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About this Lecture
•This is the first presentation of the Institut Pascal on  

Learning to Discover : Advanced Pattern Recognition 
➡ organisers asked me to give an introduction to classical pattern recognition to 

set 
the scene for the following in the coming two weeks

•physics of particle detection is well understood
➡ classical reconstruction techniques explicitly explore this knowledge,  

unlike Machine Learning inspired approaches that deduce it from data
➡ analytical models and sophisticated numerical techniques, developed over ~50 

years

•presentation in a style of an introductory lecture
➡ starting from detection principles and how they are exploited by the classical  

pattern recognition techniques
➡ focus on track reconstruction, following the example of the offline software of 

the ATLAS experiment (personal bias)
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Introduction
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Event Detection and Reconstruction

➡ LHC experiments are giant "cameras" to take "pictures" of p-p collisions
•taking a picture every 25 nsec (40 MHz) with 100 million channels

➡ task of the reconstruction is the interpretation of the picture !
•answer the question: which particles were produced ?
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•photons
➡ shower in e.m. calorimeter
➡ (ideally) no charged 

particle seen in tracker

•neutrons
➡ showers in hadronic 

calorimeter
➡ no particle seen in tracker

•electrons
➡ shower in e.m. calorimeter
➡ a charged particle seen in 

tracker

•protons/pions
➡ particle seen in tracker
➡ and leave a showers in 

hadronic calorimeter

•muons
➡ charged particle seen in 

tracker
➡ little energy seen in 

calorimeters
➡ particle seen in muon 

spectrometer

•neutrinos
➡ leave undetected
➡ missing transverse  energy

•jets
➡ bundle of showers in 

calorimeter
➡ bundle of charged particles 

in tracker

•vertex

Jet

Event Reconstruction “in a Nutshell”

•typical HEP 
detector
➡ tracker to measure 

charged particles
➡ e.m. and hadronic 

calorimeter to measure 
energy of particles (jets)

➡ muon spectrometer to 
detect muons 
penetrating the rest of 

•solenoid magnet
➡ b-field to bend charge 

particle trajectories
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In Reality ?

ZZ*→4μ candidate

... a bit more complicated
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Introduction to Track Reconstruction
•in this lecture I will discuss the most complex and CPU 

consuming aspect of event reconstruction at the LHC
➡ finding trajectories (tracks) of charged particles produced in p-p collisions

•will have to introduce various techniques for
➡ pattern recognition, detector geometry, track fitting, extrapolation ...
➡ including mathematical concepts and aspects of software technology

Markus Elsing

... so why does
it matter ?



 8

The Tracking Problem
•particles produce in a p-p interaction leave a cloud of hits 

in the  detector

Markus Elsing

•tracking software 
is used to 
reconstruct their 
trajectories
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Role of Tracking Software
•optimal tracking software
➡ required to fully explore performance of detector 

•example: DELPHI Experiment at LEP
➡ silicon vertex detector upgrade

•initially not used in tracking to resolve dense jets
•pattern mistakes in jet-chamber limit performance

Markus Elsing
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➡ 1994: redesign of tracking software
• start track finding in vertex detector

➡ factor ~ 2.5 more D* signal after reprocessing  
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➡ LHC is a high luminosity machine
•proton bunches collide every 

25 nsec in experiments
•each time > 20 p-p interactions are 

observed ! (event pileup)
➡ our detectors see hits from particles 

produced by all > 20 p-p interactions
•~100 particles per p-p interaction
•each charged particle leaves ~50 hits
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➡ this is how 1 pp 
collisions looks like
•now imagine      

50 of them 
overlapping

•task of tracking 
software is to 
resolve the 
mess ...

pileup event display

Tracking at the LHC ?

LHC
design
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And in the Future (HL-LHC) ?
➡ At HL-LHC we expect up to 200 pile-up

•ATLAS+CMS upgrade the tracking systems
•new systems optimised for 200 pile-up

➡ CPU for reconstruction still a major concern !
•requirements may exceed computing budgets
•CPU for tracking is one of the cost drivers !

➡ how to tackle the challenge ?
•better software technology (ACTS projects)
•better algorithmic approaches (incl. ML)

models for
CPU needs

constant budget

➡ in addition, scientific computing is moving  
to heterogeneous processing technologies, 
with more and more HPCs (software challenge) 
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Outline of this Lecture
•Tracking Detectors
➡ principles of semiconductor tracker and drift tubes

•Charged Particle Trajectories and Extrapolation
➡ from trajectory representations to extrapolation toolkits

•Track Fitting
➡ classical least square, Kalman filter and  examples for advanced techniques

•Track Finding
➡ search strategies, Hough transforms, progressive track finding, ambiguity 

solution

•ATLAS Track Reconstruction as an real-life example
➡ putting it all together

•Bonus: Towards HL-LHC
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Tracking Detectors
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Passage of Particles through Matter

•any device that is to detect a particle must interact with 
it in some way
➡ well, almost...

➡ in many experiments neutrinos are detected by missing transverse 
momentum




 




 
  






for completeness 
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Interactions most relevant to Tracking
Type particles parameter characteristics effect

all charged 
particle

effective density 
A/Z * 𝜌

small effect in 
tracker, small 

dependence on 
p

increases 
momentum 
uncertainty

all charged 
particle

radiation length 
X0

almost gaussian 
average effect 0, 
depends ~ 1/p 

deflects particles, 
increases 

measurement 
uncertainty

all charged 
particle, 

dominant for e

radiation length 
X0

energy loss 
proportional ~E, 

highly non-
gaussian, 

depends ~1/m2

introduces 
measurement 

bias and 
inefficiency

all hadronic 
particles

nuclear 
interaction length 

𝛬0

incoming 
particle lost, 

rather constant 
effect in p

main source of 
track 

reconstruction 
inefficiency

Multiple Scattering

Ionisation loss

Bremsstrahlung

Hadronic Int.

➡ tracking detectors explore effects like ionisation to measure charged particles
•let's discuss the basic principles of semiconductor trackers and drift tubes



•schema of a silicon diode (p-n 
junction)
➡ doping silicon cristal semiconductor to implant        

excess electrons or "holes"
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Semiconductors as Particle Detectors

acceptor impurity 
examples: B, Al, In 

excess 
"hole"

excess 
electron

donor impurity 
examples:  As, P

! ▬ ▬

▬ ▬

!

!!

p+  hole 
carrier

n – electron 
carrier

non-conducting 
depletion zone 

e acceptor impurity e donor impurity
+–

! ▬ ▬

▬ ▬

!

!!

p+  hole 
carrier n – electron 

carrier

e acceptor impurity e donor impurity

! !

!!

▬ ▬

▬ ▬

! ▬ ▬

▬ ▬

!

!!

p+  hole 
carrier

n – electron 
carrier

e acceptor impurity e donor impurity

▬

▬

!

!

non-conducting 
depletion zone 

➡ both materials together form a diode
•p doping adds electro-phobe atoms
•n doping adds electro-phile atoms

•recombination in junction creates depletion zone, 
acts as potential barrier against doping potential•apply reverse bias voltage to enlarge potential 
barrier in depletion zone, increases its resistance 
further

Si atom with 4 
valence electrons



•basic schema of a silicon detector
➡ many reverse biased large diodes on a silicon wafer

•allows for small structures, typical pitch is 50 μm
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Semiconductors as Particle Detectors

25
0 

µm

50 µm

charged 
particle

E

B

θL

α

n-bulk

p-doped

n+-doped

➡ traversing charged particle ionises silicon 
•creates electron-hole pairs, drifting in E-field to 

electrodes leading to measurable signals in 
diodes•Lorentz angle θL deflection in presence of B-
field

ho
le

s→

readout chip

•2 types: silicon strips and pixels
➡ strip module: 50 μm pitch, wafers with ~6 cm diodes

•needs 2 modules to measure both coordinates
➡ pixel module: e.g. 50x400 μm pixel, analog readout

•clusters measures precisely both coordinates

2 strip modules stereo 
angle pixel module

clusters
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CMS Tracker
•largest silicon tracker today
➡ Pixels: 66M channels, 100x150 μm2 Pixel
➡ strip detector: ~23m3, 210m2 of Si area,    

10.7M channels

The world largest Silicon Tracker

3

TIB
Inner Barrel
4 layers TID

Inner Disks
3+3 disks

TEC Endcap
9+9 disks

Tracker 
Support 
Tube

TOB
Outer Barrel
6 layers

L~5.4m
∅~2.4m

PXL
Pixel Detector
3 layers, 2+2 disks

Pixel Detector
66M channels

100x150 μm2 pixel
LHC radiation resistant

Si-Strip detector
~23m3; ~200m2 of Si area;

