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Fidelity
Fidelity in terms of different quantum
states:

e Fidelity for two generic pure states

[¥) and [¢) is

F = [(¢]9)]
® In case of one pure state |¢) and @ @
one mixed state p

F = (@lplp)

e While in case of two mixed states
p and p
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Uhlmann factor

We take two density matrices p(7) and p(7 + d7), by polar
decomposition

V(T +07)/p(r) = 1/ p(7 + 67)V/ p(7) IV

V is the Uhlmann factor which characterizes the Uhlmann
parallel transport.

If the density matrices p(7) and p(7 4 d7), belong to the
same phase then they commute and thus V =1

On the other hand if density matrices p(7) and p(7 + d7),
belong to the different phases then they are drastically
different and thus V # 1
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Uhlmann quantity

® To quantify the difference between a nontrivial Uhlmann
factor and identity, the following quantity is introduced

A(p(7), p(7 + 67)) := Te{|\/p(7 + 87)y/p(7)I(1 = V)}
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Fidelity and Uhlmann quantity

e |f the density matrices p(7) and
p(7 + d7) belong to same phase
then they are almost the same and
thus F ~ 1.

® On the other hand if density
matrices p(7) and p(7 + d7), Ol Y
belong to different phases then the '
they are drastically different and
thus F < 1. l

Chern number

® The difference between the two
states can be in their spectra or
their eigen basis. In the case of the
latter, we also have V #1, i.e.,
A > 0.
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Fidelity and Uhlmann quantity and Fidelity susceptibility

F(p(r), (7 + 67)) = Tey/ /o(@)p(r+67)v/o(7)

A(p(r), p(1 + 7)) = Te{|/p(7 + 07)/p(7)|(1 = V)}

L g _F(p(r).plr +07))

2 N2

N—00,T=0 T=0,N—00
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Main ingredient

® Here we treat temperature and parameters of Hamiltonian on
equal footing.

¢ Fidelity (F) and the Uhlmann quantity (A) are evaluated for
different Topological superconductors and Insulators.

® Analytic expression for previous quantities are calculated with
respect to the many-body thermal states

p = exp[—BH]/Z; Z = Tr(exp[—fH])
H= %ZZTHBdGJ-
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2D Topological Superconductor
The Hamiltonian of topological superconductor
H= St .cij+c. jcii)— 1( 4t)T
ij C1+11017J C1,3+1C17J 9 B Ci 3G

+S( 1+1J :rJ+1C:rJ+1C )]+HC]

® we fix [S| =t = 3, and translation
invariance is taken in both
directions

H(k) = —{sin(ky)ox + sin(ky)oy
+[p — 2+ cos(ky) + cos(ky)]o, }

® So topological phase transitions
should occur at =2
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2D Topological superconductor

Figure: Fidelity (F) for Gibbs states p, (Left) probing parameter of
Hamiltonian 6 = 0.01, (Middle) when probing temperature 6T = 0.01,
and (Right) Uhlmann quantity A while probing Hamiltonian parameter
with du = 0.01, for 2D Topological superconductor.
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2D Topological insulator

® Following topological insulator Hamiltonian is considered
H= Slel(trox +itso,)eij + el (taoy + itso,)e
+CiTJrl,jJrl(tQUz)Ci,j +H.c]
e for |[t1| = |t3| = 1, again going to momentum space we get

H(k) = 2 cos(ky)ox + 2 cos(ky)oy
+{2t5 cos(ky + ky) + 2[sin(ky) + sin(ky )]} 0.

¢ Chern number (Ch) are: Ch = £2 if to < F2 and Ch = +£1 if
F2st2s0
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2D Topological insulator

Figure: Fidelity (F) for Gibbs states p, (Left) parameter of Hamiltonian
dte = 0.01, (Middle) when probing temperature 6T = 0.01, and (Right)
Uhlmann quantity A while probing Hamiltonian parameter with

0ty = 0.01, for 2D Topological insulator.
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2D Topological insulator
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Figure: Expectation value of the occupation number at the bulk and
boundary as a function of the quasi-momentum k, for the 2D topological
insulator.
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2D Topological insulator

N—oco,T=0 T=0,N—oco
Xrr # Xrr

N—00,T=0 / dk }5 On On” ‘H\ /‘( ‘\ ‘\‘\‘
X gz (2m)P 4" a7 o7’ 'Mu \U/K

B dPk [ 1] cosh[BE(k;T)] — 15 On# On”
Xrr = /BZ_ (2m)D ) 4| cosh[BE(k;T)] " or or

