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Outline

➢ The need for charged particle reconstruction
➢ Combinatorial Track Finder algorithm

➢ Computation challenge at the HL-LHC
➢ Alternative approaches

➢ Resorting to Machine Learning
➢ Challenges for ML

➢ Applications and R&D

Extra digressions on methods included
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HEP/Exa.TrkX Project
➢ DOE ASCR, HEP CCE, DOE CompHEP project
➢ Mission

 Explore deep learning techniques for track formation
 Scale up optimization of ML for tracking

➢ People
 Caltech : Maria Spiropulu, Jean-Roch Vlimant, Alexander Zlokapa,

Joosep Pata
 Cincinnati: Adam Aurisano, Jeremy Hewes
 FNAL : Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim

Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris
 LBNL : Paolo Calafiura, Steven Farrell, Prabhat, Daniel Murnane
 ORNL: Aristeidis Tsaris
 SLAC: Kasuhiro Terao, Tracy Usher

➢ All material available under 
https://heptrkx.github.io/ 
https://exatrkx.github.io/

https://heptrkx.github.io/
https://exatrkx.github.io/
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Tracking Algorithm
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Tracker Detector

● Particle trajectory bended in magnetic field
● Particle ionize silicon pixel and strip throughout several

concentric layers
● Thousands of hits sparsely distributed in space
● Low noise detector, but lots of secondary track hits
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Name of the Game

From hits ... ... to trajectory parameters
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Trigger Tracker (TT)

Vertex Locator
Tracker

1T Magnetic
Field

Outer Tracker

N.B. Not  a complete coverage of TPC tracking in this talk.
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Tracking in a Nutshell

Seeding Combinatorial Kalman Filter

● Particle trajectory bended in a solenoidal magnetic field
● Curvature is a proxy to momentum
● Thousands of sparse hits
● Hits pollution from low momentum, secondary particles

● Explosion in hit combinatorics in both seeding and
stepping pattern recognition

● Highly computing consuming task in extracting
physics content from LHC data

Fitting with Kalman Filter
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Well studied formalism for 
charged particle reconstruction 

achieves high performance.
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Impact of Tracking
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Jet Reconstruction

● Tracks are crucial ingredient, together
with the calorimeter information in the
particle flow algorithm

● Jet reconstructed from particle flow
candidates have significantly better
energy resolution
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Jet Identification

● Jet substructure derived
from particle constituents

● Secondary vertex are
derived from tracks.

● Tracking is crucial for jet
identification
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Momentum Resolution

● Experimental resolution is typically much improved at low
momentum with tracking device

● Most particles in the collisions are at low momentum
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Pile-up Mitigation

● Concurrent proton-proton interaction per bunch crossing are
mostly overlapping

● Determination of separate interactions are made possible with
tracks and vertex

● Jet are further improved with Charged Hadron Subtraction
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Charged particle reconstruction is 
a key ingredient the realization 

of the Physics program at the LHC.
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HL-LHC Challenge
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High Luminosity Challenge

● With higher luminosity comes more reach of
rare physics processes

● It also comes with many more  pile-up and
particles per event
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Scaling of Tracking
● Charged particle track reconstruction is one of the most

CPU consuming task in  event reconstruction
● Programatic optimizations mostly saturated
● Large fraction of CPU required in the HLT. Cannot

perform tracking inclusively

See M. Elsing talk
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Scaling performance and 
limits in computation budget 

call for faster algorithms.  
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Alternative Approaches
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Cellular Automaton Pixel Tracking

https://iopscience.iop.org/article/10.1088/1742-6596/513/5/052010  
https://indico.cern.ch/event/742793/contributions/3274390 

● Outsource track reconstruction in pixel detector to GPU
cellular automaton

● Faster, cheaper, more efficient, more precise, ... 

See F. Pantaleo talk

https://iopscience.iop.org/article/10.1088/1742-6596/513/5/052010
https://indico.cern.ch/event/742793/contributions/3274390
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Parallelism

http://trackreco.github.io/ 

● Matriplex library for vectorization
● Parallelization of track following
● Pattern recognition can be made

faster than traditional track fitting

https://arxiv.org/abs/1906.11744 

http://trackreco.github.io/
https://arxiv.org/abs/1906.11744
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Hough Transform
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Fast Hardware Tracking
● Track trigger implementation for Trigger

upgrades development on-going
● Several approaches investigated
● Dedicated hardware is the key to fast

computation.
● Not applicable for offline processing unless

by adopting heterogeneous hardware.
Tracklets

Hough

Transform

Kalman

Filte
r

See https://ctdwit2017.lal.in2p3.fr/ and 
https://indico.cern.ch/event/742793/  

https://ctdwit2017.lal.in2p3.fr/
https://indico.cern.ch/event/742793/
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Quantum Associative Memory
● Similar to associative

memory method with
exponentially more
storage capacity

● Limitation on hardware
size in demonstrator

https://arxiv.org/abs/1902.00498 

See L. Linder talk

https://arxiv.org/abs/1902.00498
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Tracking with Quantum Annealing

