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Resonance & Resonant Conditions

 After a certain number of turns around the machine the phase 
advance of the betatron oscillation is such that the oscillation repeats.

 For example:

 If the phase advance per turn is 120º then the betatron oscillation will 
repeat itself after 3 turns.

 This could correspond to tune Q = 3.333 or 3Q = 10.

 But also Q = 2.333 or 3Q = 7.

 The order of a resonance is defined as‘n’in n x Q = integer
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Q = 3.333

Third order resonant betatron oscillation 

3Q = 10, Q = 3.333, q = 0.333

1st turn

2nd turn

3rd turn
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Q = 3.333 in Normalised Phase Space

1st turn

2nd turn

3rd turn

 Third order resonance on a normalised phase space plot

2πq = 2π/3



Resonant Conditions: A bit more detail

• Synchrotron is periodic focusing system, often made up of 

smaller periodic regions.

• Can write down a periodic one-turn matrix as 

• Tune is defined as the total betatron phase advance in one 

revolution around the ring, divided by 2π
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Resonant Conditions: A bit more detail
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Resonance & Resonant Conditions

 Resonance can be excited through various imperfections in the beamline.

 The magnets themselves.

 Unwanted higher-order field components in magnets.

 Tilted magnets.

 Experiment solenoids (LHC experiments).

• Aim is to reduce and compensate these effects as much as possible and 

then find some point in the tune diagramme where the beam is stable.
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 It is not possible to construct a perfect machine.

 Magnets can have imperfections.

 The alignment in the machine has non-zero tolerance.

 …

 So, have to ask:

 What will happen to betatron oscillation due to various field errors.

 Consider errors in dipoles, quadrupoles, sextupoles, etc…

 Study the beam behaviour as a function of ‘Q’.

 How is it influenced by these resonant conditions?

Machine Imperfections



Machine Imperfections

 Various imperfections in the beamline will 

alter the tune in a periodic machine.

 One way to visualize the influence of these 

imperfections is by looking at what happens 

in the normalised phase space plot.
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 For Q = 2.00: Oscillation induced by the dipole kick grows on 
each turn and the particle is lost (1st order resonance Q = 2).

Dipole (deflection independent of position)

y’b

y

Q = 2.00
1st turn

2nd turn

3rd turn

y’b

y

Q = 2.50

 For Q = 2.50: Oscillation is cancelled out every second turn, 
and therefore the particle motion is stable.
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 For Q = 2.50: Oscillation induced by the quadrupole kick grows 
on each turn and the particle is lost 

(2nd order resonance 2Q = 5)

Quadrupole (deflection  position)

 For Q = 2.33: Oscillation is cancelled out every third turn, and 
therefore the particle motion is stable.

Q = 2.50 1st turn

2nd turn

3rd turn

4th turn

Q = 2.33
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 For Q = 2.33: Oscillation induced by the sextupole kick grows on 
each turn and the particle is lost 

(3rd order resonance 3Q = 7)

Sextupole (deflection  position2)

 For Q = 2.25: Oscillation is cancelled out every fourth turn, and 
therefore the particle motion is stable.

1st turn

2nd turn

3rd turn

4th turn

Q = 2.33 Q = 2.25

5th turn
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 Let us try to a mathematical expression for amplitude growth in 
the case with a quadrupole:

Resonant Condition - Quadrupole

2πQ = phase angle over 1 turn = θ

Δβy’ = kick

a = old amplitude

Δa = change in amplitude

2πΔQ = change in phase

y does not change at the kick

y = a cos(θ)

In a quadrupole Δy’ = lky

So we have:

Δa = βΔy’ sin(θ) = lβ sin(θ) a k cos(θ)

Only if 2πΔQ is small

y’b

y

a

Dby’

Da
2πDQ

θ

θ
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Resonant Condition - Quadrupole

 So have: Da = l·b·sin() a·k·cos() )2sin(
2


bk

a

a 


D


 Each turn θ advances by 2πQ

 On the nth turn θ = θ + 2nπQ 

 For q = 0.5 the phase term, 2(θ + 2nπQ) is constant:

 Over many turns:   





D

1

22sin
2 n

Qn
k

a

a


b Da0

   


1

22sin
n

Qn 
D

a

a
and thus:

Sin(θ)Cos(θ) = 1/2 Sin (2θ)

This term will be ‘zero’ as it decomposes in Sin and 

Cos terms and will give a series of + and – that cancel 

out in all cases where the fractional tune q ≠ 0.5 
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 In this case the amplitude will grow continuously until the particle is lost.