N & oE(s 1)\’
cosh[SE(k; 7)] + 1 or ’
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1D Topological superconductor with long-range amplitudes

® Following topological superconductor Hamiltonian is
considered

(¥

N-1
1 1 T 1 1
5 — 1-HCl R17 1-HC + h. C) (Cl Ci — 2)) ’

® with ﬁa =01, and 113 = exp[(1 — 1)/5].

e Winding number () are: Q=1if =1 <pu <1 and Q=0 for
all other values of i at 8 = 0.
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1D Topological superconductor with long-range amplitudes
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Figure: (Left) Fidelity (F), (Middle) Uhlmann quantity A while probing
Hamiltonian parameter with 6 = 0.01, and (Right) Fidelity susceptibility
(Xup) for 1D topological superconductor with long-range hopping
amplitude
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2D Topological superconductor with long-range amplitudes

® Following topological superconductor Hamiltonian is
considered

A .
H = Zl m{Zr s( dﬁ Cl+r m—l—sCl m + dg:1 (I‘ +1 S)CL-r,m—&—sCIr,m)

—(pu— 4t)c17mcl7m) +H.c.}

® withd;s =vr?+s2and A=t = %
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2D Topological superconductor with long-range amplitudes
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Figure: (Left) Fidelity (F), (Middle) Uhlmann quantity A while probing
Hamiltonian parameter with ju = 0.01, and (Right) Fidelity susceptibility
(Xup) for 2D topological superconductor with long-range amplitudes.
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Summary

The fidelity and Uhlmann connection analysis of phase
transitions are applied to different free-fermion topological
insulators and superconductors

Both quantities are detecting zero-temperature topological
quantum phase transitions.

Moreover, both quantities behave differently with respect to
changes in eigenvalues and eigenbasis

we also observe that with increasing temperature the
non-trivial behavior of both quantities around the gap-closing
point at zero-temperature is smeared out.

Detailed study of the edge states of the systems at finite
temperature was carried out.
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Summary

® Qur results clearly show that, as the temperature is increased,
the edge states at T = 0 start mixing with the bulk states.
Thus confirming the conclusion of fidelity and A analysis.



Results and discussions

Quantities of interest
0000000000000e00000

References

® Syed Tahir Amin, Bruno Mera, Chrysoula Vlachou, Nikola
Paunkovi¢, and Vitor R. Vieira (Phys. Rev. B 98, 245141)

® Syed Tahir Amin, Bruno Mera, Nikola Paunkovi¢, Vitor R.
Vieira J. Phys.: Condens. Matter 31 485402.



Results and discussions
0000000000000080000

Thank you all :-)

| acknowledge the support from CeFEMA, DP-PMI and
FCT(Portugal) through scholarship PD/ BD/113651/2015.



00000

DA



Results and discussions
0000000000000000800

Uhlmann parallel Transport

Geometrical phases were generalized by Uhlmann from pure
states to mixed states.

A Hilbert space consisting of a set of density matrices
(p = ww') and corresponding amplitudes w.

Having gauge freedom, i.e., w and w' = wU belongs to same
density matrix p: such that p = ww! = wUUTw! = w/(w/)f
Two amplitudes w1 and wq are parallel in Uhlmann sense iff
they minimize the Hilbert-Schmidt distance ||wy — w1|[2.

After a few steps of simple calculation

HWQ - W1||2 == 2(1 - Re<W2,W1>).
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Uhlmann parallel Transport
® |t turns out that
Re(ws, wi) = F(p2, p1)-
® By writing wj = ,/pjU;, with j € {1,2}

Re(wy, w1) < [(wa, w)| = |Tr(wh, w1)]
= | Tx(US/p2/p1U1))
= |Tr(|\/p2y/P1| VUL UD)|
< Trly/p2/p1l

= Tr(\/p2p1y/p3)
= F(p2, p1)
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Uhlmann factor

We take two density matrices p(7) and p(7 + 1), by polar
decomposition

V(T +07)/p(r) = 1/ p(r +67)/ p(7) IV

V is the Uhlmann factor which characterizes the Uhlmann
parallel transport.

For two close points 7 and 7 4 d7 on a curve of density
matrices given by p(7), 7 € [0, 1].

The Uhlmann parallel transport implies that two amplitudes
w(7) and w(7 + 07) are parallel for infinitesimal 67.
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