AGEING OF SINGLE CRYSTALLINE LASER DEPOSITED RENÉ N4 NICKEL SUPERALLOY

José Cardoso, Amélia Almeida, Rui Vilar

Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049 - 001 Lisboa, Portugal
Table of contents

1. Introduction
2. Laser metal deposition
3. High temperature superalloys microstructure
4. Results
5. Microstructure formation and further work
Introduction

Advances in materials engineering have been crucial to the development of modern airplanes by enabling higher operating temperatures and longer service lives of the jet engines.

The greatest challenge is the hot section of gas turbine engines.

Introduction

Ni-based superalloys:

- Withstand temperatures as high as 90% of their melting point (~1300 ºC)
- Outstanding thermal fatigue and creep resistance when single crystalline

The drawback of single crystalline parts is the difficulty in repairing them while maintaining the same microstructure

Laser metal deposition:

- Highly localized
- Low quantity of material required
- By controlling solidification, epitaxial dendritic single crystal deposits can be produced

Laser metal deposition setup [2].
Laser Metal Deposition (LMD)

Processing parameters:

- Laser power
- Scanning speed
- Powder feed rate

The processing parameters, and thus the energy transferred to the substrate, define the shape of the melt pool.

The shape of the melt pool determines the growth velocity of the dendrites.

Laser metal deposition and melt pool shape schematic [3].

High temperature superalloys microstructure - γ/γ′ microstructure

Cuboidal γ′ Ni$_3$Al / Ni$_3$Ti precipitates distributed homogenously in a γ phase matrix

Dislocations / precipitates interaction

Strengthening

Other phases: Carbides, in the presence of C, and Topologically closed packed (TCP) phases

Cuboidal γ′ Ni$_3$Al phase distributed in γ phase matrix for a first generation superalloy [4].

Laser metal deposition of René N4 on N5

Deposition on a <100> plane of the sample

Parameters:

- Laser beam power: 500 W
- Powder feed rate: 5.14 g min⁻¹
- Scanning speed: 4 mm s⁻¹
- Spot diameter: 3 mm

Five consecutive René N4 layers on René N5 substrate.

EBSD analysis of five consecutive René N4 tracks on René N5 substrate.
As-deposited René N4 superalloy microstructure

Dendritic microstructure with orientation [001]

The dendrites are composed of (γ) solid solution with interdendritic γ/γ’ eutectic and carbides

In order to obtain the γ/γ’ microstructure a post-deposition heat treatment is required. This heat treatment may comprise two steps:

- Solution heat treatment in order to homogenize the distribution of the elements across the part (due to dendritic growth there is segregation)
- Ageing to precipitate the γ’ phase with a suitable shape and size
Ageing for 2 h at 1050 ºC with solution treatment at 1265 ºC for 1 h

High uniformity and orientation with a higher amount of TCP phase plates
Microstructure formation and impact on properties

René N4 composition and solid/liquid partition coefficients (gathered from literature)

<table>
<thead>
<tr>
<th>Element</th>
<th>Cr</th>
<th>Co</th>
<th>Al</th>
<th>Ti</th>
<th>W</th>
<th>Mo</th>
<th>Ta</th>
<th>C</th>
<th>B</th>
<th>Nb</th>
<th>Hf</th>
<th>Ni</th>
</tr>
</thead>
</table>
| Wt % | 9.79| 7.39| 4.18| 3.48| 5.91| 1.48| 4.73| 0.06| 0.004| 0.49| 0.13| Bal.
| $k_{s/l}$| 1.07| 1.06| 0.87| 0.71| 1.26| 1.07| 0.76| 0.3 | - | 0.24| - | - |

All γ' forming elements (Al, Ti and Ta) segregate to the liquid, leading to higher volume fraction in the interdendritic regions.

- C, Nb, Ta, Ti segregate to interdendritic regions
- Formation of carbides
- Inhibit grain boundary sliding during high temperature creep
- γ' envelope formation
- Degradation of mechanical properties
- May transform into secondary carbides and precipitate
Microstructure formation and impact on properties

Effect of TCP phases on material properties:

- Depletion of refractory elements from the γ solid solution phase
- Crack initiation zones

Conclusions and further work

• Epitaxy is attainable over single crystalline areas of the substrate

• A two-step heat treatment is required to obtain a suitable microstructure, for example:
 1. Solution heat treatment at 1265 °C for 1 h
 2. Precipitation step at 1050 °C for 2 h

• Optimization of the heat treatment is still necessary in order to suppress the formation of the TCP phase plates
 • Increase solution heat treatment temperature

• A detailed study of the transformations kinetics is being performed
Thank you for your attention

J. Cardoso thanks Fundação para a Ciência e a Tecnologia (FCT, Portugal) for PhD Studentship grant no. SFRH/BD/136443/2018 and CeFEMA for funding the research.