 Therefore, conclude as before that: quadrupoles excite 2nd order 
resonances for q=0.5

 Namely, for Q = 0.5, 1.5, 2.5, 3.5,…etc……

Resonant Condition - Quadrupole
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 Study phase θ:

Resonant Condition - Quadrupole

y’b

y

a

Dby’

Da2πDQ

θ

2πQ = phase angle over 1 turn = θ

Δβy’ = kick

a = old amplitude

Δa = change in amplitude

2πΔQ = change in phase

y does not change at the kick

y = a cos(θ)

In a quadrupole Δy’ = lky

a

y
Q

b


cos)'(
2

D
D

a

kal
Q

)cos()cos(

2

1 b




D

θ
s

b cos)'( ys D

2πΔQ << Therefore Sin(2πΔQ) ≈ 2πΔQ 
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Resonant Condition - Quadrupole

 Each turn θ advances by 2πQ

 On the nth turn θ = θ + 2nπQ 

 Over many turns:    




D
1

122cos
4

1
n

nQkQ b



‘zero’

 So have:
a

kal
Q

)cos()cos(

2

1 b




D

)1)2(cos(
4

1
D b


klQ , which is correct for the 1st turn

 Averaging over many turns: dskQ ..
4

1
b


D

 Since:
2

1
)2(

2

1
)(2   CosCos can rewrite this as:
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 Can apply the same arguments for a sextupole:

Resonant Condition - Sextupole

and thus
2' kyy D cos' 22 kay D For a sextupole

 
b

b cos3cos
2

cossin 2 
D ka

ka
a

a 
 Get :

 Summing over many turns gives:







D

1

)2cos()2(3cos
2 n

nQnQ
ka

a

a


b

3rd order resonance term 1st order resonance 

term

 Sextupoles excite 1st and 3rd order resonance

q = 0 q = 0.33
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 Can apply the same arguments for an octupole:

Resonant Condition - Octupole

and thus3' kyy D 33 cos' kay D For an octupole

 Octupole errors excite 2nd and 4th order resonance and are 
very important for larger amplitude particles. 

q = 0.5 q = 0.25

 We get : b 32 cossinka
a

a


D

 Summing over many turns gives:

 a2(cos 4(+2nQ) + cos 2(+2nQ))

a

aD

Amplitude squared

4th order resonance term

2nd order resonance 

term

Can restrict dynamic 

aperture



Stopband

• The tune does not stay constant in the machine. This leads 

to a variation of Q for each turn.

• This variation can go up and down, giving a range of 

possible values for Q, which we can call ΔQ.

• This range of values has a width, which is called the 

stopband of the resonance.

• Not only do you want to avoid the resonances, but you want 

to avoid being in the stopband of a resonance as well, as it 

may pull you into the resonance itself.
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Stopband

 This width is called the stopband of the resonance.

 which is the expression for the change in Q
due to a quadrupole… (fortunately !!!)

dskQ ..
4

1
b


D

 But note that Q changes slightly on each turn

)1)2(cos(
4

1
D b


klQ

Related to Q

Max variation 0 to 2

 Q has a range of values varying by:


b

2

k

 So even if q is not exactly 0.5, it must not be too close, or at some 
point it will find itself at exactly 0.5 and‘lock on’to the resonant 
condition.
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 Quadrupoles excite 2nd order resonances.

 Sextupoles excite 1st and 3rd order resonances.

 Octupoles excite 2nd and 4th order resonances.

Intermediate Summary

 This is true for small amplitude particles and low strength 
excitations.

 However, for stronger excitations, sextupoles will excite higher 
order resonances (non-linear).
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Coupling

 Coupling is a phenomena that converts betatron motion in one plane 
(horizontal or vertical) into motion in the other plane.

 Fields that will excite coupling are:

 Skew quadrupoles, which are normal quadrupoles, but tilted by 
45º about their longitudinal axis.

 Solenoidal (longitudinal magnetic field).
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Skew Quadrupole

N

S

N

S

Magnetic field

Like a normal quadrupole, 

but tilted by 45º
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Solenoid - Longitudinal Field (1)

Magnetic field
Particle trajectory

Beam axis

Transverse velocity 

component
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Solenoid - Longitudinal Field (2)

Above:

The LPI solenoid that was used for the 

initial focusing of the positrons. 

