

Kohlenstoffzentren weltweit: 11

(in Betrieb bis August 2017)

MedAustron in Austria

MedAustron in Austria

OWNERSHIP STRUCTURE

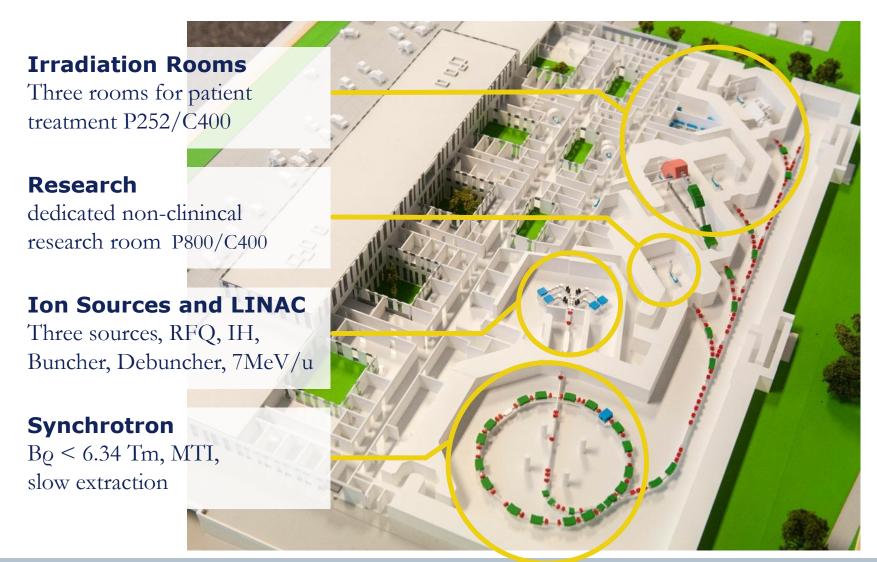

100 %
Holding structure

MedAustron
EBG MedAustron GmbH

MedAustron in Austria

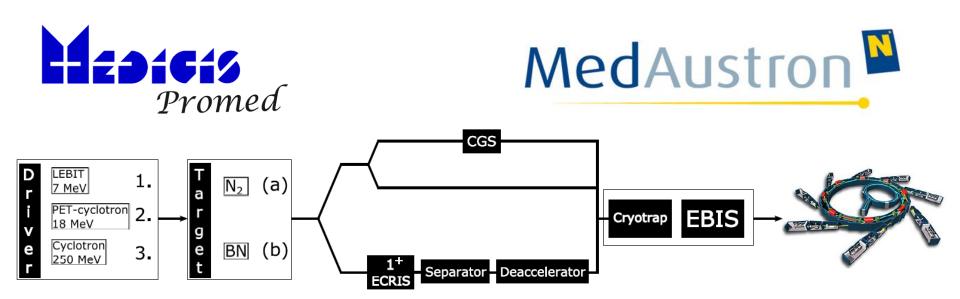
OWNERSHIP STRUCTURE

Our main task is the operation of the facility as an outpatient clinic (OPS).


Treatment of up to 1000 patients/year in full operation from Austria and foreign countries.

We focus on the further **development** of this treatment method and the **technology** behind (**M**anufacturer **T**herapy **A**ccelerator).

Our facility is used for basic and translational research and provides non-clinical research area.


»EBG« stands for construction and operating company.

MEDAUSTRON FACILITY

MEDAUSTRON - MEDICIS PROMED

- MedAustron was part of the Medicis Promed Network
- Contributed to TDR for implemention of C-11 use in european medical treatment facilities (MedAustron/CNAO)
- Studied options of integration in existing facilties

MEDAUSTRON AS A NETWORK PARTNER

MedAustron is aiming to:

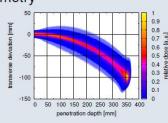
- become a center of excellence in the field of particle therapy
- broaden the range of indications and treatment methods
- increase performance and number of patients treated
- improve treatment quality
- follow up development of online radioisotope beam production
- provide access to a functioning treatment facility for testing of technology in clinical environment

MEDAUSTRON NON-CLINICAL RESEARCH

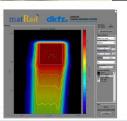
Intrafraction Adaptive Radiation Therapy

