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Configuration space

q2

q3

q1

t1

t2

The state of the system at a time
t can be given by the value of the
n generalised coordinates qi . This
can be represented by a point in an
n dimensional space which is called
“configuration space” (the system
is said to have n degrees of free-
dom). The motion of the system as
a whole is then characterised by the
line this system point maps out in
configuration space.
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Newtonian Mechanics

The equation of motion of a particle of mass m subject to a force F is

d

dt
(mṙ) = F(r, ṙ, t) (1)

In Newtonian mechanics, the dynamics of the system are defined by the
force F, which in general is a function of position r, velocity ṙ and time t.
The dynamics are determined by solving N second order differential
equations as a function of time.
Note: coordinates can be the vector spatial coordinates ri(t) or generalised
coordinates qi (t).
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Lagrangian Mechanics

In Lagrangian mechanics the key function is the Lagrangian

L = L(q, q̇, t) (2)

The solution to a given mechanical problem is obtained by solving a set of
N second-order differential equations known as the Euler-Lagrange
equations,

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (3)
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Action

y

x

t1

t2

The action S is the integral of L along the trajectory

S =

∫ t2

t1
L(q, q̇, t)t (4)
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Principle of least action

The principle of least action or Hamilton’s principle holds that the system
evolves such that the action S is stationary. It can be shown that the
Euler-Lagrange equation defines a path for which.

δS = δ

[∫ t2

t1
L(q, q̇, t)t

]
= 0 (5)
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Derivation of Euler-Lagrange equation

Adding a perturbation ε, ε̇ to the path one obtains

δS =

∫ t2

t1
[L(q + ε, q̇ + ε̇)− L(q, q̇)] dt (6)

=

∫ t2

t1

(
ε
∂L

∂q
+ ε̇

∂L

∂q̇

)
dt (7)

Integration by parts leads to

δS =

[
ε
∂L

∂q̇

]t2

t1

+

∫ t2

t1

(
ε
∂L

∂q
− ε d

dt

∂L

∂q̇

)
dt (8)

Since we are varying the path but not the end points, ε(t1) = ε(t2) = 0

δS =

∫ t2

t1
ε

(
∂L

∂q
− d

dt

∂L

∂q̇

)
dt (9)

David Kelliher (RAL) Hamiltonian Dynamics November 12, 2019 9 / 59



Advantages of Lagrangian approach

The Euler-Lagrange is true regardless of the choice of coordinate
system (including non-inertial coordinate systems). We can transform
to convenient variables that best describe the symmetry of the system.

It is easy to incorporate constraints. We formulate the Lagrangian in
a configuration space where ignorable coordinates are removed (e.g. a
mass constrained to a surface), thereby incorporating the constraint
from the outset.
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Conservative force

In the case of a convervative force field the Lagrangian is the difference of
the kinetic and potential energies

L(q, q̇) = T (q, q̇)− V (q) (10)

where

F =
∂V (q)

∂q
(11)
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Example: mass on a spring

The Lagrangian

L = T − V =
1

2
mẋ2 − 1

2
kx2. (12)

Plugging this into Lagrange’s equations

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (13)

d

dt

∂

∂ẋ

(
1

2
mẋ2 − 1

2
kx2

)
− ∂

∂x

(
1

2
mẋ2 − 1

2
kx2

)
= 0 (14)

d

dt
(mẋ) + kx = 0 (15)

mẍ + kx = 0. (16)
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Relativistic free particle - Lagrangian

The momentum for a free particle is

pi = γmẋi , i = 1, 2, 3; γ =
1√

1− β2
(17)

where m = m0 the rest mass and β is the velocity relative to c. To ensure

pi =
∂L

∂ẋi
=

mẋi√
1− β2

. (18)

the Lagrangian should be of the form

L(x , ẋ , t) = −mc2
√

1− β2 = −mc2

√
1− 1

c2

(
ẋ2

1 + ẋ2
2 + ẋ2

3

)
. (19)
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General electromagnetic fields

Now include general EM fields U(x , ẋ , t) = e(φ− v · A)

L(x , ẋ , t) = −mc2
√

1− β2 − eφ+ ev · A. (20)

The conjugate momentum is

Pi =
∂L

∂ẋi
=

mẋi√
1− β2

+ eAi (21)

i.e. the field contributes to the conjugate momentum.