~9x106 channels;
LHC radiation resistant
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Gas Detectors - Drift Tubes
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Classical Gas Detectors - Drift Tubes
•detection technique for charged 

particles
➡ used in muon systems and ATLAS TRT

charged particle

anode wire 
(HV+)

cathode (HV–)

nobel 
gas

ionised 
electrons 
drifting to wire

ions  
drift to 
cathode

drift circle

TRT:  Kapton tubes,       ∅ =   4 mm
MDT: Aluminium tubes,  ∅ = 30 mm

•particles traversing tube ionises the 
gas
➡ deposited charge drifts to anode wire in electric (E) 

field
•charge amplification in high E-field in vicinity of 

wire leads to large signal pulse
•Lorentz angle deflection in B-field (not shown)➡ measure time of signal pulse to determine drift circle
•fast signal detection (vD~30 ns/mm)
•resolution of O(100 μm) on measured radius
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Classical Gas Detectors - Drift Tubes

E
kathode tube

anode wire

•track reconstruction from drift circles
➡ obtain drift radii from measured times
➡ combined several measurements to find track

•resolve left-right ambiguity (dotted line)

•detection technique for charged 
particles•particles traversing tube ionises the 
gas
➡ deposited charge drifts to anode wire in electric (E) 

field
•charge amplification in high E-field in vicinity of 

wire leads to large signal pulse
•Lorentz angle deflection in B-field (not shown)➡ measure time of signal pulse to determine drift circle
•fast signal detection (vD~30 ns/mm)
•resolution of O(100 μm) on measured radius

right side of ambiguity
has large residual

➡ ATLAS TRT: as well electron identification using transition radiation
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ATLAS Inner Detector

•barrel track 
passes:
➡ 4 Pixel layers
➡ 4x2 silicon Strips on 

stereo modules
➡ ~36 TRT 4mm straws

➡ combines semiconductor trackers 
and drift tubes

ATLAS 
Insertable
B-Layer

BARREL VIEW



➡ e/π separation via transition radiation: polymer (PP) fibers/foils interleaved with drift 
tubes
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Electron Identification in the ATLAS 

charged particle

anode wire 
(HV+)

cathode (HV–)

noble 
gas

fibers or foils

ATLAS Inner Tracking System

barrel TRT module

radiator

straws

51 cm

144 cm

TR 
increases 
signal 

transition radiation

➡ electrons radiate → higher signal 
➡ PID info by counting high-threshold 

hits component

Pr
ob

ab
ili

ty
 to

 e
xc

ee
d 

th
re

sh
ol

d

γ  factor

TRT PID

for completeness 
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Trajectories and Extrapolation 
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A Trajectory of a Charged Particle
➡ in a solenoid B-field a charged 

particle trajectory is describing a helix
•a circle in the plane perpendicular to 

the field (Rϕ)
•a path (not a line) at constant polar 

angle (θ) in the Rz plane 

➡ a trajectory in space is defined by                  
5 parameters
•the local position (l1,l2) on a plane,         

a cylinder, ..., on the surface 
defining  
a reference system •the direction in θ and ϕ plus the 
curvature Q/PT

➡ ATLAS choice:                                                                                             

Markus Elsing

Surface Types

cylinder plane trapezoid disk

wire (line) vertex (perigee)

track

Layer 0

Layer 1

zrp = (l1, l2,θ,φ,Q P)
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The Perigee Parameterisation

•helix representation w.r.t. a vertex

•commonly used
➡ e.g. to express track parameters near the production vertex

Markus Elsing

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  
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! the trajectory of a charged particle in magnetic field can (at any point) be

parameterised through five parameters

! ATLAS choice                               , accomplished by 5x5 covariance C 

two local variables (depends on surface), localisation w.r.t. surface

three global variables for momentum representation

! one track parameters

flavor per surface type

! different from

classical helix

representation

to comply with

ID and MS magnetic

field

4

covariances, but excludes obviously the hit collection. A simple refit such a slimmed track after it
has ben read from the persistent storage would recreate the full track information as achieved in the
original event reconstruction. The flexible TSOS container design of the Track class was hereby a
key feature, since it allows to create a track collection of stripped hits and a Perigee representation2

that is then written to disk. The track collection size could be significantly reduced (depending on
the track collection, the reduction factor varies between 6 to 10).

Representation for Physics Analysis Few analyses based on data taken with the ATLAS detector
will directly incorporate the Track objects. The Track itself is, in general, not more than a trajectory
representation of the particle when passing through the detector, while the — for the event analysis
— most important representation of the particle as a four momentum vector at the production vertex
is not given by the Track; neither is particle identification3 nor the vertex association performed at
the stage of track reconstruction. In the ATLAS EDM, the Track information is represented as a
TrackParticle object for further use in a particle-oriented event analysis. Vertex fitting with or
without constraints can be performed on TrackParticle objects, but needs the extrapolation engine
to express the trajectory with respect to the (iteratively fitted) vertex position. To enhance common
tracking tools to work together with the TrackParticle object (which combines a broader bundle
of aspects to be dealt with in event reconstruction), without breaking the philosophy of keeping the
tracking modules independent from specific reconstruction algorithms, a new TrackParticleBase
class has been introduced that concentrates the tracking-relevant information and builds the new
interface for tracking tools. These tools are designed to operated also on event reconstruction and
analysis level; a detailed description of the new TrackParticleBase class can be found in Sec. 4.

2 Trajectory Parameterisation: The ParametersBase class

The parameterisation of a particle trajectory with respect to a given surface is inevitable for track
reconstruction. It can be done in many di�erent ways, for a charged trajectory in magnetic field a
minimal set of five parameters has to be chosen; it can be reduced by one parameter for a trajectory
representation in a no-field environment or a neutral particle that follows a straight line. This is, since
the charge q and the momentum magnitude p are superfluous for the purely geometrical description of
a line. For constrained vertex fitting that includes both charged and neutral particle traces, however,
the momentum (hypothesis) is necessary — see Sec. 5.
The trajectory parameterisations for both neutral and charged particles are thus realised in the ATLAS
tracking EDM as a set of five parameters

x = (l1, l2, ⇥, �, c/p)T , (1)

when l1 and l2 denote the local coordinate expression on the given surface (and thus depend on the
surface type), ⇥ and � are the azimuthal and polar angle, respectively, and c is defined as

c =

�
⌅⇤

⌅⇥

q if q �= 0,

1 if q = 0.
(2)

For every surface type that is defined in the ATLAS reconstruction geometry [4], a dedicated pa-
rameterisation exists, realised by a specific class to ensure an unambiguous identification of the given
measurement frame. In track fitting — since the trajectory itself can not be measured, but only a lo-
calisation at discrete points in the detector can be done — a set of measurement mapping functions hj

is needed to map the track parameterisation on a measurement surface to the measured coordinates
and thus to establish a predicted measurement4. This yields for the single predicted measurement

2This is for the simple convenience of the user that is not forced to refit the track collection if the focus is only drawn
onto the impact parameterisation.

3Only a ParticleHypothesis exists for the steering of material e�ects integration.
4Since the two most common track fitting techniques, the least squares method and the Kalman filter are both linear

estimators, these measurement functions are even required to be linear, or at least approximated by a linear function.

plane
surface:

rp = (lx, ly,θ,φ,Q P)

p

track

d0

ex

ey

ez

p
T

x-y plane

z0

φ

θ

perigee:

rp = (d0,Δz,θ,φ,Q P)

➡ alternative: e.g. on plane surface
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Following the Particle Trajectory
•basic problems to be solved in order                                              

to follow a track through a detector:
➡ next detector module that it intersects ?
➡ what are its parameters on this surface ?

•what is the uncertainty of those parameters ?
➡ for how much material do I have to correct for ?

•requires:
➡ a detector geometry

•surfaces for active detectors
•passive material layers 

➡ a method to discover which is the next surface (navigation)
➡ a propagator to calculate the new parameters and its errors

•often referred to as “track model”

Markus Elsing

Module 1

Material LayerModule 1

Material LayerModule 1

Module 2

track parameters
with uncertainty

•for a constant B-field (or no field)
➡ an analytical formula can be calculated for an intersection of a helix 

(or a straight line) on simple surfaces (plane, cylinder, vertex,...)
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Track Propagation in realistic B-Field
•for inhomogeneous B-field there is no analytical solution
➡ start from equation of motion for a particle with charge q in magnetic field B:

➡ can be written as set of differential equations for motion along z with x(z) and 
y(z):

•no analytical solution for inhomogeneous B-field, requires numerical 
integration  
along the path of the trajectory

Markus Elsing

3.4 Track propagation

3.4.2 The Runge-Kutta propagator

The Runge-Kutta propagator is taken from the xKalman package [46]. It follows the
path of a particle through an inhomogeneous magnetic field by taking one step at a
time. At each step it uses the Runge-Kutta-Nystrøm integration technique [47, 48] to
solve the equation of motion numerically. It can also perform straight line propagation
and propagation in a constant field (helix) if required.

