Wilson loop calculation Jornadas do CeFEMA

Alireza Sharifian

Instituto Superior Técnico

16.Sep.2019

Doctoral Programme in the Physics and Mathematics of Information www.dp-pmiorg

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ・ 今 Q ()・

what can we extract:

lattice

Wilson Loop

► Wilson loop is defined as:

Figure: wilson loop

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▶ for $T \to \infty$ we have $\langle tr(U(C)) \rangle = \exp(TV(R))$ V(R) = static quark-antiquark potential Plaquette-plaquette correlation

correlation of two spacial plaquette

$$p_1$$
 p_2

Figure: 2 spatial plaquette p_1 and p_2 separated time t

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\langle Tr(U(p_1))Tr(U(p_2))\rangle = \exp(-mt)$ m = lowest particle mass in the theory(gluebal)[3]

Numerical Calculation

extraction of effective mass diagram $\langle w(r,t) \rangle$ = average of wilson loops with size $r \times t$ $r = na, t = n_ta$ $\langle w(r,t)\rangle = C \exp(n_t a V(n_a))$ $aV(na) = \log(\frac{w(na, n_ta)}{w(na, (n_t + 1)a)})$ $V(r) = A + \frac{B}{r} + \sigma r$ $F(r) = \frac{d}{dr}V(r)$ From experimentat data and Schrodinger equation $F(r_0)r_0^2 = -B + \sigma r_0^2 = 1.65$ $\frac{r_0}{2} = \sqrt{\frac{1.65+B}{\pi^2}}$ $aV(na) = Aa + \frac{B}{n} + \sigma a^2 n$

jackknife

$$\sigma_{\hat{\theta}}^2 = \frac{N-1}{N} \sum_{n=1}^{N} (\theta_n - \hat{\theta})^2$$

Numerical results

Value of wilson loops

w(6,	9)=-0.00007645689363	ĺ			
w(6,	10)=0.00012333223216				
w(6,	11)=-0.00022383341051	I			
w(б,	12)=-0.00013875277183	l			
w(6,	13)=0.00023426581602				
w(6,	14)=-0.00011709960653				
w(6,	15)=0.00033422974705				
w(6,	16)=0.00010538573652				
w(7,	1)=0.06124080095628				
w(7,	2)=0.01444496191508				
w(7,	3)=0.00510581476991				
w(7,	<pre>>=0.00221613904016</pre>				
w(7,	5)=0.00132391459250	l			
w(7,	6)=0.00073946553723				
w(7,	7)=0.00000450756059				
w(7,	8)=-0.00010455638400				
w(7,	9)=-0.00004821119003				
w(7,	10) = 0.00010488054397				
w(7,	11)=0.00006249572781				
w(7,	12)=-0.00010205010220	l			
w(7,	13)=0.00017483009148				
w(7,	14)=0.00005278947736				
w(7,	15)=0.00000758609606				
w(7,	16)=-0.00009137646582	1			
		-		이 가는 이 가는 이 나는 것	이지 지금 지 지금 지 않는 것?

Results

effective mass plots

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Effective mass plot

▶ 5 ≤ r ≤ 8

effective mass n = 6 First method, config=1199

 $m = 0.8121 \pm 0.0256$, $\chi^2/dot \rightarrow 102.195$

Quark Potential

properties of the lattice

Figure: Potential

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Comparision of speed and code

	speed(s)), 4	Core
--	----------	------	------

	lattice rearrangment	wilson line	wilson loop
CPU	0.25	6.5	230
Parallel-CPU	0.085	3	77
GPU	-	0.03	1.5

cpu properties:

vendor_id	: GenuineIntel	
cpu family		
model	: 30	
model name	: Intel(R) Core(TM) i7 CPU	860 @ 2.80GHz

Device 1: "GeForce GTX TITAH Black" CUDA Driver Version / Runtime Version CUDA Capability Major/Minor version number: Total amount of global memory: (15) Multiprocessors, (192) CUDA Cores/AP: GPU Max Clock rate: Memory Lock rate: Memory Clock rate: Memory State: Memory Bus Midth:	10.1 / 10.1 3.5 6083 MBytes (6378749952 bytes) 2880 CUDA Cores 980 MHz (0.98 GHz) 3500 MHz 384-bit
---	--

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

how to change the code for omp

<pre>76 auto t1=get_time::now();</pre>
77 for (int t = 0; t < s[3]; t++)
78 for $(int \cdot k = 0; k < s[2]; k++)$
79 · · · · · · · · · · · · · · · for · (int · j · = · 0; · j · < · s[1]; · j ++)
80 ····· for · (int · i · = · 0; · i · < · s[0]; · i +
81 · · · · · · · · · · · · · · · · · · ·
82 · · · · · for · (int · p = · 0; · p · < ·
83 · · · · · · for · (int · q · = · 0; ·
84 ·····OneDArray[ne
85 • • • • • • • • • • • • • • • • • • •
50 #pragma.omp.parallel
51 {
52double.t1, t2;
53t1 = omp_get_wtime();
54 #pragma.omp.for.
55 · · · · · · · · for · (int · t · = · 0; · t · < · s[3]; · t++)
56 for (int k = 0; k < s[2]; k++)
57 for (int j = 0; j < s[1]; j++)
58 for (int i = 0; i < s[0]; i+
59 for (int dir = 0; dir <-
60 for (int p = 0; p <
61 for (int q = 0;
62 ·····OneDArray[ne
63 · · · · · · · · · · · · · · · · · · ·

Figure: 0.25 to 0.085 ms

Next Phase

calculation of more complecated wilson loops[1]

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Stefano Capitani, Owe Philipsen, Christian Reisinger, Carolin Riehl, and Marc Wagner.
Precision computation of hybrid static potentials in SU(3) lattice gauge theory.
Phys. Rev., D99(3):034502, 2019.

- Christof Gattringer and Christian B. Lang. Quantum chromodynamics on the lattice. Lect. Notes Phys., 788:1–343, 2010.
 - G. Munster and M. Walzl.

Lattice gauge theory: A Short primer.

In Phenomenology of gauge interactions. Proceedings, Summer School, Zuoz, Switzerland, August 13-19, 2000, pages 127–160, 2000.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Acknowledgements

 I would like to thanks Dr. Nuno Cardoso for his kind helps to me for learning CUDA.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

I acknowledge the financial support by FCT.