Update on validation tool for biasing techniques

A. Zaborowska, CERN
based on work of Kyungseop Yoon,
CERN Summer Student

Geant4 Generic Processes and Materials WG
16/09/2019
Need for statistical test suite

- Need for verification tool for biasing applications
- Many observables common to various biasing options

Marc Verderi (23rd Collaboration Meeting)

- to be used:
 - for high-statistics validation (e.g. geant-val)
 - for new techniques development (by developer)
 - by users.
Status

Work started by summer student, Kyungseop Yoon.

• First, generalisation of the existing examples (examples/extended/biasing).

• Radiation protection example and comparison of:
 ◦ geometry importance,
 ◦ weight window,
 ◦ non-biased simulation.

• Scoring replaced by SD for richer output.

• Information on steps stored in ROOT ntuples.

• Histograms prepared for comparison.

• Needs to be checked/validated, documented (more), and extended to GB0x examples.
Status

Work started by summer student, Kyungseop Yoon.

• First, generalisation of the existing examples (examples/extended/biasing).

• Radiation protection example and comparison of:
 ◦ geometry importance,
 ◦ weight window,
 ◦ non-biased simulation.

• Scoring replaced by SD for richer output.

• Information on steps stored in ROOT ntuples.

• Histograms prepared for comparison.

A. Zaborowska, CERN
16/09/2019
Status

Work started by summer student, Kyungseop Yoon.

- First, generalisation of the existing examples (examples/extended/biasing).
- Radiation protection example and comparison of:
 - geometry importance,
 - weight window,
 - non-biased simulation.
- Scoring replaced by SD for richer output.
- Information on steps stored in ROOT ntuples.
- Histograms prepared for comparison.
- Needs to be checked/validated, documented (more), and extended to GB0x examples.
Event Biasing Example B01

Default output:

<table>
<thead>
<tr>
<th>Volume</th>
<th>TE Entering</th>
<th>Population</th>
<th>Colliisons</th>
<th>Colli*WRTOT</th>
<th>NumWRTOTdet</th>
<th>FluxWRTOTdet</th>
<th>Av.T(TE WRTOT)</th>
<th>SL</th>
<th>SW</th>
<th>SW_he</th>
<th>SW меня</th>
<th>SW ему</th>
</tr>
</thead>
<tbody>
<tr>
<td>e0</td>
<td>15</td>
<td>129</td>
<td>35</td>
<td>35</td>
<td>0.1155977</td>
<td>2.892857</td>
<td>1</td>
<td>633.92</td>
<td>633.92</td>
<td>3710.5</td>
<td>15628</td>
<td>579.32</td>
</tr>
<tr>
<td>e0</td>
<td>140</td>
<td>175</td>
<td>407</td>
<td>407</td>
<td>0.0120888</td>
<td>6.13857</td>
<td>1</td>
<td>2194.68</td>
<td>2194.68</td>
<td>6142.7</td>
<td>9100.75</td>
<td>2603.79</td>
</tr>
<tr>
<td>e0</td>
<td>1,201</td>
<td>284</td>
<td>1399</td>
<td>679.5</td>
<td>0.00454265</td>
<td>2.48698</td>
<td>0.51</td>
<td>4565.7</td>
<td>2875.9</td>
<td>21904</td>
<td>4599.64</td>
<td>2074.62</td>
</tr>
<tr>
<td>e0</td>
<td>285</td>
<td>469</td>
<td>2528</td>
<td>322</td>
<td>0.00694085</td>
<td>1.98858</td>
<td>0.25</td>
<td>8198.5</td>
<td>5999.7</td>
<td>23997</td>
<td>3933</td>
<td>1692.42</td>
</tr>
<tr>
<td>e0</td>
<td>501</td>
<td>491</td>
<td>2894</td>
<td>361.75</td>
<td>0.00444555</td>
<td>4.01478</td>
<td>0.15</td>
<td>9727.8</td>
<td>1537.7</td>
<td>5472</td>
<td>19008.3</td>
<td>400.479</td>
</tr>
<tr>
<td>e0</td>
<td>100</td>
<td>50</td>
<td>134</td>
<td>332</td>
<td>0.105462</td>
<td>0.00366499</td>
<td>0.945896</td>
<td>0.325</td>
<td>9727.31</td>
<td>2591.16</td>
<td>4865.4</td>
<td>3909.8</td>
</tr>
<tr>
<td>e0</td>
<td>300</td>
<td>123</td>
<td>32</td>
<td>32</td>
<td>10.52</td>
<td>0.00000000</td>
<td>0.945896</td>
<td>0.325</td>
<td>9727.31</td>
<td>2591.16</td>
<td>4865.4</td>
<td>3909.8</td>
</tr>
<tr>
<td>e0</td>
<td>600</td>
<td>24</td>
<td>32</td>
<td>32</td>
<td>10.52</td>
<td>0.00000000</td>
<td>0.945896</td>
<td>0.325</td>
<td>9727.31</td>
<td>2591.16</td>
<td>4865.4</td>
<td>3909.8</td>
</tr>
<tr>
<td>e0</td>
<td>1,201</td>
<td>284</td>
<td>1399</td>
<td>679.5</td>
<td>0.00454265</td>
<td>2.48698</td>
<td>0.51</td>
<td>4565.7</td>
<td>2875.9</td>
<td>21904</td>
<td>4599.64</td>
<td>2074.62</td>
</tr>
<tr>
<td>e0</td>
<td>285</td>
<td>469</td>
<td>2528</td>
<td>322</td>
<td>0.00694085</td>
<td>1.98858</td>
<td>0.25</td>
<td>8198.5</td>
<td>5999.7</td>
<td>23997</td>
<td>3933</td>
<td>1692.42</td>
</tr>
<tr>
<td>e0</td>
<td>501</td>
<td>491</td>
<td>2894</td>
<td>361.75</td>
<td>0.00444555</td>
<td>4.01478</td>
<td>0.15</td>
<td>9727.8</td>
<td>1537.7</td>
<td>5472</td>
<td>19008.3</td>
<td>400.479</td>
</tr>
<tr>
<td>e0</td>
<td>100</td>
<td>50</td>
<td>134</td>
<td>332</td>
<td>0.105462</td>
<td>0.00366499</td>
<td>0.945896</td>
<td>0.325</td>
<td>9727.31</td>
<td>2591.16</td>
<td>4865.4</td>
<td>3909.8</td>
</tr>
<tr>
<td>e0</td>
<td>300</td>
<td>123</td>
<td>32</td>
<td>32</td>
<td>10.52</td>
<td>0.00000000</td>
<td>0.945896</td>
<td>0.325</td>
<td>9727.31</td>
<td>2591.16</td>
<td>4865.4</td>
<td>3909.8</td>
</tr>
<tr>
<td>e0</td>
<td>600</td>
<td>24</td>
<td>32</td>
<td>32</td>
<td>10.52</td>
<td>0.00000000</td>
<td>0.945896</td>
<td>0.325</td>
<td>9727.31</td>
<td>2591.16</td>
<td>4865.4</td>
<td>3909.8</td>
</tr>
</tbody>
</table>

