
The Heterogeneous Computing

Revolution

Felice Pantaleo 

CERN - Experimental Physics Department

felice@cern.ch

1



A reminder that…

CPU evolution is not 

able to cope with the 

increasing demand of  

performance

B. Panzer

2



…CMS is in a computing emergency

• Performance demand will 

increase substantially at    

HL-LHC

• an order of  magnitude 

more CPU performance 

offline and online

3



Today

4

• High Level Trigger

• readout of  the whole detector with full 

granularity, based on the CMS software, 

running on 30,000 CPU cores

• Maximum average latency is ~600ms with 

HT

http://fwyzard.web.cern.ch/fwyzard/timing/piechart.html?dataset=hlt_106x_cpu


The CMS Trigger in Phase 2

5

• Level-1 Trigger output rate will 

increase to 750 kHz (7.5x)

• Pileup will increase by a factor 3x-4x

• The reconstruction of  the new highly 

granular Calorimeter Endcap will 

contribute substantially to the required 

computing resources

• Missing an order of  magnitude in 

computing performance



Achieving sustainable HEP computing requires change

Long shutdown 2 represents a good opportunity to embrace a 

paradigm shift towards modern heterogeneous computer architectures 

and software techniques:

• Heterogeneous Computing

• Machine Learning

The Times They Are a-Changin'



Algorithms and Frameworks

The acceleration of  algorithms with GPUs is expected to benefit:

• Online computing: decreasing the overall cost/volume of  the 
event selection farm, or increasing its discovery 
potential/throughput

• Offline computing: enabling software frameworks to execute 
efficiently on HPC centers and saving costs by making WLCG 
tiers heterogeneous

• Volunteer computing: making use of  accelerators that are already 
available on the volunteers’ machines



Patatrack

• Patatrack is a software R&D incubator 

• Born in 2016 by a very small group of

passionate people

• Interests: algorithms, HPC, 

heterogeneous computing, 

machine learning, software engineering

• Lay the foundations of  the CMS online/offline heterogeneous 

reconstruction starting from 2020s

8



and it’s growing fast

9



Why should our community care?

• Accelerators are becoming ubiquitous

• Driven by more complex and deeper 
neural networks

• Details hidden to the user by the FW

• Better Time-to-Solution,
Energy-to-Solution, Cost-to-Solution

• Experiments are encouraged to run 
their software on Supercomputers

• We are not using their GPUs

• Summit: 190PFLOPS out of  200PFLOPS come from GPUs

• Training neural networks for production workflows is a negligible part

• Redesigning our algorithms and data structures to be well digested by a GPU can speed 
it up also when running on CPUs

10

B. Panzer



Architectures

CPU

GPU

11

Control
ALU
Cache
DRAM

PCI Express 

NVLink



CUDA Programming model

A parallel kernel is launched on a grid 

of  threads, grouped in blocks.

• All threads in the same block: 

• run on the same SM, in warps 

• can communicate

• can synchronize



CUDA Kernels

13

Assign each thread a unique identifier and unroll the for loop.

For example:

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

__global__ void add(const int *a, const int *b, 

int *c, int n) {

int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)

c[index] = a[index] + b[index];

}



Patatrack Pixel Reconstruction Workflow

• Full Pixel Track reconstruction in CMSSW

• from Raw data decoding to 
Primary Vertices determination

• Raw data for each event is transferred to 
the GPU initially (~250kB/event)

• At each step data can be transferred to CPU
and used to populate “legacy” event data

• The standard validation is fully supported

• Integer results are identical

14



Data structures

SoA can be very well digested by GPUs (as well as CPUs)

15



Doublets
• The local reconstruction produces hits

• Doublets are created opening a window depending on the tracking region/beamspot and layer-pair

• The cluster size along the beamline can be required to exceed a minimum value for barrel hits connecting to an endcap layer
• Hits within the bins are connected to form doublets if  they pass further “alignment cuts” based on their actual 

position

• In the barrel the compatibility of  the cluster size along the beamline between the two hits can be required

• The cuts above reduce the number of  doublets by an order of  magnitude and the combinatorics by a factor 50