● QUBO formalism inspired by
Hopfield network

● Pattern recognition on Dwave
system limited by hardware size

https://arxiv.org/abs/1908.04475 

See L. Linder talk

https://arxiv.org/abs/1908.04475
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There are other possible ways
 than machine learning 

to do tracking.
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The Case for 
Machine Learning
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Computational Aspect

● Computation for machine learning prediction from a
trained model is parallel and can be fast

ANN ≡ matrix operations  ≡ parallelizable

Bonsai BDT, contained tree growth and
feature discretization ; fast classification 
https://arxiv.org/abs/1210.6861 

Synthesis FPGA firmware 
from trained ANN

https://hls-fpga-machine-learning.github.io/hls4ml/ 

https://arxiv.org/abs/1210.6861
https://hls-fpga-machine-learning.github.io/hls4ml/
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Learning from Complexity

● Machine learning can extract useful information from complex
underlying data structure

● Classical algorithm counter part may take years of development
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Scene Labeling

Photo by Pier Marco Tacca/Getty Images

● Recent image processing deep learning applications
perform non-trivial image segmentation

● Potential application to hit/track association problem

Zagoruyko et al, https://arxiv.org/pdf/1604.02135.pdf 

https://arxiv.org/pdf/1604.02135.pdf
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The Learnable Things
What machine learning

model could learn
What machine learning
model should not have 

to learn

Amount of 
material

Magnetic field

Alignment
non-gaussian

modeling

Helix dynamic

... all physics we
 know of

● In practice, it is not always easy to inject
domain knowledge

Stochastic
process

Bethe-Bloch
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Machine learning may provide
 ways to improve tracking

or solve the computation issue.
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Challenges for
 Pattern Recognition
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Particle Tracking in Biology
https://www.ncbi.nlm.nih.gov/pubmed/24441936 

https://www.ncbi.nlm.nih.gov/pubmed/24441936
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Deep Kalman Filter

Uri Shalit at DSHEP2016  
https://indico.hep.caltech.edu/indico/conferenceDisplay.py?confId=102

https://indico.hep.caltech.edu/indico/conferenceDisplay.py?confId=102
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Kalman Filter in Ballistic

● Available methods to track multiple objects
using kalman filters

● Deal with “splitting objects”
● Deal with crossing trajetories
● More complexe KF, more computationally
intensive ... 

Undisclosed contribution during DS@HEP 2016
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Pattern Recognition or not

Seeding Track Building Track Fitting

➔ Track building ≡ pattern recognition HEP jargon
➔ Finding the list of hits belonging to a track ... 
➔ Finding the pattern of hits left by a charged particle

in the detector ... 

➔ Not the “usual” data science pattern recognition

HEP charged particle tracking in a nutshell
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Data sparsity

https://privacysos.org/ 

≠

https://privacysos.org/
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High Dimensionality
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Complex Geometry

Not the typical data geometry for data science
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Mis-aligned Geometry

Mechanical stress (magnetic field, cooling, ...)
does modify the geometry in time
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Hit Sequencing

➢ Hits leave on modules,
modules leave on layer, layers
are traverse along time.

➢ “Natural” ordering when trying
a hit fitting

➢ Not so “natural” when doing
track building, and hit
combinatorics
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Figure(s) of Merit(s)
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Figure of Merit
● A combination of resolution, fake rate, efficiency, ... 
➔ Tracking has been improved within a given a method

(CKF+CTF) and within processing time constraints

● Not all tracks are equal. Not all features matter
➔ High dimensional cost function

● No golden metric for “tracking” in a general purpose
detector

➔ Things would be done differently, if the purpose was
different

● Remember the breaking point is computation requirement
➔ Not something that folds in a cost function ... 
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Computation Performance

● Worse than quadratic
● PU200 is far off the chart.
● Memory consumption not
necessarily an issue
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There exists specific issues to keep in mind when
applying machine learning for tracking.

