Machine Learning for Charged Particle Tracking and beyond

Learning to Discover : Advanced Pattern Recognition Institut Pascal, Orsay 14-25 October 2019

Outline

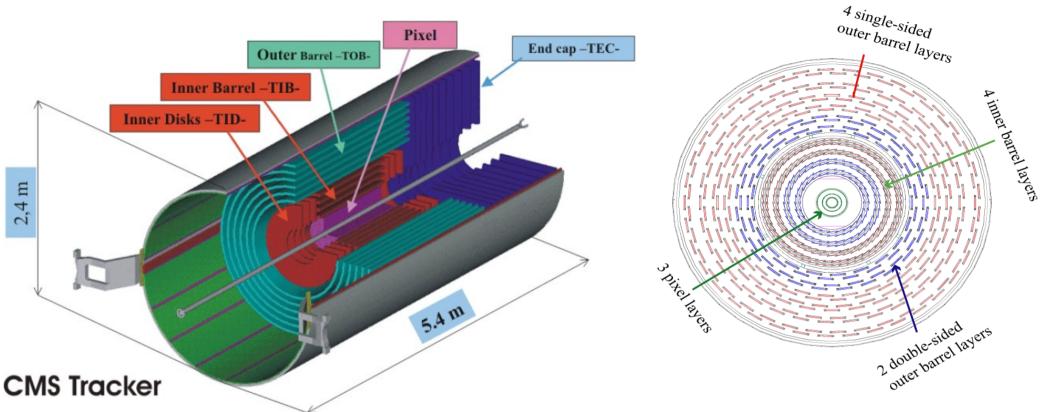
- > The need for charged particle reconstruction
 - Combinatorial Track Finder algorithm
 - Computation challenge at the HL-LHC
 - > Alternative approaches
 - Resorting to Machine Learning
 - Challenges for ML
 - > Applications and R&D

HEP/Exa.TrkX Project

- > DOE ASCR, HEP CCE, DOE CompHEP project
- Mission
 - Explore deep learning techniques for track formation
 - Scale up optimization of ML for tracking
- People
 - Caltech : Maria Spiropulu, Jean-Roch Vlimant, Alexander Zlokapa, Joosep Pata
 - Cincinnati: Adam Aurisano, Jeremy Hewes
 - FNAL : Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris
 - LBNL : Paolo Calafiura, Steven Farrell, Prabhat, Daniel Murnane
 - ORNL: Aristeidis Tsaris
 - SLAC: Kasuhiro Terao, Tracy Usher
- All material available under https://heptrkx.github.io/ https://exatrkx.github.io/