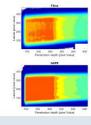
- ► Intrafraction Surveillance Optimisation
- Markerless Real-Time Tumour Motion Imaging

▶ 4D Dose Calculation and Beam Delivery Optimisation



- ► End to End Testing
- ► Eye Treatment Solution for MedAustron


Magnetic Resonance Guided Particle Therapy

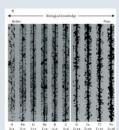

- ► Magnetic Resonance Workflow Development
- ▶ Dose Calculation
- Dosimetry

Interfraction Adaptive Radiation Therapy

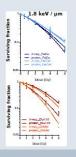
▶ Quantitate Evaluation of mpMRI for Clinical Pilot Studies

▶ Monte Carlo Patient Specific QA

► ART via In-Room CBCT



► Particle Therapy PET


Energy Transfer Mechanisms and Applications in Biology and Physics

- ▶ Method Establishment
- ► Model Development for Microdosimetry

- ► Immunologically Hot Tumours
- ► Immunologically Cold Tumours

MEDAUSTRON IN A JOINT RESEARCH ACTIVITY

- Proposal of a workpackage on Radioisotope application in particle therapy
- Potential aspects of the Workpackage:
 - Study and improve PET imaging supported by radioisotope beams
 - > Study and propose technologies for integration of radioisotope beams in european treatment facilities
 - ➤ Develop required components for radioisotope beams for particle therapy -> eg high efficiency Ion Source

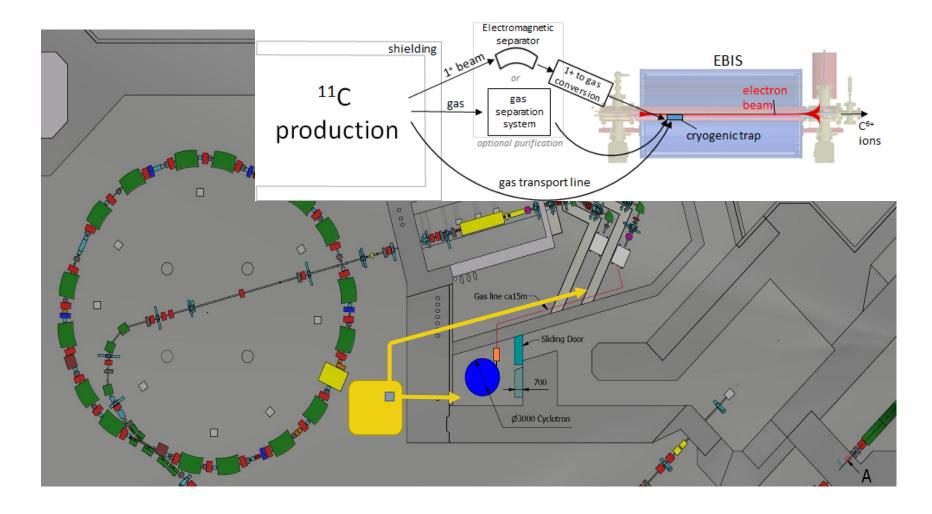
JRA - Ion Source Development

- Design (EB)IS suitable to fulfill the requirements for integration into existing treatment facilities
- Prototyping and execution of preliminary tests
- ➤ Integration of EBIS into existing facility and perform efficiency tests
- ➤ Provide test facility for other ISOL developing institutions within PRISMA-MAP

REQUIREMENTS ON ION SOURCE

Intensity per pulse	>10 ¹⁰	¹¹ C ⁺⁴ lons
Pulse repetition rate	< 0.2	Hz
Pulse length	2-30	μs
Emittance	< 180	pi mm mrad
Molecular break up	CO -> C	
Preferred charge state	C ⁺⁴	
Optional charge states	C ⁺⁵ , C ⁺⁶	
Extraction Energy	8	keV/amu
Gas refilling	CO – continous	
Gas release	pulsed heating	

- The source must provide 10¹⁰ particles during a synchrotron multiturn injection pulse which lasts 2-30 us.
- A pulse is expected every 5-10 seconds
- In between pulses the source may remain on or off. Any outgoing beam will be blocked by a fast deflector.