Neglecting material interactions and radiative corrections, the equation of motion
for a particle with charge q in a magnetic ✏B field is:

d✏p

dt
= q✏v ⇥ ✏B. (3.17)

It can be shown [48] that this equation can be written as the following set of di�erential
equations:

d2x

dz2
=

q

p
R

⇧
dx

dz

dy

dz
Bx �

⇤
1 +

�
dx

dz

⇥2
⌅

By +
dy

dz
Bz

⌃
, (3.18)

d2y

dz2
=

q

p
R

⇧⇤
1 +

�
dy

dz

⇥2
⌅

Bx �
dx

dz

dy

dz
By �

dx

dz
Bz

⌃
, (3.19)

where the function R is:

R =
ds

dz
=

⌥

1 +

�
dx

dz

⇥2

+

�
dy

dz

⇥2

. (3.20)

The Runge-Kutta method solves these equations for a step of size h by evaluating the
right side of Eq. (3.18) and Eq. (3.19) at a number of points along the step, and
taking a weighted average of the results. The Runge-Kutta propagator in ATLAS uses
a fourth order method that uses three points in each step. The error on the propagation
is proportional to the step size to the fifth power. Higher order methods use more points
per step and are therefore more accurate, but at the cost of requiring more computations.

The error on the propagation is monitored by also performing a third order propa-
gation at each step, and comparing the results. If the positions of the two propagations
di�er too much then the propagation is attempted again with half the step size. This is
called ‘adaptive step size control’. The propagator also monitors the remaining distance
to the target surface at each step. If this distance is below a certain value (typically a
few microns), a Taylor expansion is performed on the position and direction of the track
to reach the surface.
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to the target surface at each step. If this distance is below a certain value (typically a
few microns), a Taylor expansion is performed on the position and direction of the track
to reach the surface.
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➡ numerical integration done using Runge-Kutta technique
•in ATLAS a 4th order adaptive Runge-Kutta-Nystrom approach is used, 

propagates covariance matrix in parallel (Bugge, Myrheim, 1981, NIM 179, p.365)
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Track Propagation in realistic B-Field
•ATLAS Runge-Kutta propogator:
➡ parameter propagation is 4th order
➡ adaptive: use 3rd order result to monitor step precision  

and adapt step size (h)
➡ monitor the remaining distance to the target surface, if 

a few μm, use Taylor approximation to reach surface
➡ Nystrom technique: does as well numerical integration  

of Jacobian for error propagation (fast & precise)

Markus Elsing

Bfield

multiple
scattering

from L. Ropelewski

•need to allow for material effects
➡ energy loss

•use most probably energy loss for x/X0

•correct momentum (curvature) and its 
covariance

➡ multiple scattering
•increases uncertainty on direction of track
•for given x/X0 traversed add term to 

covariances of θ and ϕ on a material “layer”
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The Track Extrapolation Package

•a transport engine 
used in tracking 
software
➡ central tool for pattern 

recognition, track fitting, etc.
➡ parameter transport from 

surface to surface, including 
covariance

➡ encapsulates the track model, 
geometry and material 
corrections

Markus Elsing

B-field
map

geometry

material 
effects

Extrapolation Package
new parameters + covariance

transport
engine

navigator

propagator

parameters + covariance

track following in mathematical terms:

charged particle. The track model, i.e., the shape of the
trajectory, can be used to interpolate between the mea-
surements and create a road around the trajectory. Mea-
surements inside the boundaries of the road constitute
the track candidate. The number of measurements and
the quality of the subsequent track fit are used to evalu-
ate the correctness of the track hypothesis.

4. Track following

A related approach is track following, which starts
from a track seed. Most of the times, the seed is a short
track segment built from a few measurements. In addi-
tion it can be constrained to point to the interaction
region. Seeds can be constructed in the inner region
of the tracking detector close to the interaction region,
where the measurements frequently are of very high
precision, or in the outer region, where the track density
is lower. From the seed, the track is extrapolated to the
next detector layer containing a measurement. The mea-
surement closest to the predicted track is included in
the track candidate. This procedure is iterated until too
many detector layers with missing measurements are en-

countered or until the end of the detector system is
reached.

B. Track fitting

The track fit aims at estimating a set or vector of pa-
rameters representing the kinematic state of a charged
particle from the information contained in the various
position measurements in the track candidate. Since
these positions are stochastic quantities with uncertain-
ties attached to them, the estimation amounts to some
kind of statistical procedure. In addition to estimated
values of the track parameters, the track fit also provides
a measure of the uncertainty of these values in terms of
the covariance matrix of the track parameter vector.
Most estimation methods can be decomposed into a set
of basic building blocks, and the methods differ in the
logic of how these blocks are combined.

1. Track parametrization

If tied to a surface, five parameters are sufficient to
uniquely describe the state of a charged particle. The
actual choice of track parameters depends on, e.g., the
geometry of the tracking detector. In a detector consist-
ing of cylindrical detector layers, the reference surface is
often cylindrical and makes the radius times the azi-
muthal angle !R!" the natural choice of one of the po-
sition parameters. In a detector consisting of planar de-
tector layers, however, Cartesian position coordinates
are more frequently used !Frühwirth et al., 2000".

2. Track model

The track model describes how the track parameter or
state vector at a given surface k depends on the state
vector on a different surface i,

qk = fk#i!qi" , !3"

where fk#i is the track propagator from surface i to sur-
face k and q is the state vector. An illustration is shown
in Fig. 3. For simple surfaces, the track model is analyti-
cal in a vanishing magnetic field !straight line" or in a
homogeneous field !helix". If the field is inhomogeneous,

FIG. 2. !Color online" An illustration of track finding with
the Legendre transform. Top: Drift chamber with a multi-
track event with noise level of 50%. Bottom: The correspond-
ing Legendre transform. The circles in Legendre space graphs
denote the points with the highest height, corresponding
to the reconstructed tracks shown in the top graph. From
Alexopoulos et al., 2008.

!!!"
###$

! !qi qk = fk|i(qi)

surface i surface k

FIG. 3. An illustration of the track model and propagation
concepts. The function fk#i is the track propagator from surface
i to surface k. Its mathematical form depends on the track
model, i.e., the solution of the equation of motion in the actual
magnetic field.
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precision, or in the outer region, where the track density
is lower. From the seed, the track is extrapolated to the
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surement closest to the predicted track is included in
the track candidate. This procedure is iterated until too
many detector layers with missing measurements are en-

countered or until the end of the detector system is
reached.

B. Track fitting

The track fit aims at estimating a set or vector of pa-
rameters representing the kinematic state of a charged
particle from the information contained in the various
position measurements in the track candidate. Since
these positions are stochastic quantities with uncertain-
ties attached to them, the estimation amounts to some
kind of statistical procedure. In addition to estimated
values of the track parameters, the track fit also provides
a measure of the uncertainty of these values in terms of
the covariance matrix of the track parameter vector.
Most estimation methods can be decomposed into a set
of basic building blocks, and the methods differ in the
logic of how these blocks are combined.

1. Track parametrization

If tied to a surface, five parameters are sufficient to
uniquely describe the state of a charged particle. The
actual choice of track parameters depends on, e.g., the
geometry of the tracking detector. In a detector consist-
ing of cylindrical detector layers, the reference surface is
often cylindrical and makes the radius times the azi-
muthal angle !R!" the natural choice of one of the po-
sition parameters. In a detector consisting of planar de-
tector layers, however, Cartesian position coordinates
are more frequently used !Frühwirth et al., 2000".

2. Track model

The track model describes how the track parameter or
state vector at a given surface k depends on the state
vector on a different surface i,

qk = fk#i!qi" , !3"

where fk#i is the track propagator from surface i to sur-
face k and q is the state vector. An illustration is shown
in Fig. 3. For simple surfaces, the track model is analyti-
cal in a vanishing magnetic field !straight line" or in a
homogeneous field !helix". If the field is inhomogeneous,

FIG. 2. !Color online" An illustration of track finding with
the Legendre transform. Top: Drift chamber with a multi-
track event with noise level of 50%. Bottom: The correspond-
ing Legendre transform. The circles in Legendre space graphs
denote the points with the highest height, corresponding
to the reconstructed tracks shown in the top graph. From
Alexopoulos et al., 2008.
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FIG. 3. An illustration of the track model and propagation
concepts. The function fk#i is the track propagator from surface
i to surface k. Its mathematical form depends on the track
model, i.e., the solution of the equation of motion in the actual
magnetic field.
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one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
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where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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~ Jacobi matrix

with:

Surfa
ce A

piCi

Ck

pk

Surface B

convariance:
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Full and Fast (Tracking) Geometries
•complex G4 geometries 

not optimal for 
reconstruction
➡ simplified tracking geometries
➡ material surfaces, field volumes

•reduced number of 
volumes for tracking
➡ blending details of material onto 

simple surfaces/volumes
➡ surfaces with 2D material density 

maps, templates per Si sensor...

