SWAN Use Cases

Diogo C., Prasanth K., Enric T.
On behalf of the SWAN team

https://cern.ch/swan

Feb 3rd, 2021
CERN Academic Training

Physics Analysis

&® Physics analysis

> SWAN can be used for interactive physics analysis
» Usually medium/small size analysis (input data ~ a few GBs)
» | ast steps of analysis (e.g. nanoAQOD, ntuples)

> All the data you need
= CERNBoXx: user files
» EOS: project spaces, experiment data

> All the software you need
= ROOT
Python data science libraries: numpy, pandas, matplotlib, seaborn, ...
Python ML libraries: tensorflow, keras, pytorch, ...
R kernel
Plus anything you can find in an LCG release (~ 500 packages)

L (@)

NS

&> Dimuon spectrum analysis in SWAN

> Physics analysis is one of the most common use cases of SWAN
= Refer to lecture 1 for examples

> Analysis producing a dimuon spectrum from CMS Open Data
» Uses ROOT (RDataFrame), NumPy, pandas and matplotlib
= Accesses public CMS data on EOS
= Written in C++ and Python
= Creates interactive plots in a notebook

Open the SWAN training material

CE{W
\

Nyl

https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://cern.ch/swanserver/cgi-bin/go/?projurl=https://github.com/swan-cern/training.git

d®» ROOT's RDataFrame: columnar data

pt_x pt_y pt_z theta
H
, can contain any kind
entries of c++ object
or events —
Oor rows

Y

NS

&» RDataFrame: quick how-to

1. Build an RDataFrame object by specifying your dataset

2. Apply a series of transformations to your data

= filter (e.g. apply some cuts) or
» define new columns

3. Apply actions to the transformed data to produce results (e.g. fill a histogram)

. (@)

NS

&d RDataFrame: simple code example

1. Build RDataFrame

.
ROOT: :RDataFrame d("t", "f.root");

auto h = d.Filter("theta > 0").HistolD("pt");

h->Draw(); \\\\\

2. Cut on
theta

3. Fill histogram with pt

, (@)

NS

&> RDataFrame: analysis as a data-flow

// d2 1s a new data-frame, a transformed version of d

auto d2 = d.Filter("x > O") p

.Define("z", "x*x + y*y"); x>

}

// makRe multiple histograms out of it define | ——

auto hz = d2.HistolD("z"); ’

auto hx = d2.HistolD("x");

. (@)

NS

Spark/NXCals

&d Apache Spark

> Apache Spark is a unified computing engine and a set of libraries for parallel
data processing on computer clusters.
= Unified: provide a unified platform for writing big data applications
» Data loading, SQL queries, streaming computation and machine learning
= Computing engine: limits the scope to computations

= Only handles loading data from storage systems and performing computations on it

= Can be used with wide variety of persistent storage systems, including HDFS, EOS, Amazon S3
and Azure Storage

» Libraries: In addition to standard libraries, spark supports wide array of external libraries
(spark-packages.org)

&™ Spark Applications

> Spark Applications consist of a driver process and a set of executor processes

> Driver Process

» Maintaining information about the Spark Application
» Responding to a user’s program or input
= And analysing, distributing, and scheduling work across the executors

> Executor Process
» Executing code assigned to it by the driver
» And reporting the state of the computation on that executor back to the driver node

CERN
. \/‘N

Nyl

&® Architecture of Spark Applications

Driver Process Executors
Spar‘k l |
Session
- SSIE
User cod

R ! 3

ER
Y

NS

&™ Spark’s APIs - DataFrame

> Spark has two fundamental sets of APIs: the low-level “unstructured” APIs,
and the higher-level structured APIs

> |n this talk we only focus on one such higher-level structured APls - DataFrame

> A DataFrame is the most common Structured API and simply represents a table
of data with rows and columns.

> The list that defines the columns and the types within those columns is called the
schema.

>You can think of a DataFrame as a spreadsheet with named columns

ER
L (@

Nyl

&™ Spark’s APIs - DataFrame

Table or Data Frame
spreadsheeJr on Par+i+ioned OCYrOss servers
a single machine in a data center

e T e o B Tt e

ARARARARAR:

d®» DataFrame - Partitions

> To allow every executor to perform work in parallel, Spark breaks up the data into
chunks called partitions.

> A partition is a collection of rows that sit on one physical machine in your cluster.

> A DataFrame’s partitions represent how the data is physically distributed across the
cluster of machines during execution.

> |f you have one partition, Spark will have a parallelism of only one, even if you have
thousands of executors.

> |f you have many partitions but only one executor, Spark will still have a parallelism of
only one because there is only one computation resource.