TYPICAL CYCLE DEG100

Carbon cycle duration 9.5s

Sector	Time Structure	Current [μA]	#Parts	Efficiencies
S2	DC	100	n.a.	n.a.
LEBT	2 5μs	75	2.90E+09	n.a.
LI	2 5μs	47	1.80E+09	62.1%
MEBT	2 5μs	68	1.70E+09	94.4%
MR-CTS	debunched	n.a.	4.20E+08	24.7%
IR2	5s	1.22E-04	3.17E+08	75.5%

- Total efficiency 10.9%
- Clinically DEG20 will be used!
- Typical treatment 1e9 carbons (varies a lot!!)

TDR - C11 STUDY IN TREATMENT CENTER (MEDAUSTRON)

POTENTIAL IS - EBIS

High efficiency Ion Source (EBIS)

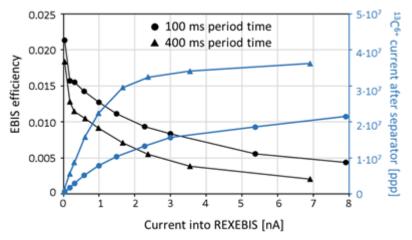
- Accumulate ¹¹CO in a cryo trap which shall be integrated into the EBIS or in the close vicinity.
- Shock heat the cryo trap for pulsed release of ¹¹CO (see Dubna source)
- Inject ¹¹C⁺⁴ pulse (10¹⁰, <30us) into the existing accelerator structure (RFQ,IH-Tank, Synchrotron)
- Accelerator chain transport efficiency for Carbon-12 beams is ≈10%

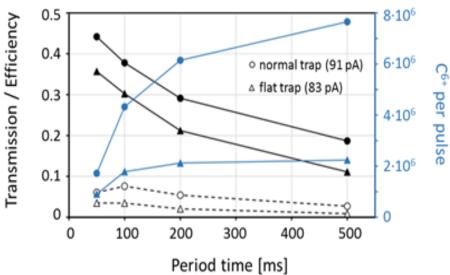
MEDAUSTRON JRA – ISOPROT:

High efficiency Ion Source (see JRA - OptION)

- Required for radioactive beam line (see Medicis Promed TDR for C-11 treatment facility)
- Post-Doc + Student
- MedAustron, CERN, DREEBIT, INFN-LNS, CNAO, update existing Ion Source design including cryotraps
- Construction and first test (B-field, charge density, e-gun...)
- Prepare MedAustron (S4/S5) beam line for Ion Source installation (beam optics, instrumentation, vacuum system)
- Provide installation space at MedAustron (S4/S5) and integrate Ion Source in existing facility
- Execute proof of principle test with non radioactive beams under authentic conditions
- Make new Ion Source commercially available for other treatment facilities (via industrial partners)
- Provide test facility for other ISOL developing institutions to enable radioisotope treatment in europe (gas purification, EM-separation,..)

GOAL - IMPACT

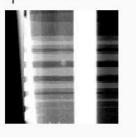

- Start working towards full integration of C-11 beams in hadron therapy
- Provide test facility in clinical environment for developments towards this goal
- Demonstrate feasibility of ISOL integration in a treatment faciltiy – Ion Source development/integration
- Develop and provide technology together with commercial partners to enable C-11 application in other european centers



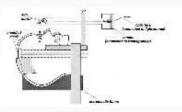
THANK YOUFor your attention!

REXEBIS TESTS

P1 – Intrafraction Adaptive Radiation Therapy

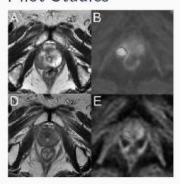

WP 1: Intrafraction Surveillance Optimisation

WP 2: Markerless Real-Time Tumour Motion **Imaging**


WP 3: 4D Dose Calculation and Beam Delivery Optimisation

WP 4: End to End Testing

WP 5: Eye Treatment Solution for MedAustron

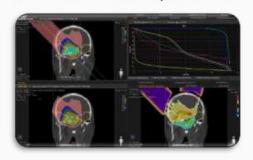


Non-Clinical Research at MedAustron · Projects for 2019 – 2021 💠 Dietmar Georg and Thomas Schreiner 💠 March 13, 2019

