMioc = CooL e
B

(29)
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FODO lattice

Take-home exercise:
Prove that the stability condition for a FODO lattice is given by:

L

f> (30)

What if...
We take the FODO lattice and replace drifts by bending magnets?
You will see this in next lectures...
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The end of the ideal world...

So far, we have considered ideal linear systems.

» Dispersion.
» Chromaticity.
» Misalignments.

> Magnetic errors.

Some of these topics will be covered in next lectures.
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Dispersion

What if particles within a bunch have P>Py
different momenta? :

Remember beam rigidity: . P=R,

- P<p,

Orbit:

AP
Po
where D(s) is the dispersion function, an
intrinsic propertie of the dipole magnets.

x(s) = D(s) (32)
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Dispersion

Inhomogeneus Hill's equation:
1 1AP
u’ + <+k> u=——
p? p Po
Particle trajectory:

u(s) =up(s) + up(s) =

~us(s) + D(s) F

where D(s) is the solution of:

D"(s) + K(s)D(s) = ;

(36)
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Dispersion

Solution:

u(s) = C(s)uo + S(s)uf + D(s)i’j (37)

so this can be added to the transfer matrix
representation:

cC S D
M=|cC S D (38)
0 0 1

Dipole transfer matrix:

cos(5)  psin()
_%sin(%) COS(%) Sin(%)
0 0 1

p (1 - cos(%))

(39)
Quadrupole;

cos(VKL) #sin(\/RL) 0
—VKsin(VKL)  cos(VKL) 0
0 1

0
(40)
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Chromaticity

All particles do not have exactly the same energy. Therefore, according to Eq. (?7)
they focalize at different points.

F 0

D

0

——
- I

F

sample trajectory

chromaticity:

1
€=~ P Bk()ds

This defines

(41)
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How to correct chromaticity

Sextuples, through a non-linear magnetic

field, corrects the effect of energy spread . ) )
! gy sp > Located in dispersive regions

and focuses particles at a single location. _
» Usually in arcs.

» Sextupole families.

Ap/p >0 focal length —— )
\ @\ Now is when the party starts...
] — . . .

Aplp =0 ! // > Sexupoles introduce non-linear fields...
! i ——— » ... i.e. they induce non-linear motion.
|

quadrupolel oy > resonances, tune shifts, chaotic

Ap.<0 - sextupole motion...

|
I
|
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Chromaticity correction

» Chromatic aberrations must be compensated in both planes.
1
b= f Be(5)[k(s) — S Dx(s) + SpDx(s)]ds (42)
1
S f B,(5)[—k(s) + Sr Dx(s) — SpDx(s)]ds (43)

» To minimise sextupole strength they must be located near quadrupoles where 5D
are large.

» For optimal independent correction S¢ should be located where 3./, is large and
Sp where 3, /By is large.
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Recap.

Optics functions and Twiss parameters.
Phase space and emittance.
Example: FODO lattice.

Dispersion and chromaticity.
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What do we do with all this?

We have covered the basic aspects of linear transverse dynamics.
| skipped almost all derivations. You can follow references.
Are you familiar with Jupyter environtment?

Lattice design and tutorials in a couple of weeks will give a more complete picture.

vVvYyyvyy

Now you are ready to take next lectures to become an accelerator phyisics experts.
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Thank you very much!
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