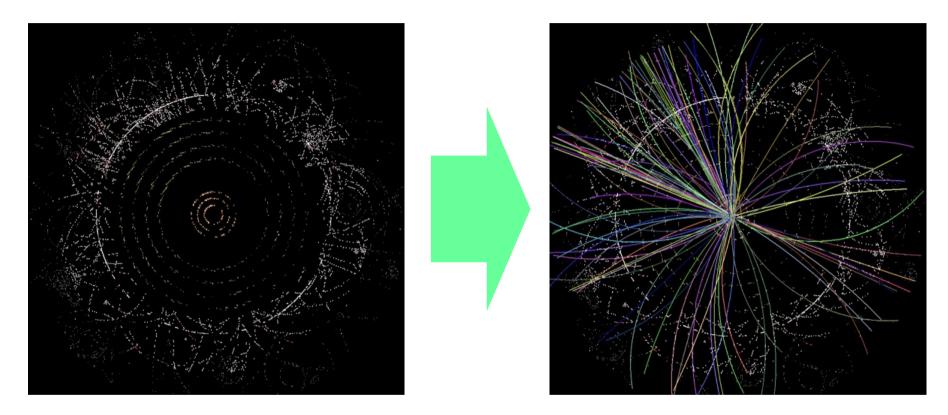
Tracking Algorithm

Tracker Detector



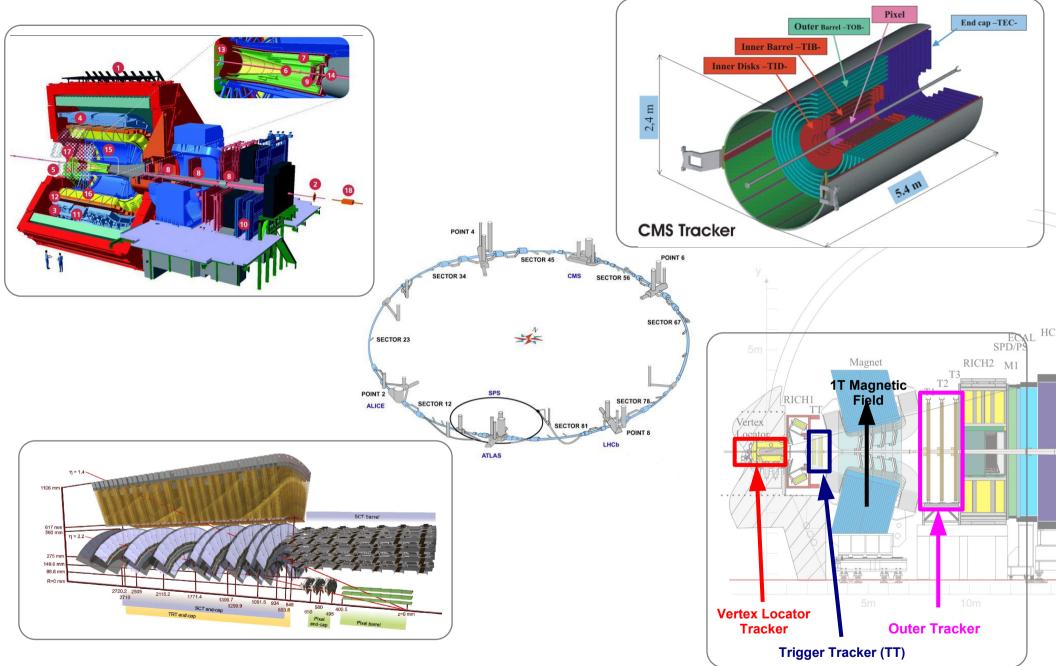
- Particle trajectory bended in magnetic field
- Particle ionize silicon pixel and strip throughout several concentric layers
- Thousands of hits sparsely distributed in space
- Low noise detector, but lots of secondary track hits

Name of the Game



From hits ...

... to trajectory parameters

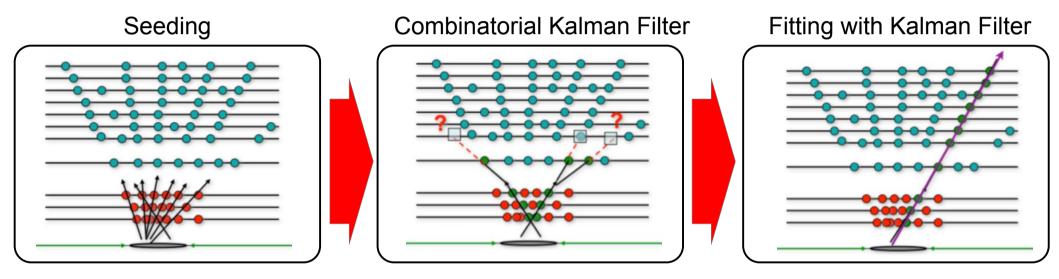


N.B. Not a complete coverage of TPC tracking in this talk.

7

Tracking in a Nutshell

- Particle trajectory bended in a solenoidal magnetic field
- Curvature is a proxy to momentum
- Thousands of sparse hits
- Hits pollution from low momentum, secondary particles

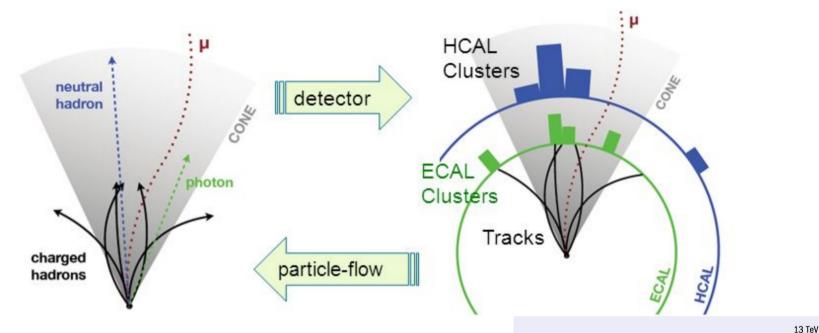


- Explosion in hit combinatorics in both seeding and stepping pattern recognition
- Highly computing consuming task in extracting physics content from LHC data