Particle tracking is an active field in data science
Making a track is called pattern recognition 

Tracking data is much sparser than regular images
Tracking device may have up to 10M of channels

Underlying complex geometry of sensors
Unstable detector geometry ; alignment 

Not the regular type of sequences
Defining an adequate cost function

A solution must be performant during inference
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Applications of ML
in Tracking
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Where ML Can Fit

● Hits preparation

● Seeding

● Pattern recognition

● Track fitting

● Track cleaning

S
ev

er
al

 T
im

es
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Where ML Can Fit

● Hits preparation

● Seeding

● Pattern recognition

● Track fitting

● Track cleaning
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Machine Learning in Tracking

●Seeding and Clustering
●Pattern recognition
●Track Selection
●Track Parameters
●Vertexing
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Seeds and Clusters
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Hit Searching

https://indico.cern.ch/event/742793/contributions/3274363/ 

● Search for neighboring
hits using R-tree

● Speedup over large event

https://indico.cern.ch/event/742793/contributions/3274363/
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Tracking In Dense Environment

https://arxiv.org/abs/1704.07983
https://link.springer.com/article/10.1140/epjc/s10052-017-5225-7

Converging tracks are likely in  boosted jets
and jets dense of charged particles.

Degraded performance

https://arxiv.org/abs/1704.07983
https://link.springer.com/article/10.1140/epjc/s10052-017-5225-7
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Cluster Splitting
Feed forward NN in three stages

● Determines the category 1-track, 2-tracks, 3-tracks
● Determines the n-crossing positions regression
● Determines the uncertainties as a multi-bin categorization

2 hidden layers fully connected NN with batch norm

ATL-PHYS-PUB-2015-006
https://link.springer.com/article/10.1140/epjc/s10052-017-5225-7 

 

https://link.springer.com/article/10.1140/epjc/s10052-017-5225-7
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Seed and Cluster Filtering

➢ NN classifier to distinguish good and bad clusters in
the hough space during forward tracking

➢ classifier to distinguish good and bad T-seed (Use of
the bonsai BDT https://arxiv.org/abs/1210.6861)
during downstream tracking

https://arxiv.org/abs/1210.6861
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Seed Cleaning
● Categorization of hits

doublet using the pixel
cluster shapes as input

● Significantly reduce timing
in pattern recognition

https://indico.cern.ch/event/742793/contributions/3298727 

https://indico.cern.ch/event/742793/contributions/3298727
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Seed Finding in Jets

https://indico.cern.ch/event/742793/contributions/3274301/

● Predict tracklets parameters from raw pixels using CNN
● Approaching the maximum performance

https://indico.cern.ch/event/742793/contributions/3274301/
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Helix Testing

https://indico.cern.ch/event/742793/contributions/3274402 

● Classify hit 4-tuple to be
on a seed

● Promising at classifying
goodness of seeds

R&D

https://indico.cern.ch/event/742793/contributions/3274402
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Bucketing

https://indico.cern.ch/event/742793/contributions/3274332/ 

● Method inspired from
industry tools

● Reduced problem density
in buckets of hits

R&D

See S. Amrouche talk

https://indico.cern.ch/event/742793/contributions/3274332/
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Track Finding
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Non Parametric Functional Kernels

https://indico.cern.ch/event/577003/contributions/2444883/ 

R&D

● Transform the input features
● Assign hit as classification

task with SVM

https://indico.cern.ch/event/577003/contributions/2444883/
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TPC Activity Segmentation

● Challenge to code explicitly
● Almost text-book example of de-noising AE
● Achieved with CNN
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TrackML Challenge
Accuracy Phase
● First : Top Quarks

➢ Johan Sokrates is an industrial Mathematics master student
➢ Pair seeding, triplet extension, trajectory following, track

cleaning, all with machine learning for quality selection
● Second :

➢ Pei-Lien Chou is a software engineer in image-based deep
learning in Taïwan

➢ Machine learning to predict the adjacency matrix
● Third :

➢ Sergey Gorbunov is a physicist, expert in tracking
➢ Triplet seeding, trajectory following

● Jury “Innovative prize”
➢ Yuval Reina is an electronic engineer and Trian Xylouris is

an entrepreneur 
➢ Marginalized Hough transform with machine learning

classifier
● Jury “Clustering prize”

➢ Jean-François Puget CPMP is a software engineer at IBM.
He is both  competition and discussion Kaggle grandmaster

➢ DBSCAN clustering with iterative Hough transform
● Jury “Deep Learning prize”

➢ Nicole and Liam Finnie are software engineers
➢ DBSCAN seeding, trajectory following with LSTM

● Organization pick
➢ Diogo R. Ferreira is a professor/researcher, focusing on

data science and nuclear fusion
➢ Pattern matching

Throughput Phase
● First : 

