
SWAN Use Cases
Diogo C., Prasanth K., Enric T.
On behalf of the SWAN team

Feb 3rd, 2021
CERN Academic Training

https://cern.ch/swan

Physics Analysis

2

3

Physics analysis

﹥SWAN can be used for interactive physics analysis
§ Usually medium/small size analysis (input data ~ a few GBs)
§ Last steps of analysis (e.g. nanoAOD, ntuples)

﹥All the data you need
§ CERNBox: user files
§ EOS: project spaces, experiment data

﹥All the software you need
§ ROOT
§ Python data science libraries: numpy, pandas, matplotlib, seaborn, ...
§ Python ML libraries: tensorflow, keras, pytorch, ...
§ R kernel
§ Plus anything you can find in an LCG release (~ 500 packages)

Dimuon spectrum analysis in SWAN

﹥Physics analysis is one of the most common use cases of SWAN
§ Refer to lecture 1 for examples

﹥Analysis producing a dimuon spectrum from CMS Open Data
§ Uses ROOT (RDataFrame), NumPy, pandas and matplotlib
§ Accesses public CMS data on EOS
§ Written in C++ and Python
§ Creates interactive plots in a notebook

Open the SWAN training material

4

https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://cern.ch/swanserver/cgi-bin/go/?projurl=https://github.com/swan-cern/training.git

5

pt_x pt_y pt_z theta

entries
or events
or rows

→

columns
or “branches”←
can contain any kind

of c++ object

ROOT's RDataFrame: columnar data

RDataFrame: quick how-to

1. Build an RDataFrame object by specifying your dataset

2. Apply a series of transformations to your data
§ filter (e.g. apply some cuts) or
§ define new columns

3. Apply actions to the transformed data to produce results (e.g. fill a histogram)

6

7

ROOT::RDataFrame d("t", "f.root");
auto h = d.Filter("theta > 0").Histo1D("pt");
h->Draw();

2. Cut on
theta

3. Fill histogram with pt

1. Build RDataFrame

RDataFrame: simple code example

8

// d2 is a new data-frame, a transformed version of d

auto d2 = d.Filter("x > 0")
.Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");
auto hx = d2.Histo1D("x");

data

filter
x >
0

histo
x

histo
z

define
z

d

d2

RDataFrame: analysis as a data-flow

9

Spark/NXCals

Apache Spark

﹥Apache Spark is a unified computing engine and a set of libraries for parallel
data processing on computer clusters.
§ Unified: provide a unified platform for writing big data applications

§ Data loading, SQL queries, streaming computation and machine learning
§ Computing engine: limits the scope to computations

§ Only handles loading data from storage systems and performing computations on it
§ Can be used with wide variety of persistent storage systems, including HDFS, EOS, Amazon S3

and Azure Storage
§ Libraries: In addition to standard libraries, spark supports wide array of external libraries

(spark-packages.org)

10

Spark Applications

﹥Spark Applications consist of a driver process and a set of executor processes

﹥Driver Process
§ Maintaining information about the Spark Application
§ Responding to a user’s program or input
§ And analysing, distributing, and scheduling work across the executors

﹥Executor Process
§ Executing code assigned to it by the driver
§ And reporting the state of the computation on that executor back to the driver node

11

12

Architecture of Spark Applications

Spark’s APIs - DataFrame

﹥Spark has two fundamental sets of APIs: the low-level “unstructured” APIs,
and the higher-level structured APIs

﹥In this talk we only focus on one such higher-level structured APIs - DataFrame

﹥A DataFrame is the most common Structured API and simply represents a table
of data with rows and columns.

﹥The list that defines the columns and the types within those columns is called the
schema.

﹥You can think of a DataFrame as a spreadsheet with named columns

13

14

Spark’s APIs - DataFrame

DataFrame - Partitions

﹥To allow every executor to perform work in parallel, Spark breaks up the data into
chunks called partitions.

﹥A partition is a collection of rows that sit on one physical machine in your cluster.

﹥A DataFrame’s partitions represent how the data is physically distributed across the
cluster of machines during execution.

﹥ If you have one partition, Spark will have a parallelism of only one, even if you have
thousands of executors.

﹥ If you have many partitions but only one executor, Spark will still have a parallelism of
only one because there is only one computation resource.

15

16

df = spark.range(25)

Worker

Worker

Worker

[1,2,3,4,5]

[6,7,8,9,10]

[11,12,13,14,15]

[21,22,23,24]

DF is split into partitions Partitions are stored in
worker’s memory

[16,17,18,19,20]

Da
ta
N
od

e
Da

ta
N
od

e
Da

ta
N
od

e

DataFrame - Example

﹥ Partitioned: DF is partitioned
and distributed across worker
nodes of the cluster

﹥ Immutable: does not change
once created, can only be
transformed into new DFs

﹥ Cacheable: hold all the data
in a persistent storage like
memory (preferrable) or disk

﹥ Lazy Evaluation: Data inside
DF is not available or
transformed until an action is
executed

DataFrame – Actions and Transformations

﹥Two types of operations on DFs:
§ Transformations – lazy operations that return another DF
§ Actions – operations that trigger computation and return value

17

transformations
DF
DF
DF
DF action result

DataFrame - Transformations

﹥Instructing Spark on how you would like to modify the DF are called
transformations.

Example:
even_df = df.where("n % 2 = 0")

﹥Transformations are the core of how we express logic using spark

﹥Transformations are lazy and only actions will trigger computations

﹥Two Types of transformations: narrow and wide

18

DataFrame - Actions

﹥An action instructs Spark to compute a result from a series of transformations
Example: counting number of records in a dataframe:
df.count()

﹥There are three kinds of actions
§ Actions to view the data in the console
§ Actions to collect data to native objects in respective languages
§ Actions to write data to storage systems (HDFS, S3, EOS etc)

19

20
https://swan-gallery.web.cern.ch/notebooks/apache_spark1/analytix-hostmetrics-example.html

Use case – DataCenter Operations

https://swan-gallery.web.cern.ch/notebooks/apache_spark1/analytix-hostmetrics-example.html

21
https://swan-gallery.web.cern.ch/notebooks/apache_spark1/NXCals-example.html

Use case – NXCals

https://swan-gallery.web.cern.ch/notebooks/apache_spark1/NXCals-example.html

References

﹥Further Study on Spark
§ Hadoop: The Definitive Guide, 4th Edition, ISBN: 9781491901632
§ Access with CERN account - https://www.oreilly.com/library/view/temporary-access/

﹥Contact IT Hadoop and Spark Service
§ https://cern.service-now.com/service-portal?id=service_element&name=Hadoop-Service

﹥NXCals Project and API
§ http://nxcals-docs.web.cern.ch/current/

22

https://www.oreilly.com/library/view/temporary-access/
https://cern.service-now.com/service-portal?id=service_element&name=Hadoop-Service
http://nxcals-docs.web.cern.ch/current/

SWAN Use Cases
Thank you

Diogo Castro (diogo.castro@cern.ch)
Enric Tejedor (etejedor@cern.ch)
Prasanth Kothuri (prasanth.kothuri@cern.ch)

23