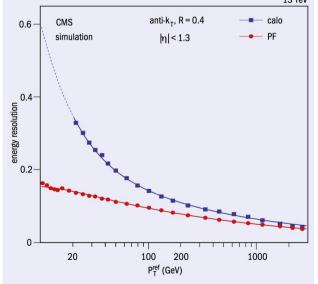
Well studied formalism for charged particle reconstruction achieves high performance.

Impact of Tracking

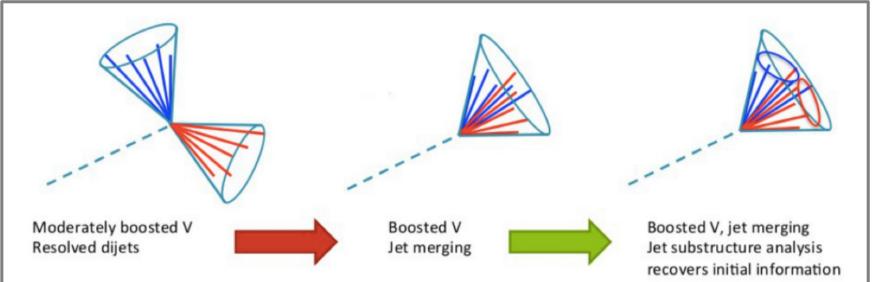
Jet Reconstruction

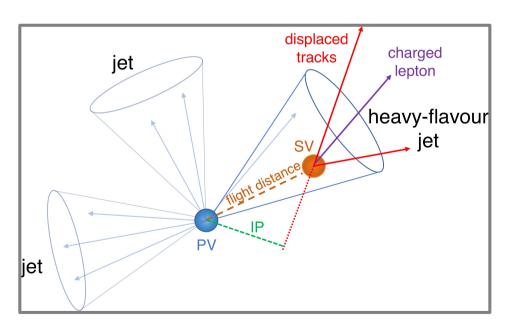


- Tracks are crucial ingredient, together with the calorimeter information in the particle flow algorithm
- Jet reconstructed from particle flow candidates have significantly better energy resolution