Markus Elsing

G4 tracking

ALICE 4.3 M same *1

ATLAS 4.8 M 10.2K *2

CMS 2.7 M   3.8K *2

LHCb 18.5 M 30
*1 ALICE uses full geometry (TGeo)
*2 plus a surface per Si sensor

ATLAS
G4 geometry

ATLAS
tracking geometry
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Embedded Navigation Schemes
•embedded navigation scheme 

in tracking geometries
➡ G4 navigation uses voxelisation as generic 

navigation mechanism
➡ embedded navigation for simplified models

•used in pattern recognition, extrapolation, 
track fitting and fast simulation

•example: ATLAS
➡ developed geometry of connected volumes
➡ boundary surfaces connect neighbouring 

volumes to predict next step

Markus Elsing

ATLAS G4 tracking ratio

crossed volumes 
in tracker 474 95 5

time in 
SI2K sec 19.1 2.3 8.4

(neutral geantinos, no field lookups)

A.Salzburger

Volume
      A

Volume
     B

Volume
     C

Surface CB

Su
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A
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A
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nAC

nCB

t1

t2
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Track Fitting
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From Measurement Model to Track 
•measurements mk of a track
➡ in mathematical terms a model:

➡ in practice those mk are clusters, drift circles, ...

Markus Elsing

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore

~ functional dependency of  
   measurement on e.g. track angle 

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,

m = $m1

]
mn

%, d = $d1

]
dn
%, D = $D1

]
Dn

%, ! = $!1

]
!n
% ,

"11#

where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
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For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
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tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
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a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
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proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,
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where H is the Jacobian of h and F is the Jacobian of f.
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where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,
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where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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~ Jacobian, often contains only 
   rotations and projections

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk
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. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
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where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,
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where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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~ error (noise term)  

•examples for fitting techniques
➡ Least Square track fit or Kalman Filter track fit
➡ more specialised versions: Gaussian Sum Filter or Deterministic Annealing Filters

•task of a track fit
➡ estimate the track parameters and their 

uncertainties from a set of measurements
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Classical Least Square Track Fit
•construct and minimise the χ2 function:

Markus Elsing

Carl Friedrich Gauss is credited with developing the fundamentals 
of the basis for least-squares analysis in 1795 at the age of eighteen. 

Legendre was the fi rst to publish the method, however.

➡Minimising linearised χ2 yields system of linear equations:
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with Jacobian:
dk p0 +δp( ) ≅ dk p0( )+Dk ⋅δp + higher terms

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,
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where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by
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➡Linearise the χ2 with a Taylor expansion:

with:

dk contains measurement model and propagation of 
the parameters p :

one has to resort to numerical schemes such as the
Runge-Kutta integration of the equation of motion.

3. Error propagation

During the track parameter estimation procedure,
propagation of the track parameter covariance matrix
along with the track parameters themselves is often re-
quested. The standard procedure for this so-called linear
error propagation is a similarity transformation between
layers i and k,

Ck = Fk!iCiFk!i
T , "4#

where C is the covariance matrix and Fk!i is the Jacobian
matrix of the propagation from layer i to k,

Fk!i =
!qk

!qi
. "5#

For analytical track models the Jacobian is also analyti-
cal "Strandlie and Wittek, 2006#. In inhomogeneous
magnetic fields, the derivatives can be calculated by
purely numerical schemes or by semianalytical propaga-
tion of the derivatives in parallel to the Runge-Kutta
propagation of the track parameters "Bugge and
Myrheim, 1981#.

4. Material effects

The most important effects on the trajectory of
charged particles caused by material present in the de-
tector volume are ionization energy loss and multiple
Coulomb scattering "Amsler et al., 2008#. For light par-
ticles such as electrons, radiation energy loss by brems-
strahlung also plays an important role. The fluctuations
of ionization energy loss are usually quite small, and
such energy loss is therefore normally treated
during track fitting as a deterministic correction to the
state vector "Frühwirth et al., 2000#. Bremsstrahlung en-
ergy loss, on the other hand, suffers from large fluctua-
tions "Bethe and Heitler, 1934# and affects therefore
both the state vector and its covariance matrix. Multiple
Coulomb scattering is an elastic process, which in a thin
scatterer disturbs only the direction of a passing charged
particle; in a sufficiently thick scatterer, the position in a
plane transversal to the incident direction is also
changed "Amsler et al., 2008#. Since the mean value of
the scattering angle and an eventual offset is zero, only
the covariance matrix is updated in order to incorporate
the effects of multiple scattering into the track fitting
procedure.

5. Measurement model

The measurement model hk describes the functional
dependence of the measured quantities in layer k, mk,
on the state vector at the same layer,

mk = hk"qk# . "6#

The vector of measurements mk usually consists of the
measured positions but can also contain other quanti-
ties, e.g., measurements of direction or even momentum.

During the estimation procedure the Jacobian Hk of this
transformation is often needed,

Hk =
!mk

!qk
. "7#

In many cases the Jacobian contains only rotations and
projections and can thus be computed analytically.

a. Least-squares methods for track fitting

The overwhelming majority of experimental imple-
mentations use some kind of linear least-squares ap-
proach for the task of track fitting. The linear global
least-squares method is optimal if the track model is lin-
ear, i.e., if the track propagator fk!i from detector layer i
to detector layer k is a linear function of the state vector
qi and if all probability densities encountered during the
estimation procedure are Gaussian. If the track propa-
gator is nonlinear, the linear least-squares method is still
the optimal linear estimator. However, although least-
squares estimators are easy to compute, they lack ro-
bustness "Rousseeuw and Leroy, 1987#.

The starting point for deriving the global least-squares
method is the functional relationship between the initial
state q0 of the particle at the reference surface and the
vector of measurements mk at detector layer k,

mk = dk"q0# + !k, "8#

where dk is a composition of the measurement model
function mk=hk"qk# and the track propagator functions

dk = hk ! fk!k−1 ! ¯ ! f2!1 ! f1!0. "9#

The term !k is stochastic and contains all multiple Cou-
lomb scattering up to layer k as well as the measurement
error of mk. A linear estimator requires a linearized
track model, and for this the Jacobian Dk of dk is
needed,

Dk = HkFk!k−1 ¯ F2!1F1!0, "10#

where H is the Jacobian of h and F is the Jacobian of f.
The observations mk, the functions dk, the Jacobians

Dk, and the noise !k can each be arranged in a single
vector or matrix,
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where n is the total number of measurement layers. The
model now becomes

m = d"q0# + ! , "12#

and the linearized version is

m = Dq0 + c + ! , "13#

where c is a constant vector. The global least-squares
estimate of q0 is given by

1424 Are Strandlie and Rudolf Frühwirth: Track and vertex reconstruction: From …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

Gk is the covariance matrix of mk .

Δmk =mk − dk p( )χ 2 = Δmk
TGK

−1

k
∑ Δmk

➡Write down Least Square function:

m2

m1

m3

mk

m4

p0

dk(p0)
dk(p0+δp)

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Adrien-Marie_Legendre
http://en.wikipedia.org/wiki/Adrien-Marie_Legendre


•allowing for material effects in fit:
➡ can be absorbed in track model fk|i , provided effects are small
➡ for substantial multiple scatting, allows for scattering angles in the fit
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Classical Least Square Track Fit
similar to

Broken Lines fit

dk(p)

dk(p,δθI)

material

•results in additional term in χ2 

equations:

➡ computationally expensive  
(invert a dimension 5+2*n matrix)

χ 2 = Δmk
TGK

−1

k
∑ Δmk + δθi

TQi
−1

i
∑ δθi

Δmk =mk − dk p,δθi( )with:

➡ advantage is that the fitted track follows 
precisely the particle trajectory 
(e.g. for ATLAS muon reconstruction)

•introduce scattering angles on material 
surfaces
➡ on each material surface, add 2 angles δθi as fee parameters to 

the fit
➡ expected mean of those angles is 0 (!), their covariance Qi  is 

given by multiple scattering in x/X0



•a Kalman Filter is a progressive way of performing a 
least square fit
➡ can be shown that it is mathematically equivalent

•how does the filter work ?
➡ estimate starting parameters p0|0
➡ iterate over all hits 1..K:
1. take trajectory parameters pk-1|k-1  

at point k-1

 37

The Kalman Filter Track Fit

Markus Elsing

2. propagate to point k to get 
predicted parameters pk|k-1

3. update predicted parameters with 
measurement mk to obtain pk|k 
(simple weighted mean or gain matrix update)

•material effects (multiple scattering and energy loss)
➡ incorporated in the propagated parameters pk|k-1 (extrapolated prediction)
➡ and therefore enters automatically in the updated parameters pk|k at point k

4. and start over with 1.

pk-1|k-1

pk|k-1

pk|k

pk|k-1

surface k-1 surface k

mk



•Kalman Smoother:
➡ provides full information along track
➡ equivalent: average forw./back. filter
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forward filt
er

backw
ard filt

er (s
moother)

q0

qk

•forward filter
➡ in mathematical terms:
1. propagate pk-1 and its covariance Ck-1 :  

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with Qk ~ noise term (M.S.)  