First results based on slides from summary talk by Kyungseop

A. Zaborowska, CERN

16/09/2019
First results

Event Biasing Example B01

Default output:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Tr. Entering</th>
<th>Population</th>
<th>Collision</th>
<th>Coinfl.</th>
<th>Coll*Pow</th>
<th>NumWTSdet</th>
<th>FnalWTSdet</th>
<th>Av. Tr. WGT</th>
<th>SL</th>
<th>SWU</th>
<th>SWU,</th>
<th>SWUM</th>
<th>SWUM,</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell_01</td>
<td>129</td>
</tr>
<tr>
<td>cell_05</td>
<td>530</td>
</tr>
<tr>
<td>cell_06</td>
<td>300</td>
</tr>
<tr>
<td>cell_07</td>
<td>287</td>
</tr>
<tr>
<td>cell_10</td>
<td>272</td>
</tr>
<tr>
<td>cell_21</td>
<td>254</td>
</tr>
<tr>
<td>cell_22</td>
<td>252</td>
</tr>
<tr>
<td>cell_25</td>
<td>312</td>
</tr>
<tr>
<td>cell_26</td>
<td>271</td>
</tr>
<tr>
<td>cell_27</td>
<td>259</td>
</tr>
<tr>
<td>cell_28</td>
<td>240</td>
</tr>
<tr>
<td>cell_31</td>
<td>172</td>
</tr>
<tr>
<td>cell_32</td>
<td>159</td>
</tr>
<tr>
<td>cell_34</td>
<td>118</td>
</tr>
<tr>
<td>cell_35</td>
<td>105</td>
</tr>
<tr>
<td>cell_36</td>
<td>91</td>
</tr>
</tbody>
</table>

based on slides from summary talk by Kyungseop
First results

Event Biasing Example B01

Based on slides from summary talk by Kyungseop
First results

Event Biasing Example B01

based on slides from summary talk by Kyungseop
Next steps

I will continue this work (>November).

- Extend and validate 'analysis' part:
 - distance between 2 interactions of same type
 - population of particles as a function of e.g. x/y/z or layer
 - number of created secondaries as a function of process or material or layer, etc.
 - weight change in the step
 - deposited energy as a function of x/y/z or layer, etc.

- Implement messengers for better flexibility (e.g. adjust geometry, size and number of cells, which biasing option is used, ...)

- Introduce a switch between 'save all steps' and 'only histograms' for high-statistics analysis

- Integrate this as part of existing examples and ultimately also geant-val
Next steps

I will continue this work (>November).

- Extend and validate ‘analysis’ part:
 - \times distance between 2 interactions of same type
 - \checkmark population of particles as a function of e.g. $x/y/z$ or layer
 - $\checkmark \times$ number of created secondaries as a function of process or material or layer, etc.
 - \checkmark weight change in the step
 - $\checkmark \times$ deposited energy as a function of $x/y/z$ or layer, etc.

- Implement messengers for better flexibility (e.g. adjust geometry, size and number of cells, which biasing option is used, ...)

- Introduce a switch between ‘save all steps’ and ‘only histograms’ for high-statistics analysis

- Integrate this as part of existing examples and ultimately also geant-val
Next steps

I will continue this work (>November).

- Extend and validate ‘analysis’ part:
 - ✗ distance between 2 interactions of same type
 - ✓ population of particles as a function of e.g. x/y/z or layer
 - ✓✖ number of created secondaries as a function of process or material or layer, etc.
 - ✓ weight change in the step
 - ✓✖ deposited energy as a function of x/y/z or layer, etc.

- Implement messengers for better flexibility (e.g. adjust geometry, size and number of cells, which biasing option is used, ...)

A. Zaborowska, CERN
16/09/2019
Next steps

I will continue this work (>November).

- Extend and validate ‘analysis’ part:
 - 🗑 distance between 2 interactions of same type
 - ✓ population of particles as a function of e.g. x/y/z or layer
 - ✗ ✓ number of created secondaries as a function of process or material or layer, etc.
 - ✓ weight change in the step
 - ✓ ✗ deposited energy as a function of x/y/z or layer, etc.

- Implement messengers for better flexibility (e.g. adjust geometry, size and number of cells, which biasing option is used, ...)

- Introduce a switch between ‘save all steps’ and ‘only histograms’ for high-statistics analysis
Next steps

I will continue this work (>November).

• Extend and validate ‘analysis’ part:
 ✓ distance between 2 interactions of same type
 ✓ population of particles as a function of e.g. x/y/z or layer
 ✔️ number of created secondaries as a function of process or material or layer, etc.
 ✔️ weight change in the step
 ✔️ deposited energy as a function of x/y/z or layer, etc.

• Implement messengers for better flexibility (e.g. adjust geometry, size and number of cells, which biasing option is used, ...)

• Introduce a switch between ‘save all steps’ and ‘only histograms’ for high-statistics analysis

• Integrate this as part of existing examples and ultimately also geant-val