➢ Sergey Gorbunov is a physicist, expert in tracking
➢ Triplet seeding, multiple passes trajectory following

● Second :
➢ Dmitry Emeliyanov is a physicist
➢ Connection graph, Cellular automaton, graph traversal with

Kalman Filter
● Third :

➢ Marcel Kunze is a computer scientist
➢ Solution based on top quark, trained navigation on DAG of

voxels to find doublets and triplets

See M. Kiehn talk

https://arxiv.org/abs/1904.06778 

https://indico.cern.ch/event/813759/ 

https://arxiv.org/abs/1904.06778
https://indico.cern.ch/event/813759/
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Controlled Track Following

● Standard track following
algorithm augmented with
classifications 
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DAG Track Following

● Improvement over accuracy phase winner
● Hit navigation using direct acyclic graph (DAG)

See M. Kunze talk
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Deep Hit Adjacency

● Deep-learn the full NxN adjacency matrix
● Track following combinatorics
● Impractical computation-wise
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Improved Hough Transform

● 5D hough transform made computationally
tractable by marginalizing p

T
 and z

0

● Track extension in track feature's space
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LSTM Track Following

● Rely on existing seeding
● Follow tracklets with LSTM for predicting the hit positions
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DBSCAN – Hough Transform

● Iterative hough transform using DBSCAN for
unbinned clustering in track feature space 
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Edge Classification with
Graph Neural Network

https://heptrkx.github.io/ 
digression

R&D

https://heptrkx.github.io/


10/21/19 Machine Learning in Tracking
IPA-APR 2019, J.-R. Vlimant 72

Node & Edge Representations

Node representation

Tracker hit 
feature

Edge representation

Vector

Edge ScoreEdge Score

Latent Space

Output

Input

Latent edge representation taken to be the classification score
instead of some latent vector representation
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Neural Networks
● Input Network

➢ Transforms from hit features (r,φ , z) to the node latent
representation (N for 8 to 128)

 Dense : 3→...→N

● Edge Network
➢ Predicts an edge weight from the node latent

representation at both ends
 Dense : N+N→...→1

● Node Network
➢ Predicts a node latent representation from the current

node representation, weighted sum of node latent
representation from incoming edge, and weighted sum

 Dense :  N+N+N→...→N
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Edge Network

← EdgeNet(   ,   )
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Node Network

← NodeNet(   ,       +       ,       +       +       )

self incoming outgoing
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Information Flow
● Graph is sparsely connected from layer to layer
● InputNet + EdgeNet + NodeNet only correlates hits

information on triplet of layers
✗ The information from the outer hits and inner hits

are not combined

● Several possible ways to operate the connection
➔ Correlates hits information through multiple iterations of

(EdgeNet+NodeNet)
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Downgraded Complexity
● TrackML dataset generated from ... with an

average of  200 pileup events.
✗ Not computational possible at this time to

embed the smallest relevant sector of full
event on a graph

➔ Sub-dataset are constructed by
➢ Low density 

✔ p
T
>1 GeV, Δφ<0.001, Δz

0
<200mm

✔ acceptance: 99%, purity: 33%
➢ Medium density

✔ p
T
>500 MeV, Δφ<0.0006, Δz

0
<150mm

✔ acceptance: 95%, purity: 25%
➢ High density

✔ p
T
>100 MeV, Δφ<0.0006, Δz

0
<100mm

➔ acceptance: 43%, purity: 9%
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Performance

Low density
acc. x eff. ~ 97%

Medium density
acc x eff. ~ 90%

High density
acc. x eff. ~ 33%
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Dealing with Large Graphs

✗ Full event embedding
✗ A graph with ~120k nodes (14.4B edges) and ~1M

potential edges is a big graph

● Split the problem
➢ currently using 16 sectors in φ

● Use sparse matrix implementation 
➢ https://github.com/deepmind/graph_nets  for

example
● Identify disjoint sub-graphs

➢ Geometrical cuts, segment pre-classifier, ...
● Implement distributed learning of large graphs

➢ Scope of the Exa.TrkX Project

https://github.com/deepmind/graph_nets
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Node & Edge Representations

Node representation

Tracker hit 
feature

Edge representation

Vector

Edge ScoreVector

Latent Space

Output

Input

Edge representation is not the edge score.
Final edge score extracted from the latent edge representation.
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Message Passing Model

● Same graph connectivity
● No explicit attention mechanism
● Edge representation computed from end-nodes features
● Node representation computed from the sum over all

connected edges

➔ Correlates hits information through multiple (8) iterations
of (Graph Network)

➔ Uses https://github.com/deepmind/graph_nets TF library

https://github.com/deepmind/graph_nets
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Information Flow

● Checking edge score
after each step of
graph network.