2. update prediction to get qk|k and Ck|k :  

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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with Kk ~ gain matrix :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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The Kalman Filter Track Fit
proceeds from layer k+1 to layer k : 

with Ak ~ smoother gain matrix :

q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
!.

If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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where V=G−1 is the nondiagonal covariance matrix of
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If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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q̃0 = !DTGD"−1DTG!m − c" , !14"

where V=G−1 is the nondiagonal covariance matrix of
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If there is substantial multiple scattering, the esti-
mated track can deviate significantly from the real track.
The actual track can be followed more closely by explic-
itly estimating two projected scattering angles at each
detector layer or at a set of virtual breakpoints inside a
continuous scatterer !Laurikainen et al., 1972; Eichinger
and Regler, 1981". The breakpoint method and the glo-
bal least-squares method are equivalent as far as the
estimate of the state vector q0 is concerned !Billoir et al.,
1985".

Large numbers of measurements or breakpoints lead
to a high computational cost of these methods due to
the need of inverting large matrices. A recursive for-
mulation of the least-squares method, the Kalman filter,
requires the inversion of only small matrices and exhib-
its the same feature as the breakpoint method of fol-
lowing the actual track quite closely !Billoir, 1984; Früh-
wirth, 1987", with the advantage that material effects
such as multiple scattering and energy loss can be
treated locally.

The Kalman filter proceeds by alternating prediction
and update steps !see Fig. 4". The prediction step propa-
gates the estimated track parameter qk−1#k−1 vector from
detector layer k−1 to the next layer containing a mea-
surement,

qk#k−1 = fk#k−1!qk−1#k−1" , !15"

as well as the associated covariance matrix,

Ck#k−1 = Fk#k−1Ck−1#k−1Fk#k−1
T + Qk, !16"

where Qk is the covariance matrix of multiple scattering
after layer k−1 up to and including layer k. The part of
Qk arising from scattering between the layers has to be
propagated to layer k by the appropriate Jacobian.

The update step corrects the predicted state vector by
using the information from the measurement in layer k,

qk#k = qk#k−1 + Kk$mk − hk!qk#k−1"% , !17"

where the gain matrix Kk is given by

Kk = Ck#k−1Hk
T!Vk + HkCk#k−1Hk

T"−1, !18"

and Vk is the covariance matrix of mk. The covariance
matrix is updated by

Ck#k = !I − KkHk"Ck#k−1. !19"

An alternative formulation of the Kalman filter operates
on the inverse covariance matrices !weight or informa-
tion matrices" rather than on the covariance matrices
themselves !Frühwirth, 1987". This approach tends to be
numerically more stable than the gain matrix formula-
tion.

The full information at the end of the track as pro-
vided by the filter can be propagated back to all previ-
ous estimates by another iterative procedure, the Kal-
man smoother. A step of the smoother from layer k+1
to layer k is for the state vector,

qk#n = qk#k + Ak!qk+1#n − qk+1#k" , !20"

where the smoother gain matrix is given by

Ak = Ck#kFk+1#k
T !Ck+1#k"−1. !21"

The smoothed covariance matrix is

Ck#n = Ck#k − Ak!Ck+1#k − Ck+1#n"Ak
T. !22"

The smoother can also be realized by combining two
filters running in opposite directions !Frühwirth, 1987".

b. Removal of outliers and resolution of incompatibilities

A track candidate produced by the track finding algo-
rithm can in general contain one or more outlying ob-
servations. These may be distorted hits, extraneous hits
from other tracks, or electronic noise. An obvious way
of rejecting outliers is to monitor the !2 of the observa-
tions with respect to the predicted track positions using
information from all measurements but the one under
consideration !Frühwirth, 1987". A cut on the !2 with
respect to these predictions is powerful if there is only a
single outlier in the track candidate. If there are several
outliers, the smoothed predictions are biased, and the
probability of rejecting a good observation can no
longer be controlled.

Another possibility is to make the track fit more ro-
bust, thereby reducing the influence of potential outliers.
The adaptive estimators presented in Sec. III.D are ro-
bust in this sense because outlying observations are au-
tomatically downweighted. A related approach can be
found in Golutvin et al. !2000". It is based on a re-
descending M-estimator using Tukey’s bisquare function
!Hampel et al., 1986".

When the track finding is completed it may happen
that two-track candidates have one or more hits in com-
mon, especially if the track finding is done sequentially.
Such tracks are considered as incompatible. As incom-
patibilities are usually forbidden, a maximal or optimal
subset of compatible tracks has to be found. One way of
finding such a subset is to build a graph in which every
track corresponds to a node, and two nodes are con-
nected by an edge whenever the corresponding tracks
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➡ Smoother in mathematical terms:

➡ precise fit result qk at end of fit
➡ alternative to gain matrix approach 

is a weighted mean to obtian pk|k

• but requires to invert 5x5 matrix 
instead of a matrix of rank(Gk)
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material

true trajectory

extrapolation

Bremsstrahlung

Fitting for Electron Bremsstrahlung
•material in tracker
➡ e-Bremsstrahlung and γ-conversions

•electron efficiency limited
➡ momentum loss due to Bremsstrahlung 

leads to sudden large changes in track 
curvature

➡ loosing hits after Brem. leads to 
inefficiency

➡ fit either biased towards small momenta or 
fails completely because of bad χ2
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Bremsstrahlung

•techniques to allow for 
Bremsstrahlung in track fitting
➡ for Least Square track fit

•allow Brem. effect to change curvature, 
additional term similar is to scattering angle

➡ for Kalman Filter
•increase correction for material effects in 

propagation to allow for Brem.
➡ better: Gaussian Sum Filter
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material

Bremsstrahlung

The Gaussian Sum Filter
•approximate Bethe-Heitler 

distribution as Gaussian mixture
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 mixture6CDF
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CMS

➡ GSF improves fit 
performance w.r.t. 
Kalman Filter

➡ component reduction to avoid combinatorial 
explosion after several material layers
•re-evaluate weights of components based 

on compatibility with hits
•drop components with too low weights

➡ state vector after material correction becomes 
sum of Gaussian components
•relative weights from Bethe-Heitler 

distribution
•GSF step resembles set of parallel Kalman 

Filters
•computationally expensive !
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Deterministic Annealing Filters
•robust technique
➡ developed for fitting with high 

occupancies
• e.g. ATLAS TRT with high event pileup
• reconstruction of 3-prong τ decays

➡ can deal with several close by hits on a 
layer

•adaptive fit
➡ multiply weight of each hit in layer with 

assignment probability:

➡

distorted by the mirror and noise hits.

In a tracking detector embedded in a reasonably homogeneous magnetic field, one
is rather interested in fitting a set of measurements to a circle (if the detector mea-
sures points in a plane perpendicular to the magnetic field axis) or to a helix (if the
detector measures points in space) instead of to a straight line [1]. However, the
energy function that one wants to minimize in the more general case is in principle
the same as the one in Equation (2). The only difference is in the expression of the
distance between the measurement and the track, which will be the distance from
a point to a circle or from a point to a helix, respectively. In order to allow for the
possibility that none of the measurements in a layer are assigned to a track, the
energy function has to be slightly generalized:

E =
M

∑
k=1

[

Sk

(

nk
∑
j=1

s jk · d̂2jk

)

+λ(Sk−1)2
]

. (4)

Let us again assume that the assignment weights s jk take on the binary values 0
or 1, which we also assume for the quantity Sk. If the latter is zero, it means that
none of the measurements in layer k are assigned to the track, whereas a value one
means that one of the measurements is assigned. The quantity λ can be regarded
as a squared cutoff distance, in the sense that it will be energetically preferrable
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Fig. 3. Weight of a measurement as a function of the standardized distance to a track.
The cutoff is still at four standard deviations. A competing hit is positioned one standard
deviation away from the track.
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Adaptive methods

Such a procedure hopefully gives correct measurements 
high weight and wrong measurements low weight.