David Kelliher (RAL) Hamiltonian Dynamics November 12, 2019 14 / 59



Legendre transformation

The Legendre transform takes us from a convex1 function F (ui ) to
another function G (vi ) as follows. Start with a function

F = F (u1, u2, . . . , un). (22)

Introduce a new set of conjugate variables through the following
transformation

vi =
∂F

∂ui
. (23)

We now define a new function G as follows

G =
n∑

i=1

uivi − F (24)

1F is convex in u if ∂2F
∂u2 > 0
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Apply Legendre’s transformation to the Lagrangian

Start with the Lagrangian

L = L(q1, . . . , qn, q̇1, . . . , q̇n, t), (25)

and introduce some new variables we are going to call the pi s

pi =
∂L

∂q̇i
. (26)

We can then introduce a new function H defined as

H =
n∑

i=1

pi q̇i − L (27)
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We now have a function which is dependent on q, p and time.

H = H(q1, . . . , qn, p1, . . . , pn, t) (28)

L and H have a dual nature:

H =
∑

pi q̇i − L,

pi =
∂L

∂q̇i
,

L =
∑

pi q̇i − H,

q̇i =
∂H

∂pi
.
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We can also use the passive variables q and t to demonstrate that

∂L

∂qi
= −∂H

∂qi
, (29)

∂L

∂t
= −∂H

∂t
. (30)
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Hamilton’s canonical equations

Starting from Lagrange’s equation

d

dt

(
∂L

∂q̇i

)
=
∂L

∂q

and combining with

pi =
∂L

∂q̇i

leads to

ṗi =
∂L

∂qi
= −∂H

∂qi
(31)
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So we have

q̇i =
∂H

∂pi
(32) ṗi = −∂H

∂qi
(33)

which are called Hamilton’s canonical equations. They are the equations
of motion of the system expressed as 2n first order differential equations.
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Symmetry and Conservation Laws

A cyclic coordinate in the Langrangian is also cyclic in the Hamiltonian.
Since H(q, p, t) = q̇ipi − L(q, q̇, t), a coordinate qj absent in L is also
absent in H.
A symmetry in the system implies a cyclic coordinate which in turn leads
to a conservation law (Noether’s theorem).

∂L

∂qj
= 0 =⇒ ∂H

∂qj
= 0 (34)

Hence
ṗj = 0 (35)

so the momentum pj is conserved.
Often we wish to simplify our problem by applying a transformation that
exploits any symmetry in the system.
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Canonical transformations

Transform from one set of canonical coordinates (pi , qi ) to another
(Pi ,Qi ). The transformation should preserve the form of Hamilton’s
equations.

Old coordinates
Hamiltonian: H(q, p, t)

q̇i =
∂H

∂pi
(36)

ṗi = −∂H
∂qi

(37)

New coordinates
Hamiltonian: K (Q,P, t)

Q̇i =
∂K

∂Pi
(38)

Ṗi = − ∂K
∂Qi

(39)
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Preservation of Hamiltonian form

For the old Hamiltonian H it was true that

δ

∫ t2

t1

(∑
i

pi q̇i − H(qi , pi , t)

)
dt = 0 (40)

Likewise, for the new Hamiltonian K

δ

∫ t2

t1

(∑
i

Pi Q̇i − K (Qi ,Pi , t)

)
dt = 0 (41)
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In order for this to be true we require

λ(pq̇ − H) = PQ̇ − K +
dF

dt
(42)

where, in order to ensure no variation at the endpoints it is required

δ

∫ t2

t1

dF

dt
dt = δ(F (t2)− F (t1)) = 0 (43)

If λ = 1 the transformation is said to be canonical2. We assume this
condition in the following.

2If λ 6= 1 the transformation is said to be extended canonical.
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The function F is called the generating function of the canonical
transformation and it depends on old and new phase space coordinates. It
can take 4 forms corresponding to combinations of (qi , pi ) and (Qi ,Pi ):

F = F1(qi ,Qi , t) (44)

F = F2(qi ,Pi , t) (45)

F = F3(pi ,Qi , t) (46)

F = F4(pi ,Pi , t) (47)
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Generating function F1(q,Q, t)

pi q̇i − H = Pi Q̇i − K +
dF1

dt
(48)

= Pi Q̇i − K +
∂F1

∂qi
q̇i +

∂F1

∂Qi
Q̇i +

∂F1

∂t
(49)(

pi −
∂F1

∂qi

)
q̇i −

(
Pi +

∂F1

∂qi

)
Q̇i + K −

(
H +

∂F1

∂t

)
= 0 (50)