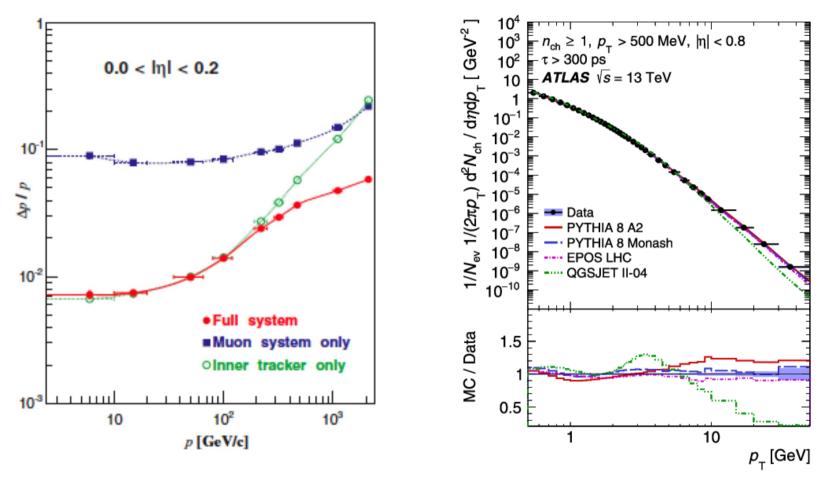
Jet Identification





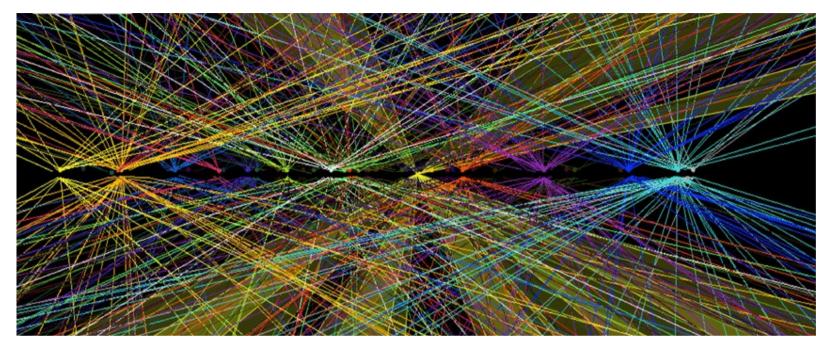
- Jet substructure derived from particle constituents
- Secondary vertex are derived from tracks.
- Tracking is crucial for jet identification

Momentum Resolution



- Experimental resolution is typically much improved at low momentum with tracking device
- Most particles in the collisions are at low momentum

Pile-up Mitigation

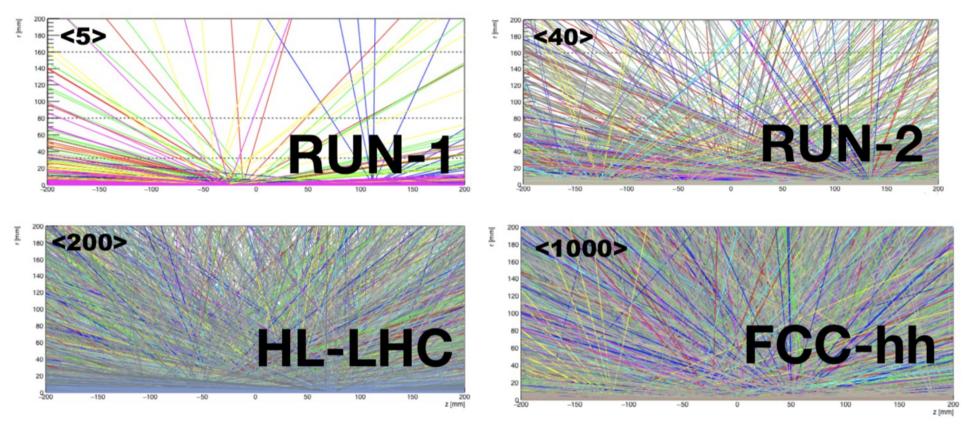


- Concurrent proton-proton interaction per bunch crossing are mostly overlapping
- Determination of separate interactions are made possible with tracks and vertex
- Jet are further improved with Charged Hadron Subtraction

Charged particle reconstruction is a key ingredient the realization of the Physics program at the LHC.

HL-LHC Challenge

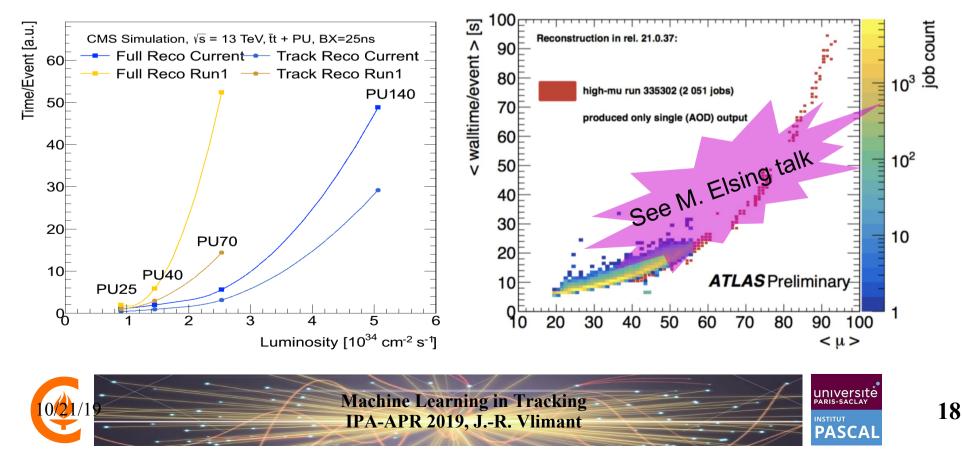
High Luminosity Challenge



- With higher luminosity comes more reach of rare physics processes
- It also comes with many more pile-up and particles per event