It is adaptive:
the weight of a measurement depends on the positions 
of the other measurements in the same layer competing 
for inclusion into the fit.

Assume that weights are defined as follows:

change of notation 
in continuous case normalized

distance

with:
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Adaptive methods

Such a procedure hopefully gives correct measurements 
high weight and wrong measurements low weight.

It is adaptive:
the weight of a measurement depends on the positions 
of the other measurements in the same layer competing 
for inclusion into the fit.

Assume that weights are defined as follows:

change of notation 
in continuous case normalized

distance
normalised distance

Boltzman factor

In summary, the DAF is significantly faster and more precise than the optimal,
“conventional” algorithm - a combinatorial Kalman filter. It is equally precise as
and faster than the standard EAA. The DAF is therefore the natural algorithm of
choice for such a complex problem in situations where optimal precision is re-
quired.

The next simulation experiment deals with the reconstruction of pairs of simulated,
nearby tracks in the ATLAS TRT, and the main purpose has been to make a com-
parison between the MTF and our best choice of a single-track algorithm: the DAF.
An example of a pair of simulated tracks in the Rφ-projection is shown in Figure 8.
The main results are shown in Table 2. The baseline for the generalized variance is
a Kalman filter fit to each of the tracks separately, without mirror hits and noise. For
both the DAF and the MTF the tracks are initialized close to their true positions.
The DAF is run to convergence sequentially on each of the tracks in a pair, whereas
the MTF runs on both tracks in parallel. From the results it is obvious that the MTF
yields a significant improvement in precision as compared to the DAF.

In Figure 9 the track pair from Figure 8 is shown again, but now the true track
measurements are indicated by a circle. The position of the tracks fitted by the
MTF are given by the solid lines.
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Fig. 8. One pair of simulated tracks in the ATLAS TRT. In addition to the hits and the
mirror hits of the tracks, 50 % noise has been added. This means that in every second layer
- on average - there is an extra hit together with its corresponding mirror hit.
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Noise Method
level DAF MTF
0% 281 4.52
10% 270 5.35
20% 388 6.26
30% 358 7.19
40% 409 9.50
50% 653 11.66

Table 2
The relative generalized variance of the DAF and the MTF with mirror hits for different
levels of additional noise.

3.2 The CMS Tracker [14]

Both the DAF and the MTF have been implemented in the official reconstruction
framework of CMS [15], and systematic, comparative reconstruction studies of
tracks simulated in the CMS Tracker have been performed 2 . A plot of one quad-

2 All results and most of the figures presented in this section have been taken from the Ph.
D. thesis of M. Winkler[15] (with permission).
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Fig. 9. The same pair of simulated tracks as the one shown in Figure 8. The true track hits
are marked by open circles. The solid lines are the fitted tracks.
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noise level = 50%

A.Strandli

Fermi function

➡ process decreasing temperature T is called 
annealing (iterative)
• start at high T ~ all hits contribute same
• at low T             ~ close by hits remain

➡ can be written as a Multi Track Filter
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Track Finding
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Track Finding: Can you find the 50 GeV Can you find the 50 GeV Track?

cf Aaron Dominguez

here it is...



 44Markus Elsing

Track Finding
•the task of the track 

finding 
➡ identify track candidates in event
➡ cope with combinatorial explosion  

of possible hit combinations

Transition
Radiation
Tracker

Silicon
Detectors

TRT Extension

Seed

Silicon
Track

Space Point
Silicon
Track
Candidate

Nominal
Interaction
Point

New  Tracking

•some global methods
➡ conformal mapping

• Hough and Legendre transform
➡ adaptive methods

• Elastic Net, Cellular Automaton ...
➡ segment merging  

(will only discuss conformal mapping)

•some local methods
➡ track road
➡ track following
➡ progressive track finding

•different techniques
➡ rough distinction: local/sequential  

and global/parallel methods
➡ local method: 

generate seeds and complete  
them to track candidates

➡ global method: 
simultaneous clustering of 
detector hits into track candidates



 45Markus Elsing

Conformal Mapping
•Hough transform
➡ cycles through the origin in x-y 

transform into point in u-v

•each hit becomes a straight 
line

Introduction
Track finding
Track fitting

Vertex reconstruction
Conclusions and Outlook

Local methods
Global methods

Track finding: Global methods

Finding circles with the Hough transform
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ACAT 2010 R. Frühwirth Track and vertex reconstruction 20

• The decay length of a short-lived particle can be de-
termined by computing the distance between its esti-
mated production vertex and its estimated decay
vertex.

Similar to track reconstruction, the task of vertex re-
construction can be divided into vertex finding and ver-
tex fitting. The starting point of vertex finding is the set
of all valid tracks provided by the track reconstruction,
represented by a list of track parameter vectors. The
vertex finding algorithms classifies the tracks into vertex
candidates, which are fed into the vertex fit. The output
of the vertex fit is a list of vertices, each entry containing
the estimated vertex position as well as a set of updated
track parameter vectors of the particles associated to
that particular production point. Again the !2 or a re-
lated statistic can be used to test the vertex hypothesis.

A. Track finding

In experimental conditions such as those found in the
LHC experiments, many of the measurements are either
noise or belonging to particles with energy too low to be
interesting from a physics point of view. Therefore,
many hypotheses have to be explored in order to find
the set of interesting track candidates, and track finding
can in general be a cumbersome and time-consuming
procedure. Computational speed is an important issue,
and the choice of algorithms may be dictated by this
fact. Track finding often uses the knowledge of how a
charged particle moves inside the bulk of the detector,
the so-called track model, but can resort to a simpli-
fied version if time consumption is critical. The use of
simplified track models is particularly important for trig-
gering applications, where track finding is part of the
strategy applied in the online selection procedure of
interesting events. Such applications are not considered
in this paper, which will concentrate on methods used
for offline analysis of data, i.e., analysis of data available
on mass storage.

Methods of track finding can in general be classified as
global or local. Global methods treat all measurements
simultaneously, whereas local methods go through the
list of measurements sequentially. Examples of global
approaches presented below are conformal mapping,
Hough transform, and Legendre transform, whereas the
track road and track following methods are regarded as
local.

1. Conformal mapping

The conformal mapping method !Hansroul et al.,
1988" for track finding is based on the fact that circles
going through the origin of a two-dimensional x-y coor-
dinate system map onto straight lines in a u-v coordinate
system by the transformation

u =
x

x2 + y2 , v =
y

x2 + y2 , !1"

where the circles are defined by the circle equation
!x−a"2+ !y−b"2=r2=a2+b2. The straight lines in the u-v
plane are then given by

v =
1

2b
− u

a
b

. !2"

For large values of r or, equivalently, high-momentum
tracks, the straight lines are passing close to the origin,
and track candidates can be obtained by transforming
the measurements in the u-v plane to azimuthal coordi-
nates and collecting the angular part of the measure-
ments in a histogram. Track candidates are found by
searching for peaks in this histogram.

2. Hough and Legendre transforms

In the case of straight lines not necessarily passing
close to the origin, i.e., for tracks in a larger range of
momenta, a more general approach is needed in order
to locate the lines. The Hough transform !Hough, 1959"
is well suited for such a task. The idea is based on a
simple transformation of the equation of a straight line
in an x-y plane, y=cx+d, to another straight line in a c-d
plane, d=−xc+y. The points along the line in the c-d
plane correspond to all possible lines going through the
point !x ,y" in the x-y plane. Points lying along a straight
line in the x-y plane therefore tend to create lines in
the c-d plane crossing at the point which specifies the
actual parameters of that line in the x-y plane. In prac-
tice, the c-d space is often discretized, allowing a set of
bins to be incremented for each of the measurements in
the x-y space. As for the conformal mapping method,
the position of peaks in the histogram provides informa-
tion about the parameters of the lines in the x-y space.
In contrast to the one-dimensional parameter space of
the conformal mapping method, the parameter space is
in this case two dimensional. The Hough transform rap-
idly loses efficiency for finding tracks if one attempts to
move to a parameter space with a dimension higher than
2.

For track finding in drift tubes, the drift circles pro-
vided by the knowledge of the drift distances of each of
the measurements can be transformed to sine curves in
the azimuthal coordinate system by applying a Legendre
transform !Alexopoulos et al., 2008". Peaks at the inter-
sections of several sine curves in this coordinate system
give not only the set of drift tubes hit by the same par-
ticle but also the solution to the left-right ambiguity
problem inherent to this kind of detector system. An
illustration is shown in Fig. 2.

3. Track road

An example of a local approach to track finding is the
so-called track road method. It is initiated with a set of
measurements that could have been created by the same
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charged particle. The track model, i.e., the shape of the
trajectory, can be used to interpolate between the mea-
surements and create a road around the trajectory. Mea-
surements inside the boundaries of the road constitute
the track candidate. The number of measurements and
the quality of the subsequent track fit are used to evalu-
ate the correctness of the track hypothesis.