16



Cellular Automaton-based Hit Chain-Maker

The CA is a track seeding algorithm designed for 
parallel architectures

It requires a list of  layers and their pairings

• A graph of  all the possible connections between 
layers is created

• Doublets aka Cells are created for each pair of  layers, in parallel at the same time
• Fast computation of  the compatibility between two connected cells, in parallel
• No knowledge of  the world outside adjacent neighboring cells required, making it easy to 

parallelize

17

• Better efficiency and fake 

rejection wrt previous algo

• Since 2017 data-taking has 

become the default track 

seeding algorithm for all the 

pixel-seeded online and 

offline iterations

• In the following, at least four hits are required, but triplets can be kept to recover 

efficiency where geometric acceptance lacks one hit



CA compatibility cuts

• The compatibility between two cells is 

checked only if  they share one hit

• AB and BC share hit B

• In the R-z plane a requirement is 

alignment of  the two cells

• In the cross plane the compatibility 

with the beamspot region

18



Fishbone

• After using the CA for producing N-tuplets, “fishbone” seeds 

can be produced to account for module/layer overlaps

• Only highest grade n-tuplet is fitted and duplicate doublets are 

filtered out

19



Fits

Pixel track “fit” at the HLT is still using 3 points for quadruplets and 

errors on parameters are loaded from a look-up table[eta][pT]

The Patatrack Pixel reconstruction includes two Multiple Scattering-

aware fits: 

• Riemann Fit 

• Broken Line Fit

They allow to better exploit information coming from our 4-layer 

pixel detector and improve parameter resolutions and fake rejection

20



Fits - Implementation

Both the Riemann and the Broken Line fits have been implemented 

using Eigen 

Eigen is a C++ template library for linear algebra, matrix and vector 

operations

This allows perfect code portability between CPU and GPU 

implementation and bitwise-matching of  the results

21



Physics Performance - Efficiency

Track reconstruction efficiency as a function of  simulated track η,
pT, and production vertex radius.

22



Physics performance - Duplicates

23
Track reconstruction duplicate rate as a function of  reconstructed 
tracks η, pT



Physics performance – Fakes

24

Track reconstruction fake rate as a function of  reconstructed tracks η,

pT



Physics Performance - Resolutions

25
Track resolution of  the transverse impact parameter as a function of  
simulated track η and pT



Physics Performance - Resolutions

Track resolution of  the longitudinal impact parameter as a function 
of  simulated track η and pT

26



Physics Performance - Resolutions

Track reconstruction resolution of  pT as a function of  simulated 
track η and pT

27



Computational Performance

Pixel reconstruction consumers can either work directly on the 

GPU or ask for a copy of  the tracks and vertices on the host
28



On Performance Portability

29



Why are we caring?

• The Patatrack team has demonstrated a complete CMS Pixel 
reconstruction running on GPU:

• on a NVIDIA T4 can achieve 50% higher performance than a full 
Skylake Gold node

• NVIDIA T4 costs approx. 1/5 of  a node

• It is fully integrated in CMSSW and supports standard validation

• It is written in CUDA for the GPU part, C++ for the CPU part

• Maintaining and testing two codebases might not be the most 
sustainable solution in the medium/long term

• Not a showstopper at the moment, but will become one when we will  
transfer ownership of  the code to the collaboration

• In the long term other accelerators might appear

30



P != PP

Portability could be achieved by blindly translating CUDA threads to, 

e.g., CPU threads or viceversa (plus some synchronization 

mechanism)

• You would not need to learn how a GPU works

Unfortunately, this is a terrible idea and will almost certainly lead you 

to poor performance

Portability does not imply Performance Portability
31



Memory access patterns: cached

For optimal CPU cache utilization, the 

thread a should process element i and i+1

• stride=1

32

CPU

0

0

0

1

3

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

CPU Thread 0 CPU Thread 1 CPU Thread 2 CPU Thread 3



Inside a GPU SM: coalesced

• L1 data cache shared among ALUs

• ALUs work in SIMD mode in groups of  32 (warps)

• If  a load is issued by each thread, they have to wait for 

all the loads in the same warp to complete before the 

next instruction can execute

• Coalesced memory access pattern optimal for GPUs: 

thread a should process element i, thread a+1 the 

element and i+1

• Lose an order of  magnitude in performance if  
cached  access pattern used on GPU