Scaling of Tracking

- Charged particle track reconstruction is one of the most CPU consuming task in event reconstruction
- Programatic optimizations mostly saturated
- Large fraction of CPU required in the HLT. Cannot perform tracking inclusively



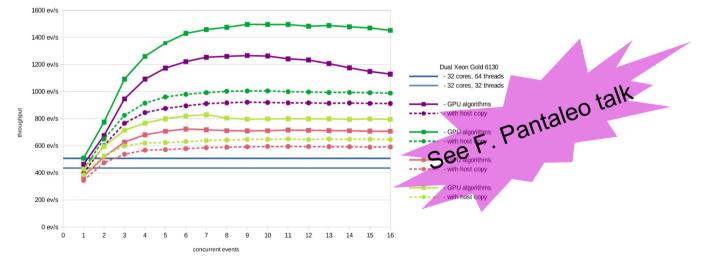
Scaling performance and limits in computation budget call for faster algorithms.

Alternative Approaches

Cellular Automaton Pixel Tracking

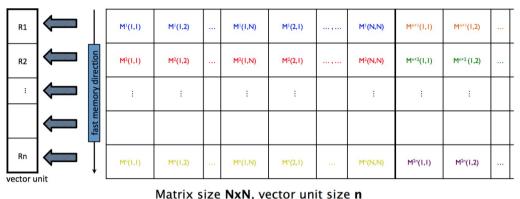


- Outsource track reconstruction in pixel detector to GPU cellular automaton
- Faster, cheaper, more efficient, more precise, ...



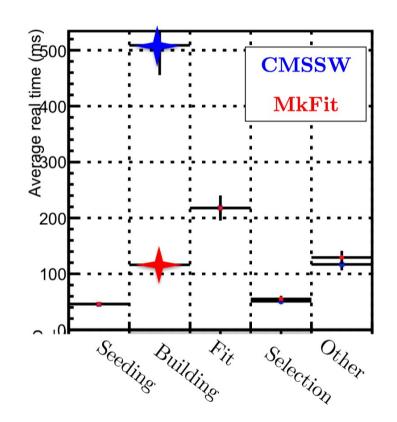
https://iopscience.iop.org/article/10.1088/1742-6596/513/5/052010 https://indico.cern.ch/event/742793/contributions/3274390

Parallelism



http://trackreco.github.io/

- Matriplex library for vectorization
- Parallelization of track following
- Pattern recognition can be made faster than traditional track fitting



https://arxiv.org/abs/1906.11744

Hough Transform

Hough algorithm

Discretised maximum likelihood optimisation over

$$L(n|\{x_i\}) = \sum_i \int \mathrm{d}n \, \delta(d(n, x_i))$$

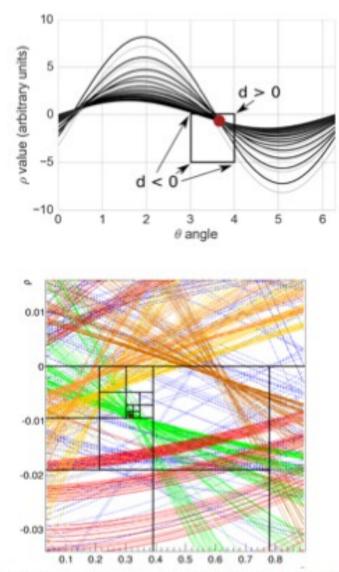
where d is the distance measure of track to hit. Typically carried out as

- > grid search
- Fast Hough bisecting each dimension

over small volumes dn of the parameter space evaluating only the signs of d on the edges.