● Effective output of the
model is in step 8.

● Full track hit
assignment learned in
last stages of the
model.

● Tracklets learned in
intermediate stages.



10/21/19 Machine Learning in Tracking
IPA-APR 2019, J.-R. Vlimant 83

Algorithm Efficiency
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Surrogate Kalman Filter Approaches
https://heptrkx.github.io/

digression

R&D

https://heptrkx.github.io/
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Finding Tracks with LSTM
LSTM ≡ Kalman Filter

➢ Search seeded from a
known tracklet

➢ Hit location is discretized to
fixed length

➢ Model predicts the binned
position of the hit on the
next layer
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Hit Following with Uncertainty

➢ Search seeded from a
known tracklet

➢ Hit positions taken in
sequential input

➢ Model predicts the
position/error of the hit on
the next layer

Loss function incorporates the position and
the predicted uncertainty
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Pattern Recognition / Seeding
https://heptrkx.github.io/

digression

R&D

https://heptrkx.github.io/
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Text Translation

➔ From sequence of hits on layer to sequence of hits on track



10/21/19 Machine Learning in Tracking
IPA-APR 2019, J.-R. Vlimant 89

Pattern Recognition

Try to assemble
hits into track
candidates.
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Pattern Recognition with LSTM
● Input sequence of hits per layers (one sequence per layer)

➢ One LSTM cell per layer
● Output sequence of hits per candidates 

➢ Final LSTM runs for as many candidates the model can predict

 Still work in progress
 Restricted to 4 layers

(with seeding in mind)
 Work to some extend
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Hit/Track Assignment

➢ Unseeded hit-to-track assignment (clustering)
➢ Hit positions taken in sequential input
➢ Model predicts the probability that a hit belongs

to a track candidate
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Track Selection
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Track Selection  

Straight tracks

Straight tracks

Bending

http://cds.cern.ch/record/2255039 

NN classifier implemented to select good from bad
tracks in forward tracking and downstream tracking  

http://cds.cern.ch/record/2255039


10/21/19 Machine Learning in Tracking
IPA-APR 2019, J.-R. Vlimant 94

Track Quality with DNN

Simplifies and improves track selection within
the scope of CMS iterative tracking

BDT
DNN

BDT
DNN

https://indico.cern.ch/event/658267/contributions/2813693/ 

https://indico.cern.ch/event/658267/contributions/2813693/
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Track Parameters
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Track Parameters Measurement
https://heptrkx.github.io/ 

digression

R&D

https://heptrkx.github.io/
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Scene Captioning

Karpathy, Fei-Fei, CVPR 2015

➔ Compose tracks explanation from image 
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Track Parameter Estimation

Try to predict the
slope and intersect
of this track
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Multi-Track Prediction with LSTM

● Hit pattern from multiple track
processed through convolutional
layers

● LSTM Cell runs for as many
tracks the model can predict.
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Prediction Track Covariance

Model is modified to predict a covariance matrix
for which there is no ground truth, but is used with
the modified loss function
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Track Parameters Uncertainty

Representation of track
slope, intersect and

respective uncertainties
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Impact Parameters

https://indico.cern.ch/event/587955/contributions/2935754/ 

● LSTM model supplements
a Kalman Filter approach

● Improve resolution and
estimation of track impact
parameters in LHCb

https://indico.cern.ch/event/587955/contributions/2935754/
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Vertexing
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Decay Point Identifier

Ground truth muon 
decay vertex

CNN muon vertex
identification

● CNN slightly outperform the
classical approach

● Much less complication in
programming the vertex finding
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Hybrid Vertexing

https://indico.cern.ch/event/708041/contributions/3269692/ 

● Form a track density over longitudinal
axis using Gaussian kernels

● Learn vertex position from local
longitudinal density

● Similar performance with traditional
approach. 

● Advantage of ML in deployment

R&D

https://indico.cern.ch/event/708041/contributions/3269692/
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Graph Network Vertexing

See J. Schlomi talk

● Track clustering within jets for secondary vertex
reconstruction and jet-tagging in-fine 
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Variety of application
 of machine learning for 
tracking-related tasks.
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and beyond
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➢ ML-4-Tracking already in production
➢ End-to-end tracking with ML is unlikely
➢ Active field of R&D for novel methods
➢ Interesting directions for ML

✔ Reducing the running complexity
✔ Graph network approach
✔ ML-guided combinatorial track finder
✔ Incorporating domain knowledge
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Thank you !
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