330

0

0

1

3

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0



Portability frameworks
OpenMP and OpenACC

• Portability programming models based on compiler directives

• Sensitive to compiler support and maturity

• Difficult coexistence with a tbb-based framework-scheduler

OpenCL -> SYCL -> OneAPI

• Initially The promise for portability, then became framework for portability between GPUs from 
different vendors, now supporting FPGAs

• While OpenCL did not support the combination of  C++ host code and accelerator code in a single 
source file, SYCL does

• This is a precondition for templated kernels which are required for policy based generic programming
• SYCL  enables the usage of  a single C++ template function for host and device code

• At the moment, OneAPI is SYCL 

For all the above, if  you need portable performance you have to manage memory and its layout yourself

34



Performance Portability frameworks

In the context of  Patatrack R&D we have been recently looking into:

• Alpaka/Cupla: https://github.com/ComputationalRadiationPhysics/alpaka

• Developed by Helmholtz-Zentrum Dresden – Rossendorf
o Applications in Material science, XFEL, HPC

• Kokkos:
https://github.com/kokkos/kokkos

• Developed by Sandia National Lab, U.S. National Nuclear Security 
Administration

They provide an interface that hides the back-end implementation.

In the following, the assumption is that you already have a data-parallel code. 

35

https://github.com/ComputationalRadiationPhysics/alpaka
https://github.com/kokkos/kokkos


Alpaka abstraction hierarchy

• multiple elements are processed per thread

• multiple threads are executed in lock-step 

within a warp 

• multiple warps form independent blocks

• Cupla was created because mapping the Alpaka’s abstraction to 

CUDA is straightforward as the hierarchy levels are identical up 

to the element level. 

36



Alpaka abstraction hierarchy to CPU

• On GPU, warps can handle branches with divergent control 

flows of  multiple threads

• There is no component on the CPU capable of  this

• 1to1 mapping of  threads to warps

• Blocks cannot be mapped to the node nor socket

• too much cache, memory, bus traffic

• They are mapped to the cores

• Elements can be used to map CPU vector units

37



Alpaka/Cupla

38



Kokkos

• Provides an abstract interface for portable, performant shared-memory 
programming

Supported backends:

• std::threads, OpenMP, Intel tbb

• CUDA, ROCm

• Offers parallel_for, parallel_reduce, 
parallel_scan, task to describe the pattern of  the parallel tasks

• Multidimensional arrays with a neutral indexing and an architecture 
dependent layout are available

• Thread-safety issues: the most portable approach is for only one (non-
Kokkos) thread of  execution to control Kokkos

39



Kokkos Machine Model

• Kokkos assumes an abstract machine model , in which multiple 

processing devices can coexist and might share memory space

40



Kokkos Execution Policy
An execution policy determines how the threads are executed:

• sizes of  blocks of  threads

• static, dynamic scheduling

Range Policy: execute an operation once for each element in a range

Team Policy: teams of  threads form a league

• sync and shared memory in same team

• Different teams can run different execution patterns (parallel_for, scan etc)

• Policies can be nested

You decide where to run the parallel kernel by specifying an Execution Space 

41



Kokkos Views

Multi-dimensional array of  0 or more dimensions, with sizes set at compile or 
run time
View<double ***, MemorySpace> data("label" , N0 , N1 , N2 ); 3 run, 0 compile

View<double **[N2], MemorySpace> data("label" , N0 , N1 ); 2 run, 1 compile

View<double *[N1][N2], MemorySpace> data("label" , N0 ); 1 run, 2 compile

View<double [N0][N1][N2], MemorySpace> data("label" ); 0 run, 3 compile

Specify MemorySpace to choose where to allocate the payload of  the View

• HostSpace, CudaSpace, CudaUVMSpace…

• Mirroring/deep copy from one space to another possible

• Layout (row-/column-major) depends on the architecture for coalesced/cached memory 
access

42



How Kokkos code looks like

43



Conclusion

• Heterogeneous computing is a reality: better physics 

performance, better computational performance, better energy 

efficiency, lower cost

• Portable code is key for long-term maintainability, testability and 

support for new accelerator devices

• Many possible solutions, not so many viable ones, even less 
production ready

• Alpaka and Kokkos are very active teams and discussions/pull 
requests are ongoing

• Starting from a CUDA code makes life much easier

44