Refinements

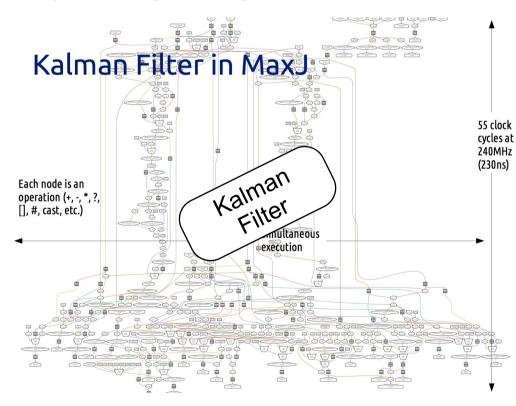
- Weighting of hits versus tracks e.g. on distance d or prior distributions
- Priorisation of search areas
- > Overlapping volumes

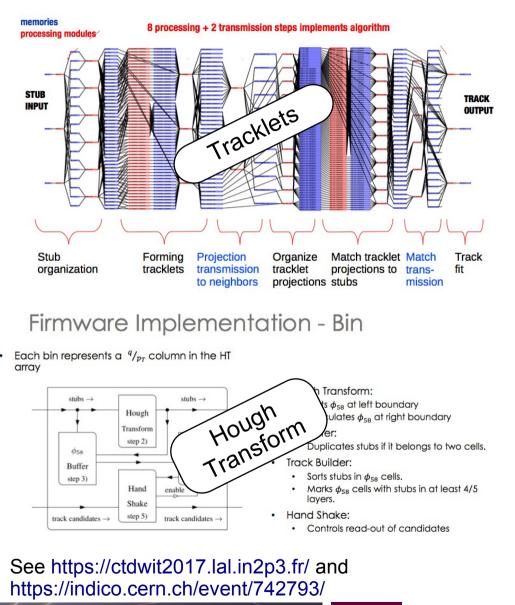


Oliver Frost on behalf of the Belle II collaboration | DESY | 2016-02-22 | Page 4/23

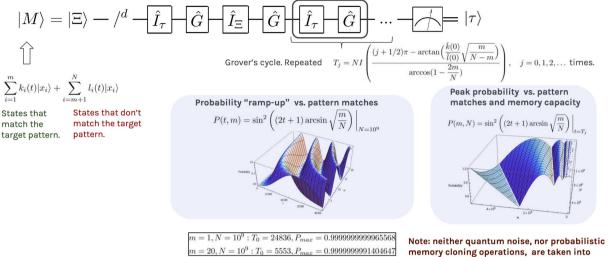
Fast Hardware Tracking

- Track trigger implementation for Trigger upgrades development on-going
- Several approaches investigated
- **Dedicated hardware is the key** to fast computation.
- Not applicable for offline processing unless by adopting heterogeneous hardware.





Quantum Associative Memory



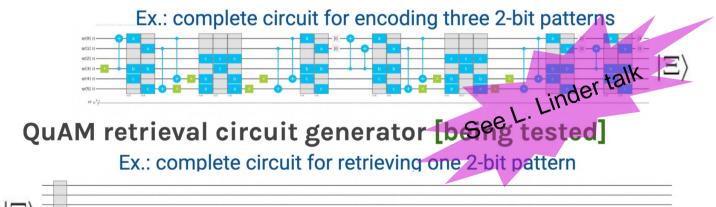
- Similar to associative memory method with exponentially more storage capacity
- Limitation on hardware size in demonstrator

 $\hat{I}_{ au}$ - "quantum oracle" operator. Inverts the phase of state representing the target pattern r.

- \hat{G} Grover's diffusion operator. Inverts all amplitudes about the amplitudes average
- \hat{I}_{Ξ} Inverts phases of all terms originally present in memory.

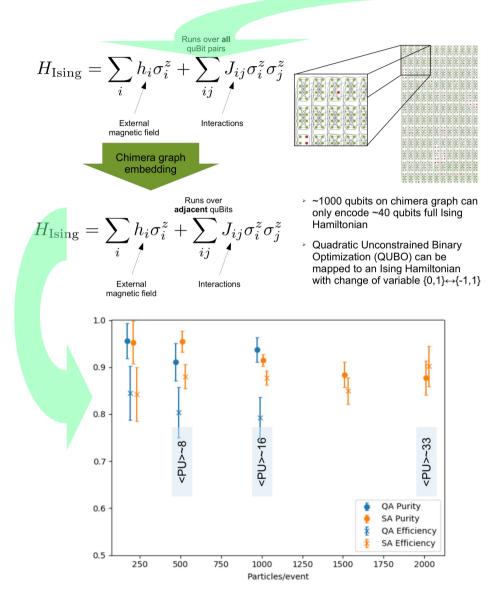
QuAM storage circuit generator [implemented]