The old and new coordinates are separately independent so the coefficients
of q̇i and Q̇i must each vanish leading to

pi =
∂F1

∂qi
(51)

Pi = −∂F1

∂Qi
(52)

K = H +
∂F1

∂t
(53)
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F1 example

F1(q,Q, t) = qQ (54)

This does not depend on time, so by equation 53 the new and original
Hamiltonians are equal.

p =
∂F1

∂q
= Q (55)

P = −∂F1

∂Q
= −q (56)

This generating function essentially swaps the coordinates and momenta.
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Generating function F2(q,P , t)

Look for a function of the form

F = F2(q,P, t)− QiPi (57)

so that

pi q̇i − H = Pi Q̇i − K +
d

dt
(F2 − QiPi ) (58)

= Pi Q̇i − K +
dF2

dt
− Q̇iPi − Qi Ṗi (59)

= −K +
∂F2

∂qi
q̇i +

∂F2

∂Pi
Ṗi +

∂F2

∂t
− Qi Ṗi (60)
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Equating terms we find

pi =
∂F2

∂qi
(61)

Qi =
∂F2

∂Pi
(62)

K = H +
∂F2

∂t
. (63)
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F2 example

F2(q,P, t) =
∑
i

qiPi (64)

This example generating function also does not depend on time so the new
and original Hamiltonians are again equal. So

pi =
∂F2

∂qi
= Pi (65)

Qi =
∂F2

∂Pi
= qi (66)

This generating function is just the identity transformation, the
coordinates and Hamiltonian are swapped into themselves.
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Generating function F3(p,Q, t)

We define
F = qipi + F3(p,Q, t) (67)

so can then say

pi q̇i − H = Pi Q̇i − K +
d

dt
(qipi + F3(p,Q, t)) (68)

pi q̇i − H = Pi Q̇i − K + q̇ipi + qi ṗi +
dF3(p,Q, t)

dt
(69)

−H = Pi Q̇i − K + qi ṗi +
∂F3

∂pi
ṗi +

∂F3

∂Qi
Q̇i +

∂F3

∂t
. (70)
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Equating the terms

qi = −∂F3

∂pi
(71)

Pi = −∂F3

∂Qi
(72)

K = H +
∂F3

∂t
. (73)
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F3 example

F3(p,Q, t) = piQi (74)

We can express

qi = −∂F3

∂pi
= −Qi (75)

Pi = −∂F3

∂Qi
= −pi . (76)

This generating function inverts the coordinates and momenta and keeps
the Hamiltonians the same. Is anyone’s head spinning yet?
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Generating function F4(p,P , t)

Let
F = qipi − QiPi + F4(p,P, t) (77)

so we can express

pi q̇i − H = Pi Q̇i − K +
d

dt
(qipi − QiPi + F4(p,P, t)) (78)

pi q̇i − H = Pi Q̇i − K + q̇ipi + qi ṗi − Q̇iPi − Qi Ṗi (79)

+
∂F4

∂pi
ṗi +

∂F4

∂Pi
Ṗi +

∂F4

∂t
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Equating terms

qi = −∂F4

∂pi
(80)

Qi =
∂F4

∂Pi
(81)

K = H +
∂F4

∂t
. (82)

David Kelliher (RAL) Hamiltonian Dynamics November 12, 2019 35 / 59



F4 example

F4(pi ,Pi , t) = pP (83)

K = H (84)

q = −P (85)

Q = p (86)

This transformation flips the coordinates and momenta and inverts the
transformed momenta.
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Summary of generating functions

Generating function Transformation equations

F = F1(q,Q, t) pi = ∂F1
∂qi

Pi = − ∂F1
∂Qi

F = F2(q,P, t)− QiPi pi = ∂F2
∂qi

Qi = ∂F2
∂Pi

F = F3(p,Q, t) + qipi qi = −∂F3
∂pi

Pi = − ∂F3
∂Qi

F = F4(p,P, t) + qipi − QiPi qi = −∂F4
∂pi

Qi = ∂F4
∂Pi
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Example: Harmonic oscillator

The Hamiltonian for a harmonic oscillator is given

H =
ω

2

(
q2 + p2

)
. (87)