4. Track following

A related approach is track following, which starts
from a track seed. Most of the times, the seed is a short
track segment built from a few measurements. In addi-
tion it can be constrained to point to the interaction
region. Seeds can be constructed in the inner region
of the tracking detector close to the interaction region,
where the measurements frequently are of very high
precision, or in the outer region, where the track density
is lower. From the seed, the track is extrapolated to the
next detector layer containing a measurement. The mea-
surement closest to the predicted track is included in
the track candidate. This procedure is iterated until too
many detector layers with missing measurements are en-

countered or until the end of the detector system is
reached.

B. Track fitting

The track fit aims at estimating a set or vector of pa-
rameters representing the kinematic state of a charged
particle from the information contained in the various
position measurements in the track candidate. Since
these positions are stochastic quantities with uncertain-
ties attached to them, the estimation amounts to some
kind of statistical procedure. In addition to estimated
values of the track parameters, the track fit also provides
a measure of the uncertainty of these values in terms of
the covariance matrix of the track parameter vector.
Most estimation methods can be decomposed into a set
of basic building blocks, and the methods differ in the
logic of how these blocks are combined.

1. Track parametrization

If tied to a surface, five parameters are sufficient to
uniquely describe the state of a charged particle. The
actual choice of track parameters depends on, e.g., the
geometry of the tracking detector. In a detector consist-
ing of cylindrical detector layers, the reference surface is
often cylindrical and makes the radius times the azi-
muthal angle !R!" the natural choice of one of the po-
sition parameters. In a detector consisting of planar de-
tector layers, however, Cartesian position coordinates
are more frequently used !Frühwirth et al., 2000".

2. Track model

The track model describes how the track parameter or
state vector at a given surface k depends on the state
vector on a different surface i,

qk = fk#i!qi" , !3"

where fk#i is the track propagator from surface i to sur-
face k and q is the state vector. An illustration is shown
in Fig. 3. For simple surfaces, the track model is analyti-
cal in a vanishing magnetic field !straight line" or in a
homogeneous field !helix". If the field is inhomogeneous,

FIG. 2. !Color online" An illustration of track finding with
the Legendre transform. Top: Drift chamber with a multi-
track event with noise level of 50%. Bottom: The correspond-
ing Legendre transform. The circles in Legendre space graphs
denote the points with the highest height, corresponding
to the reconstructed tracks shown in the top graph. From
Alexopoulos et al., 2008.

!!!"
###$

! !qi qk = fk|i(qi)

surface i surface k

FIG. 3. An illustration of the track model and propagation
concepts. The function fk#i is the track propagator from surface
i to surface k. Its mathematical form depends on the track
model, i.e., the solution of the equation of motion in the actual
magnetic field.
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surements and create a road around the trajectory. Mea-
surements inside the boundaries of the road constitute
the track candidate. The number of measurements and
the quality of the subsequent track fit are used to evalu-
ate the correctness of the track hypothesis.

4. Track following

A related approach is track following, which starts
from a track seed. Most of the times, the seed is a short
track segment built from a few measurements. In addi-
tion it can be constrained to point to the interaction
region. Seeds can be constructed in the inner region
of the tracking detector close to the interaction region,
where the measurements frequently are of very high
precision, or in the outer region, where the track density
is lower. From the seed, the track is extrapolated to the
next detector layer containing a measurement. The mea-
surement closest to the predicted track is included in
the track candidate. This procedure is iterated until too
many detector layers with missing measurements are en-

countered or until the end of the detector system is
reached.

B. Track fitting

The track fit aims at estimating a set or vector of pa-
rameters representing the kinematic state of a charged
particle from the information contained in the various
position measurements in the track candidate. Since
these positions are stochastic quantities with uncertain-
ties attached to them, the estimation amounts to some
kind of statistical procedure. In addition to estimated
values of the track parameters, the track fit also provides
a measure of the uncertainty of these values in terms of
the covariance matrix of the track parameter vector.
Most estimation methods can be decomposed into a set
of basic building blocks, and the methods differ in the
logic of how these blocks are combined.

1. Track parametrization

If tied to a surface, five parameters are sufficient to
uniquely describe the state of a charged particle. The
actual choice of track parameters depends on, e.g., the
geometry of the tracking detector. In a detector consist-
ing of cylindrical detector layers, the reference surface is
often cylindrical and makes the radius times the azi-
muthal angle !R!" the natural choice of one of the po-
sition parameters. In a detector consisting of planar de-
tector layers, however, Cartesian position coordinates
are more frequently used !Frühwirth et al., 2000".

2. Track model

The track model describes how the track parameter or
state vector at a given surface k depends on the state
vector on a different surface i,

qk = fk#i!qi" , !3"

where fk#i is the track propagator from surface i to sur-
face k and q is the state vector. An illustration is shown
in Fig. 3. For simple surfaces, the track model is analyti-
cal in a vanishing magnetic field !straight line" or in a
homogeneous field !helix". If the field is inhomogeneous,

FIG. 2. !Color online" An illustration of track finding with
the Legendre transform. Top: Drift chamber with a multi-
track event with noise level of 50%. Bottom: The correspond-
ing Legendre transform. The circles in Legendre space graphs
denote the points with the highest height, corresponding
to the reconstructed tracks shown in the top graph. From
Alexopoulos et al., 2008.
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FIG. 3. An illustration of the track model and propagation
concepts. The function fk#i is the track propagator from surface
i to surface k. Its mathematical form depends on the track
model, i.e., the solution of the equation of motion in the actual
magnetic field.

1423Are Strandlie and Rudolf Frühwirth: Track and vertex reconstruction: From …

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

•Legendre transform
➡ used for track finding in drift 

tubes
➡ drift radius is transformed into    

sine-curves in Legendre space
➡ solves as well L-R ambiguity

➡ search for maxima 
(histogram) in parameter 
space to find track candidates

Introduction
Track finding
Track fitting

Vertex reconstruction
Conclusions and Outlook

Local methods
Global methods

Track finding: Global methods

Finding circles with the Hough transform
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Local Track Finding

•Track Road algorithm

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore
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Track Reconstruction steps #classical$

! first (global) pattern recognition, 

finding hits associated to one track

! track fit (estimation of track 

parameters and errors): {x,C}

! more difficult with noise and hits from

secondary particles

! possibility of fake reconstruction

! in modern track reconstruction, this 

classical picture does not work 

anymore

➡ find seeds ~ combinations of 2-3 hits
➡ build road along the likely trajectory
➡ select hits on layers to obtain candidates

sufficient for
very low
occupancies
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Local Track Finding

•Track Road algorithm
➡ find seeds ~ combinations of 2-3 hits
➡ build road along the likely trajectory
➡ select hits on layers to obtain candidates

•Track Following
➡ find seeds ~ combinations of 2-3 hits
➡ extrapolate seed along the likely trajectory
➡ select hits on layers to obtain candidates

sufficient if low
number of hits
near extrapolation
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Local Track Finding

•Track Road algorithm
➡ find seeds ~ combinations of 2-3 hits
➡ build road along the likely trajectory
➡ select hits on layers to obtain candidates

•Track Following
➡ find seeds ~ combinations of 2-3 hits
➡ extrapolate seed along the likely trajectory
➡ select hits on layers to obtain candidates

•Progressive Track Finder
➡ find seeds ~ combinations of 2-3 hits
➡ extrapolate seed to next layer, find 

best hit and update trajectory
➡ repeat until last layers to obtain candidates

better at high
occupancies and
with lots of material
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•Track Road algorithm
➡ find seeds ~ combinations of 2-3 hits
➡ build road along the likely trajectory
➡ select hits on layers to obtain candidates

•Track Following
➡ find seeds ~ combinations of 2-3 hits
➡ extrapolate seed along the likely trajectory
➡ select hits on layers to obtain candidates

•Progressive Track Finder
➡ find seeds ~ combinations of 2-3 hits
➡ extrapolate seed to next layer, find 

best hit and update trajectory
➡ repeat until last layers to obtain candidates

best of tracking
in jets (ATLAS+CMS)

•Combinatorial Kalman Filter
➡ extension of a Progressive Track Finder for dense environments
➡ full combinatorial exploration, follow all hits to find all possible track candidates

Local Track Finding
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Track Reconstruction in 
ATLAS
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... and in Practice ?