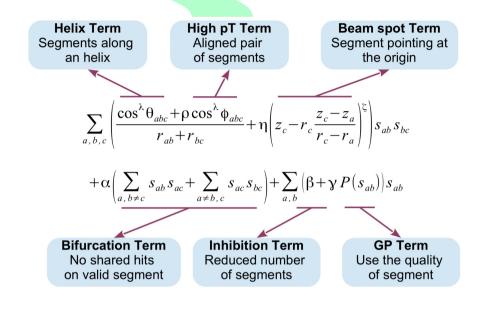
account here.



https://arxiv.org/abs/1902.00498

Tracking with Quantum Annealing





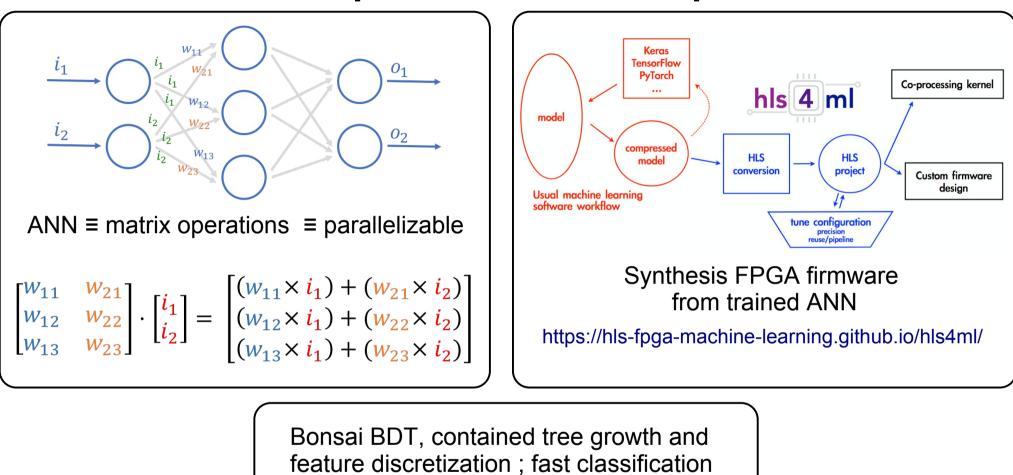
- QUBO formalism inspired by Hopfield network Linder talk
 Pattern recognition on Dwave
- Pattern recognition on Dwave system limited by hardware size

https://arxiv.org/abs/1908.04475

There are other possible ways than machine learning to do tracking.

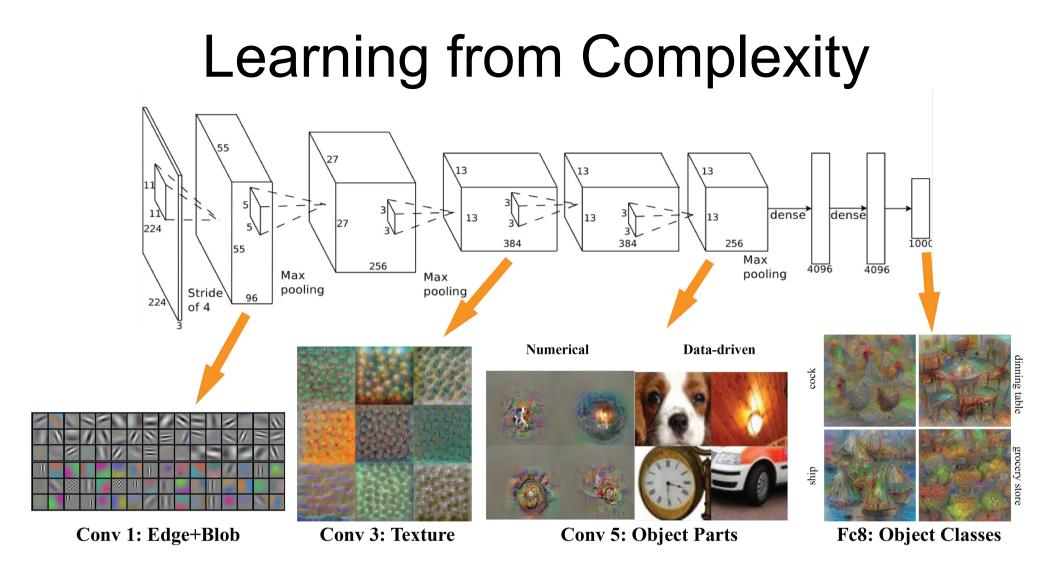
The Case for Machine Learning

Computational Aspect



https://arxiv.org/abs/1210.6861

 Computation for machine learning prediction from a trained model is parallel and can be fast