This Hamiltonian is the sum of two squares, which suggest that one of the
new coordinates is cyclic. Try a transformation of the form

q =

√
2

ω
f (P) sinQ (88)

p =

√
2

ω
f (P) cosQ. (89)

Then the new Hamiltonian

K = H = f 2(P)(sin2 Q + cos2 Q) = f 2(P). (90)
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Take the ratio of the transformation equations

p = q cotQ. (91)

This is independent of f(P), and has the form of the F1(q,Q, t) type of
generating function

p =
∂F1

∂q
. (92)

The simplest form for F1 agreeing with the above is

F1(q,Q) =
1

2
q2 cotQ. (93)

We can then find P using the other transformation equation for F1

P = −∂F1

∂Q
=

1

2
q2 csc2 Q =

1

2

q2

sin2 Q
. (94)
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Rearrange for q

q =
√

2P sin2 Q =
√

2P sinQ. (95)

Comparing this with equation 88 gives the function f (P)

f (P) =
√
ωP. (96)

The new Hamiltonian is therefore

K = ωP. (97)

This is cyclic in Q, so P is constant. The energy is constant and equal to
K so

P =
E

ω
. (98)

Q̇ =
∂K

∂P
= ω (99)
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The solution for Q is
Q = ωt + α (100)

for some constant α. Finally the solution is

q =

√
2E

ω
sinωt + α. (101)
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The Hamilton-Jacobi equation

The Hamilton-Jacobi equation (HJE) is written

H(q1, . . . , qn,
∂S

∂q1
, . . . ,

∂S

∂qn
, t) +

∂S

∂t
= 0. (102)

where S is called Hamilton’s principle function. S is equivalent to the
action.
In order to obtain the HJE we seek a transformation to coordinates and
momenta from the known initial condition, keeping the end points fixed.

q = q(q0, p0, t) (103)

p = p(q0, p0, t). (104)
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We can achieve this by choosing a generator function of type F2 that
satisfies

H +
∂F2

∂t
= 0. (105)

For historical reasons F2 is denoted by S (in fact it is equivalent to the
action)

S = S(q,P, t). (106)

In Hamilton-Jacobi theory, the function S is called Hamilton’s principle
function.
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We can then use the transformation equations to state

pi =
∂S

∂qi
(107)

Qi =
∂S

∂Pi
(108)

K = H +
∂S

∂t
. (109)

From Equation 105 we can write

H(q1, . . . , qn, p1, . . . , pn, t) +
∂S

∂t
= 0. (110)

Replacing the pi s we obtain the Hamilton-Jacobi equation.

H(q1, . . . , qn,
∂S

∂q1
, . . . ,

∂S

∂qn
, t) +

∂S

∂t
= 0. (111)
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Phase space

In Hamiltonian mechanics, the canonical momenta pi = δL are promoted
to coordinates on equal footing with the generalized coordinates qi . The
coordinates (q, p) are canonical variables, and the space of canonical
variables is known as phase space.
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Symplecticity

A symplectic transformation M satisfies

MTΩM = Ω (112)

where

Ω =

(
0 I
−I 0

)
(113)

Hamilton’s equations in matrix form are(
q̇i
ṗi

)
=

(
0 1
−1 0

)( ∂H
∂qi
∂H
∂pi

)
(114)

or in vector form
ζ̇ = Ω∇H(ζ) = ΩJζ (115)

where ζ is the vector of phase space coordinates.
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This has solution
ζ(t) = Mz(t0) = etΩJ (116)

From here its easy to show

MT (t)ΩM(t) = e−tΩJΩetΩJ = e−tΩJetΩJΩ = Ω (117)

In Hamiltonian systems the equations of motion generate symplectic maps
of coordinates and momenta and as a consequence preserve volume in
phase space. This is equivalent to Liouville theorem which asserts that the
phase space distribution function is constant along the trajectories of the
system.
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Action-angle variables

A Hamiltonian system can be written in action-angle form if there is a set
of canonical variables (θ, I ) such that H only depends on the action

H = H(I ) (118)

Then

θ̇ = ∇H(I ) = Ω(I ), İ = 0 (119)
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Liouville Integrability

The Liouville-Arnold theorem states that existence of n invariants of
motion is enough to fully characterize a for an n degree-of-freedom
system. In that case a canonical transformation exists to action angle
coordinates in which the Hamiltonian depends only on the action.
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Henon-Heiles system

The Hénon-Heiles potential can be written

V (x , y) =
1

2

(
x2 + y2

)
+ x2y − 1

3
y3 (120)

with Hamiltonian

H =
1

2

(
p2
x + p2

y + x2 + y2
)

+ x2y − 1

3
y3 = E (121)

The Hamiltonian is integrable only for limited number of initial conditions.
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The motion is bounded for energy E ≤ 1/6. As E increases, the dynamics
look increasingly chaotic3.