•choice of reconstruction strategy depends 
on:
➡ detector technologies
➡ physics/performance requirements
➡ occupancy and backgrounds
➡ technical constraints (CPU, memory)

•even for same detector setup one looks at 
different types of events:
➡ test beam
➡ cosmics
➡ trigger (regional)
➡ offline (full scan)

New  Tracking

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

NEWT now
ATLAS Atlantis cosmics

ATLAS Atlantis    Event: JiveXML_2102311_00227   Run: 2102311   Event: 227
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•track reconstruction in use by experiments
➡ many apply a combination of different techniques
➡ often iterative ~ different strategies run one after the other 

to obtain best possible performance within resource 
constraints
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The Iterative Tracking Strategy
•task of track finding step 

is to find all track 
candidates
➡ at the same time, minimise 

combinatorial overhead !

•iterative seeding 
approach:

Markus Elsing

➡ optimal choice of iterative 
seeding strategy is matter of 
tuning 
(e.g. CMS did 7 iterations in 
Run-1)

➡ seed tracking from different 
set of layers to find more 
tracks

➡ ... etc.

➡ remove used hits from event
➡ find initial set of track candidates

➡ restrict seeding for 
combinatorial Kalman Filter to 
set of layers
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The Ambiguity Solution
•track selection cuts
➡ applied at every stage in reconstruction
➡ still more candidates than final tracks and 

too high rate of fakes

•task of ambiguity solution
➡ select good tracks and reject fakes
➡ ATLAS: precise fit with outlier removal, 

NN cluster splitting and Brem. recovery

sensor hit

module hit

ambiguous hit

hole

a
b

c

score
per candidate

•ATLAS: ordered iterative selection 
1.evaluate quality function (“score”) for each candidate:

•hit content, holes
•number of shared hits
•fit quality...

2.candidate with best score wins
3.if too many shared hits, create sub-track 

if candidate with remaining hits passes cuts
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Resolving dense Jets

•problem of cluster merging
➡ merging when track separation reaches single Pixel 

size
➡ during track reconstruction shared clusters are 

penalised to reduce fakes and duplicate tracks

•NN cluster splitting in Pixels
➡ identify merged clusters and splitting them

•identify merge clusters, split them and correct 
positions

➡ splitting/sharing decision done in ambiguity 
processing
•full track information for all candidates available
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•crucial in many areas:
➡ b-tagging (especially at high momenta)
➡ jet calibration and particle flow
➡ 3-prong τ identification

residual 
before and 

after 
splitting
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ATLAS NewTracking Software Chain
New  Tracking

pre-processing
➡ Pixel+SCT clustering
➡ TRT drift circle 

formation
➡ space points formation

combinatorial 
track finder
➡ iterative :

1. Pixel seeds
2. Pixel+SCT seeds
3. SCT seeds

➡ restricted to roads
➡ Brem.recovery in EM 

Regions-of-Interest

ambiguity solution
➡ runs hole search
➡ scores tracks according 

to quality
➡ NN cluster splitting in 

jets
➡ precise least square fit 

with Brem.recovery
➡ final selection cuts

extension into 
TRT
➡ progressive finder
➡ refit of tracks with Brem.
➡ scoring and selection 

cuts

TRT segment 
finder
➡ in EM Regions-of-

Interest
➡ on remaining drift circles
➡ uses Hough transform

TRT seeded 
finder
➡ from TRT into 

SCT+Pixels
➡ combinatorial finder

ambiguity solution
➡ precise fit and selection
➡ TRT seeded tracks

standalone TRT
➡ unused TRT segments

vertexing
➡ primary vertexing
➡ conversion and V0 

search

TRT

SCT

Pixel
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Let’s Summarize...
•I introduced the reconstruction in a nutshell and why 

tracking is important for HEP computing

•I discussed briefly the principles of semiconductor 
trackers and drift tubes

•we went over concepts and techniques for track 
extrapolation, fitting and finding

•we saw how to put things together to implement the  
ATLAS Track Reconstruction
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Bonus: Towards HL-LHC
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Preparing for the Future
•current Long-Shutdown 2
➡ Phase-1 upgrade
➡ first set of upgrades for ATLAS+CMS•Run-3 to collect 300 fb-1 at 14 TeV

•Long-Shutdown 3
➡ Phase-2 upgrade
➡ major upgrade of ATLA+CMS experiment•High Luminosity LHC (3000 fb-1)

Simulated HL-LHC 
event, expect up to 200 

pile-up

we are here
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ATLAS Phase-I and Phase-II Upgrades

Level-1 trigger electronicsLAr calorimeter:
fine granularity 
readout     for Level-1

Muon system:
New Small 
Wheel

Phase-I

Phase-II

High 
Granularity 
Timing 
Detector

New muon 
chambers in the 
inner barrel region

New inner
tracking 
system

Upgrade of 
Level-1 Trigger 
and TDAQ 
System
(1 MHz readout)

HW trigger tracking

FTK  trigger 
tracking

Options:
forward muon tagger

Detector electronics 
replacement:
LAr + Tile calorimeter, 
Muon system

➡ CMS upgrade programme is of similar scale and complexity
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Comparison of new ATLAS and CMS 

TEDD 

PIXELS

➡ ATLAS ITk:
•4 double-strip
•5 pixel layers
•total 9 layers
•total 13 hits
•eta < 4 Pixels

Strips

➡ CMS tracker:
•3 double-strip
•3 strip+pixel
•4 pixel layers
•total 10 layers
•total 16 hits
•eta < 4
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ATLAS 

ITk

new CMS 
tracker

•tried scaling layout plots to match dimensions...

➡ classical strip  
layout:

•barrel cylinders 
and disks in  
the end-caps

➡ classical pixel  
layout:

•barrel cylinders 
and disks in  
the end-caps

➡ novel pixel  
layout:

•optimised for 
fast and precise  
forward tracking

➡ novel outer 
layout:

•double-layer 
stubs for 
fast hardware  
trigger tracking
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Trigger Tracking for Phase-2 in CMS
•high luminosity is a challenge for 

fast online trigger event selection
➡ latency for level-1 trigger decision is 12.5 μsec
➡ plan to use tracking information in level-1, 

in particular for keeping pT thresholds for muons
➡ requires high-pT track finding at 40 MHz, latency 4 
μsec

•idea: track-stubs for high-pT candidates
➡ coincidences in electronics of PS and 2S modules
➡ use FPGAs to merge stubs into tracklet seeds, to 

extend seeds and for Kalman Filter track fit

Hybrid Algorithm �15

L1L2

L3L4

L5L6

L1D1

D1D2 D3D4

L2D1

increased precision of track parameters

Layer (L) 1 L2 L3 L4 L5 L6 L7 L8

precise 
track 

parameters

coarse 
track 

parameters
+

Tracklet Seed & Search Kalman Filter

Combines the best of both approaches?
2018

‣ 9 φ sectors


‣ No η division


‣ TMP 18

tracklet seed combinations
Cellular Automaton-based Hit Chain-Maker

The CA is a track seeding algorithm designed for 
parallel architectures

It requires a list of  layers and their pairings

• A graph of  all the possible connections between 
layers is created

• Doublets aka Cells are created for each pair of  layers, in parallel at the same time
• Fast computation of  the compatibility between two connected cells, in parallel
• No knowledge of  the world outside adjacent neighboring cells required, making it easy to 

parallelize

13

• Better efficiency and fake 
rejection wrt previous algo

• Since 2017 data-taking has 
become the default track 
seeding algorithm for all the 
pixel-seeded online and 
offline iterations

• In the following, at least four hits are required, but triplets can be kept to recover 
efficiency where geometric acceptance lacks one hit

cellular automatonFishbone
• After using the CA for producing N-tuplets, “fishbone” seeds 

can be produced to account for module/layer overlaps

• Only highest grade n-tuplet is fitted and duplicate doublets are 
filtered out

15

merging

•(HLT) pixel tracking on GPUs - Patatrack
➡ strategy:

•parallelised cellular automaton for seed finding
•merge overlapping candidates and apply simple  

(Riemann) or Broken Line fit
➡ CMS announced to equip the HLT farm with GPUs 

already for Run-3
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Fast Offline Tracking for Phase-2
•Intensive R&D on tracking 

software
➡ ACTS as an open source tracking project, 

"community" project ATLAS/Belle-II/FCC ...
➡ tracking community workshops (CTD)

•and of course, this Institut Pascal
➡ R&D on support for GPUs and other co-

processors 
(online and offline)

•TrackingML Challenge
➡ reaching out to data science community
➡ open data detector based on ACTS software
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detector

(todays CPUs have 15-20 HS06 per 

CPU for tracking

softw
are

•ATLAS also invests in optimising  
its classical tracking chain
➡ adapt strategy to fully explore new detector

•seeding in new 5 layer pixel detector
➡ optimise track selection for physics use-cases

•high purity working point
➡ extremely encouraging results !

•R&D continues to maximise physics
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Discussion...