It was pulsed with a current of 6 kA for 

some 7 s, it produced a longitudinal 

magnetic field of 1.5 T.

At right:

the somewhat bigger CMS solenoid
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 This coupling means that one can transfer oscillation energy from one 
transverse plane to the other.

 Exactly as for linear resonances (single particle) there are resonant 
conditions.

 If meet one of these conditions, the transverse oscillation amplitude will 
again grow in an uncontrolled way.

Coupling and Resonance

nQh  mQv = integer
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General Tune Diagramme

Qh

Qv

2          2.25        2.5         2.75

2.33 2.66

2

2.25

2.5

2.75
Qh - Qv= 0

Qh + Qv= 5



Resonant Conditions
 Change in tune or phase advance 

resulting from errors.

 Steer Q away from certain 

fractional values which can 

cause motion to resonate and 

result in beam loss.

 Resonance takes over and walks 

proton out of the beam for:

where

is resonance order and p is 

azimuthal frequency that drives it.

SPS Working Diagramme
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PS Booster Tune Diagramme

4.0

5.0

4.1 4.2 4.3 4.4 4.5

QH

QV

5.1

5.2

5.3

5.4

5.5

5.6

5.7
3Qv=17

Injection

Ejection

3Qv=16

2Qv=11

3
Q

h
=

1
3

Qh-2Qv=-6

Q
h-Q

v= -1

Qh-2Qv= -7

2
Q

h
-Q

v
=

 -
3

Q
h+Q

v=10

2
Q

h
+

Q
v
=

1
4

Qh+2Qv=15

During acceleration change the 

horizontal and vertical tune 

to a place where the beam is 

least influenced by resonances.

injection

ejection



Imperfection: Closed-orbit Distortion

 As current is slowly raised in dipole:

 The zero-amplitude betatron particle follows distorted orbit.

 Distorted orbit is closed.

 Particle still obeys Hill’s Equation.

 Except at the kink (dipole) it follows a betatron oscillation.

 Other particles with finite amplitudes oscillate about this new 

closed orbit.



Sources of Closed-orbit Distortion



Imperfection: Chromaticity

• The trace is related to the new tune:
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Chromaticity and Tune

• Going through a bit of math:

• Last two terms must be equal, therefore

Integrate around ring

Total change in tune

• The tune will always have a bit of a spread due to the 

momentum spread. You can define the natural chromaticity 

as:



Measurement of Chromaticity

• Steering the beam to a new mean radius, and adjusting the 

RF frequency to vary the momentum, can measure the Q.
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Chromaticity Correction

• Need a way to connect the momentum offset, δ, to focusing.

• We can do this using sextupoles, which give nonlinear 

focusing (dependent on position) and dispersion 

(momentum-dependent position).
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Dispersion (1)

• Dispersion, D(s), is defined as the change in particle 

position with fractional momentum offset, δ.

• Originates from momentum dependence of dipole bends.

• Add explicit momentum dependence to EOM:

Particular sol’n inhomog. DE w/ periodic ρ(s).

• The trajectory has two parts:
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Dispersion (2)
• Noting that dispersion is periodic
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Chromaticity Correction 

• Recall that we define the natural chromaticity as 

• And that the trajectory goes as 

Nonlinear Like quad: K(s)

• You end up getting a total chromaticity from all sources as

Notice that this means strong focusing (large K) requires large sextupoles!
40



Chromaticity Correction

• Sextupole field acts to increase the quadrupole magnetic field

for particles that have a positive displacement and decrease

the field for particles with negative displacements.
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Chromaticity Correction

• Since dispersion describes how momentum changes radial

position of the particles, sextupoles will alter focusing field

seen by the particles as a function of momentum.
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Sextupoles & Chromaticity

 There are two chromaticities ξh, ξv

 However, the effect of a sextupole depends on β(s) and this 
varies around the machine.

 Two types of sextupoles are used to correct the chromaticity.

 One (SF) is placed near QF quadrupoles where βh is large and βv

is small, this will have a large effect on ξh

 Another (SD) placed near QD quadrupoles, where βv is large and 
βh is small, will correct ξv

 Sextupoles should be placed where D(s) is large, in order to 
increase their effect, since Δk is proportional to D(s).
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