3S. A. Antipov and S. Nagaitsev, Proc. of IPAC2017, Cophenhagen, Denmark, WEOAB1.
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Poisson brackets

Let p and q be canonical variables and let u and v be functions of p and
q. The Poisson bracket of u and v is defined as

[u, v ]p,q =
∂u

∂q

∂v

∂p
− ∂u

∂p

∂v

∂q
. (122)

Generalising to a system of n variables this becomes

[u, v ] =
∑
i

(
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)
. (123)

Using the Einstein summation convention this is just

[u, v ] =
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi
. (124)
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From the definition of the Poisson bracket

[qi , qj ] = [pi , pj ] = 0 (125)

[qi , pj ] = −[pi , qj ] = δi ,j . (126)

A Poisson bracket is invariant under a change in canonical variables

[u, v ]p,q = [u, v ]P,Q . (127)

In other words, Poisson brackets are canonical invariants, which gives us
an easy way to determine whether a set of variables is canonical.
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Equations of motion with brackets

Hamilton’s equations may be written in terms of Poisson brackets
For a function u = u(qi , pi , t) the total differential is

du

dt
=
∂u

∂qi
q̇i +

∂u

∂pi
ṗi +

∂u

∂t
. (128)

We can replace q̇i and ṗi with their Hamiltonian solutions to obtain

du

dt
=
∂u

∂qi

∂H

∂pi
− ∂u

∂pi

∂H

∂qi
+
∂u

∂t
(129)

which is just
du

dt
= [u,H] +

∂u

∂t
. (130)
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If u is constant, then du
dt = 0 and [u,H] = −∂u

∂t . If u does not depend
explicitly on t [u,H] = 0.
If u = q

q̇ = [q,H]. (131)

If u = p
ṗ = [p,H]. (132)

Which are just the equations of motion in terms of Poisson brackets.
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Lie Transformations

Suppose we have some function of the phase space variables

f = f (xi , pi ) (133)

which has no explicit dependence on the independent variable, s. However
if we evaluate f for a particle moving along a beamline, the value of f will
evolve with s as the dynamical variables evolve.
The rate of change of f with s is

df

ds
=

n∑
i=1

dxi
ds

∂f

∂xi
+

dpi
ds

∂f

∂pi
. (134)

Using Hamilton’s equations

df

ds
=

n∑
i=1

∂H

∂pi

∂f

∂xi
− ∂H

∂xi

∂f

∂pi
. (135)
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We now define the Lie operator : g : for any function g(xi , pi )

: g :=
n∑

i=1

∂g

∂xi

∂

∂pi
− ∂g

∂pi

∂

∂xi
. (136)

Compare with the definition of a Poisson bracket

[u, v ]p,q =
∂u

∂q

∂v

∂p
− ∂u

∂p

∂v

∂q
. (137)

If the Hamiltonian H has no explicit dependence on s we can write

df

ds
= − : H : f . (138)
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We can express f at s = s0 + ∆s in terms of f at s = s0 in terms of a
Taylor series

f |s=s0+∆s = f |s=s0 + ∆s
df

ds

∣∣∣∣
s=s0

+
∆s2

2

d2f

ds2

∣∣∣∣
s=s0

+ . . . (139)

=
∞∑

m=0

∆sm

m!

dmf

dsm

∣∣∣∣
s=s0

(140)

= e∆s d
ds f
∣∣
s=s0

. (141)

This suggests the solution for equation 138 can be written as

f |s=s0+∆s = e−∆s:H:f
∣∣
s=s0

. (142)
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The operator e−∆s:g : is known as a Lie transformation, with generator g .
In the context of accelerator beam dynamics, applying a Lie
transformation with the Hamiltonian as the generator to a function f
produces a transfer map for f .

f can be any function of the dynamical variables

Any Lie transformation represents the evolution of a conservative
dynamical system, with Hamiltonian corresponding to the generator
of the Lie transformation

The map represented by a Lie transformation must be symplectic
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