CERN
. \/‘W

Nyl

&™» DataFrame - Example

df = spark.range(25) > Partitioned: DF is partitioned
and distributed across worker
Partitions are stored in nodes of the cluster
worker’s memory
.} Worker > Immutable: does not change
once created, can only be
transformed into new DFs

DF is split into partitions

(1,2,3,4,5]

DataNode

———

N—

(6,7,8,9,10]

> Cacheable: hold all the data
I ! Worker in a persistent storage like
memory (preferrable) or disk

[11,12,13,14,15]

— > Lazy Evaluation: Data inside
161718 19,20 DF is not available or
[] Worker transformed until an action is
executed

DataNode

[21,22,23,24]

D
O

d®» DataFrame — Actions and Transformations

> Two types of operations on DFs:

* Transformations — lazy operations that return another DF
= Actions — operations that trigger computation and return value

transformations

L, @)

NS

d® DataFrame - Transformations

> |nstructing Spark on how you would like to modify the DF are called
transformations.

Example:
even df = df.where("n 5 2 = 0")

> Transformations are the core of how we express logic using spark
> Transformations are lazy and only actions will trigger computations

> Two Types of transformations: narrow and wide

ER
. (@

NS

d® DataFrame - Actions

> An action instructs Spark to compute a result from a series of transformations

Example: counting number of records in a dataframe:
df.count ()

> There are three kinds of actions

= Actions to view the data in the console
= Actions to collect data to native objects in respective languages
= Actions to write data to storage systems (HDFS, S3, EOS etc)

ER
. (@

NS

&D Use case — DataCenter Operations

Do the heavylifting in spark and collect aggregated view to panda DF

In [7]: df_loadAvg_pandas = spark.sql("SELECT substring(submitter_host,7,length(submitter_host)) as host, \
avg(body.LoadAvg) as avg, \
hour(from_unixtime(timestamp / 1600, 'yyyy-MM-dd HH:mm:ss')) as hr \
FROM loadAvg \
WHERE submitter_hostgroup like 'hadoop_ng/nxcals%’ \
AND dayofmonth(from_unixtime(timestamp / 10ee,
GROUP BY hour(from_unixtime(
.toPandas()

-dd HH:mm:ss')) = 22 \
:ss')), submitter_host")\

54 EXECUTORS 108 CORES

Job ID Job Name Status Stages Tasks Submission Time Duration

s topandes S - e 145

Visualize with seaborn

In [9]: | # heatmap of LoadAvg
plt.figure(figsize=(12, 8))
ax = sns.heatmap(df_loadAvg_pandas.pivot(index="host", columns="hr', values="avg'), cmap="Blues")
ax.set_title("Heatmap of loadAvg for NXCals service on 22nd April 2818")

Text(@.5,1,u'Heatmap of loadAvg for NXCals service on 22nd April 2018")

Heatmap of loadAvg for NXCals service on 22nd April 2018

001.cern.ch

002.cern.ch

003.cern.ch

ooscemch | 2
005.cern.ch

006.cern.ch

007.cern.ch

008.cern.ch

052.cern.ch

053.cern.ch

054.cern.ch

055.cern.ch

056.cern.ch 16
057.cern.ch

058.cern.ch

059.cern.ch

060.cern.ch

061.cern.ch 8

host

062.cern.ch
064.cern.ch
065.cern.ch
066.cern.ch
01 2 3 4 5 6 7 8 9 1011 121314151617 18 19 20 21 2 23

https://swan-gallery.web.cern.ch/notebooks/apache sparkl/analytix-hostmetrics-example.html CERN

https://swan-gallery.web.cern.ch/notebooks/apache_spark1/analytix-hostmetrics-example.html

D Use case — NXCals

Inspect data

Drarw & plot with matplotid

https://swan-gallery.web.cern.ch/notebooks/apache sparkl/NXCals-example.html cw

https://swan-gallery.web.cern.ch/notebooks/apache_spark1/NXCals-example.html

dD References

> Further Study on Spark

» Hadoop: The Definitive Guide, 4th Edition, ISBN: 9781491901632
= Access with CERN account - https://www.oreilly.com/library/view/temporary-access/

> Contact IT Hadoop and Spark Service

= https://cern.service-now.com/service-portal?id=service element&name=Hadoop-Service

> NXCals Project and API

= http://nxcals-docs.web.cern.ch/current/

ER
(@

Nyl

https://www.oreilly.com/library/view/temporary-access/
https://cern.service-now.com/service-portal?id=service_element&name=Hadoop-Service
http://nxcals-docs.web.cern.ch/current/

SWAN Use Cases

Thank you

Diogo Castro (diogo.castro@cern.ch)
Enric Tejedor (etejedor@cern.ch)
Prasanth Kothuri (prasanth.kothuri@cern.ch)

