Hamiltonian Dynamics - Problem Set

David Kelliher

December 5th, 2019

Problem 1 Particle on a cone

Consider a particle rolling due to gravity in a frictionless cone. The cone's opening angle α places a constraint on the coordinates $\tan \alpha=\sqrt{x^{2}+y^{2}} / z$. It is convenient to write the kinetic and potential energies in cylindrical coordinates

$$
\begin{equation*}
T=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}\right), \quad V=m g z \tag{1}
\end{equation*}
$$

Use the constraint to reduce the number of generalised coordinates. Write down the Lagrangian and find the equation of motion.

Problem 2 Kepler problem

Write down Hamilton's equation for the following Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\phi}^{2}}{r^{2} \sin ^{2} \theta}\right)-\frac{\mu m}{r} \tag{2}
\end{equation*}
$$

Problem 3 Atwood's machine

Two masses are hanging via a massless string from a frictionless pulley, The kinetic energy of the masses is

$$
\begin{equation*}
T=\frac{1}{2} m_{1} \dot{x}_{1}^{2}+\frac{1}{2} m_{2} \dot{x}_{2}^{2} \tag{3}
\end{equation*}
$$

while the potential energy is

$$
\begin{equation*}
V=-m_{1} g x_{1}-m_{2} g x_{2} \tag{4}
\end{equation*}
$$

We selected $V=0$ at the centre of the pulley. The system is subjected to the constraint $x_{1}+x_{2}=l=$ constant. Write down the Lagrangian, convert to the Hamiltonian and write down Hamilton's equations.

Problem 4 Canonical transformation

By evaluating the Poisson bracket show that, for a system of one degree of freedom, the transformation

$$
Q=\arctan \frac{\alpha q}{p}, \quad P=\frac{\alpha q^{2}}{2}\left(1+\frac{p^{2}}{\alpha^{2} q^{2}}\right)
$$

is canonical (recall for a canonical transformation the Poisson bracket must satisfy $\left.[Q, P]_{q, p}=1\right)$.

Problem 5 Transfer matrix of a drift

The Hamiltonian of a drift (field free region) of length L is given by

$$
\begin{equation*}
H=\frac{\delta_{E}}{\beta_{0}}-\sqrt{\left(\frac{1}{\beta_{0}}+\delta_{E}\right)-p_{x}^{2}-p_{z}^{2}-\frac{1}{\beta_{0}^{2} \gamma_{0}^{2}}} \tag{5}
\end{equation*}
$$

where δ_{E} is the energy deviation, p_{x}, p_{z} are the normalised transverse momenta and β_{0}, γ_{0} are the relativistic parameters at the reference momentum. Write down Hamilton's equations and show that in the limit $p_{x} \ll 1, p_{z} \ll$
$1, \delta_{E} \ll 1$ and $\gamma_{0} \gg 1$, the transfer matrix is given by

$$
M=\left(\begin{array}{cccccc}
1 & L & 0 & 0 & 0 & 0 \tag{6}\\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & L & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \frac{L}{\beta_{0}^{2} \gamma_{0}^{2}} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Problem 6 Amplitude dependent tune shift

The Hamiltonian for a normal octupole magnet can be written

$$
\begin{equation*}
H=\frac{q}{p} \frac{b_{4}}{4}\left(x^{4}-6 x^{2} z^{2}+z^{4}\right) \tag{7}
\end{equation*}
$$

where q is the particle charge, p is the momentum, (x, z) are the horizontal and vertical coordinates and the octupole strength b_{4} is constant along the magnet length. The coordinates can be written in terms of action-angle coordinates $\left(J_{x}, \phi_{x}\right),\left(J_{y}, \phi_{y}\right)$ via

$$
\begin{align*}
x(s) & =\sqrt{2 J_{x} \beta_{x}(s)} \cos \phi_{x} \tag{8}\\
y(s) & =\sqrt{2 J_{y} \beta_{y}(s)} \cos \phi_{y} \tag{9}
\end{align*}
$$

where $\beta_{x, y}$ are betatron functions. Find the averaged Hamiltonian $\langle H\rangle$ by evaluating

$$
\begin{equation*}
\langle H\rangle=\frac{1}{2 \pi} \oint H(J, \phi) d \phi \tag{10}
\end{equation*}
$$

Note, integrals of the cosine function such as $\oint \cos ^{4} \phi d \phi=\frac{3 \pi}{4}$ will be useful. Then work out the tune shift in each transverse plane $\Delta Q_{x, y}$ using the relation

$$
\begin{equation*}
\Delta Q_{x, y}=\frac{1}{2 \pi} \oint \frac{\partial}{\partial J_{x, y}}\langle H\rangle d s \tag{11}
\end{equation*}
$$