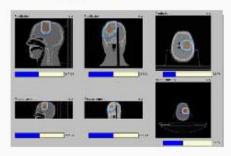
P2 - Interfraction Adaptive Radiation Therapy

WP 1: Quantitate Evaluation of mpMRI for Clinical Pilot Studies

Before RT


4 months post RT

WP 2: ART via In-Room CBCT

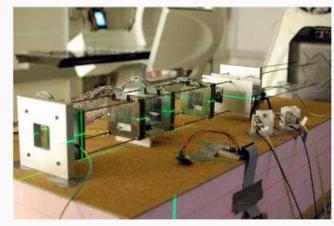


Non-Clinical Research at MedAustron · Projects for 2019 – 2021 ♦ Dietmar Georg and Thomas Schreiner ♦ March 13, 2019

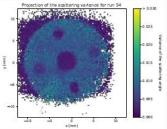
WP 3: Monte Carlo Patient Specific QA

WP 4: Particle Therapy PET

P3 – Imaging with Ion Beams


continuation from the last research period

WP 1: Monte Carlo Simulation & Dose Estimation

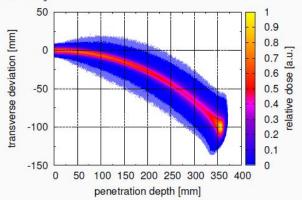

WP 2: Proton Computed Tomography Set-Up & Data Taking

WP 3: Stopping Power Reconstruction

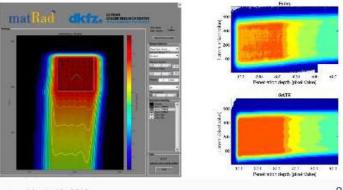
WP 4: Beam Delivery System Development

Non-Clinical Research at MedAustron · Projects for 2019 – 2021 🕠 Dietmar Georg and Thomas Schreiner 🕠 March 13, 2019

7


P4 – Magnetic Resonance Guided Particle Therapy

continuation of the FWF Grant "MAGIG-PRO"


WP 1: MR Workflow Development

WP 2: Dose Calculation

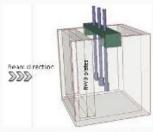
WP 3: Dosimetry

Non-Clinical Research at MedAustron · Projects for 2019–2021 Dietmar Georg and Thomas Schreiner March 13, 2019

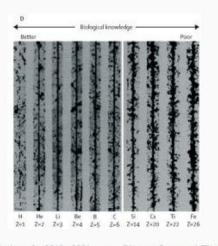
Ö

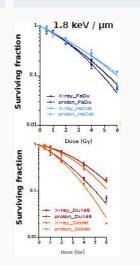
P5 - Energy Transfer Mechanisms and Applications in Biology and Physics

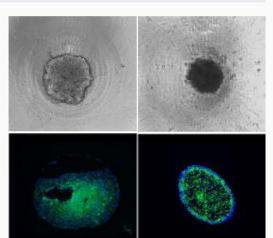
Physics Part


WP 1: Method Establishment

WP 2: Model Development for Microdosimetry


Biology Part


WP 3: Immunologically Hot Tumours


WP 4: Immunologically Cold Tumours

Non-Clinical Research at MedAustron \cdot Projects for 2019 – 2021 $\quad \diamond \quad$ Dietmar Georg and Thomas Schreiner

March 13, 2019

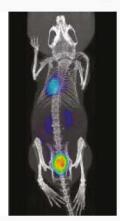
9

P6 - Pre-Clinical Animal Research

WP 1: Commissioning of Animal Facility at MedAustron

WP 2: Evaluation and Characterisation of "In Vitro Tumour" Transplantation Techniques

WP 3: Construction and Dosimetry of Animal Irradiation Set-Ups



WP 4: Effects of Tumour Micro-**Environment Composition on** Tumour Control

WP5: PET/CT Imaging to Monitor (Alterations in) Tumour Biology

Non-Clinical Research at MedAustron · Projects for 2019 – 2021 ♦ Dietmar Georg and Thomas Schreiner

10