- Machine learning can extract useful information from complex underlying data structure
- Classical algorithm counter part may take years of development

Scene Labeling

Zagoruyko et al, https://arxiv.org/pdf/1604.02135.pdf

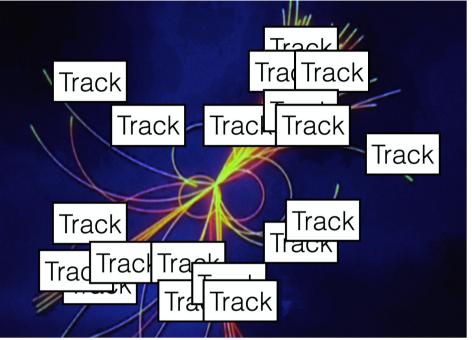
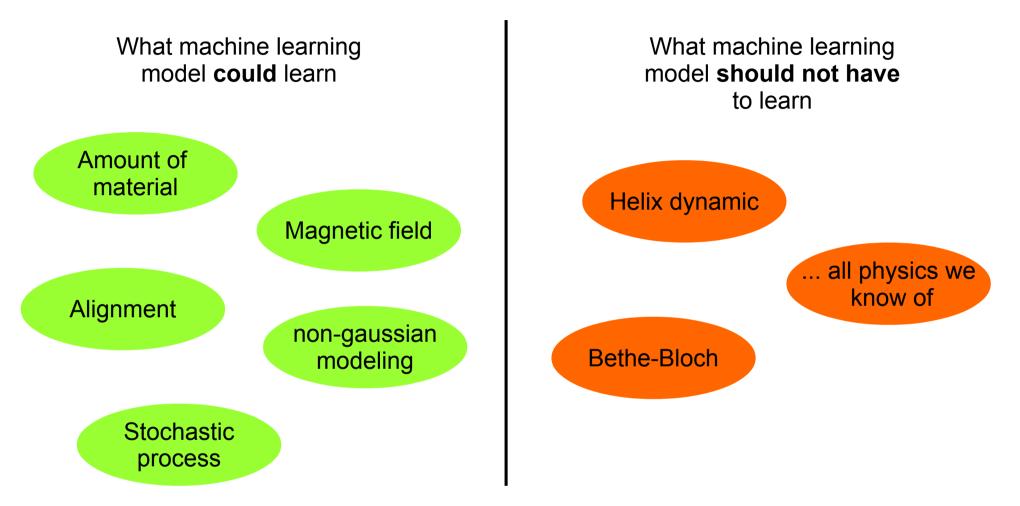


Photo by Pier Marco Tacca/Getty Images

- Recent image processing deep learning applications perform non-trivial image segmentation
- Potential application to hit/track association problem

The Learnable Things



 In practice, it is not always easy to inject domain knowledge

Machine learning may provide ways to improve tracking or solve the computation issue.

Challenges for Pattern Recognition

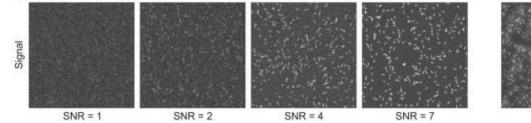
Particle Tracking in Biology

https://www.ncbi.nlm.nih.gov/pubmed/24441936

Table 1 | Participating teams and tracking methods

			Dete	ction	Linking								
lethod	Authors	Prefilter	Approache	s Remarks	Principle	Approache	s Remarks	Dim.	Refs.				
	I.F. Sbalzarini Y. Gong J. Cardinale	-	М, С	Iterative intensity-weighted centroid calculation	Combinatorial optimization	MF, MT, GO	Greedy hill-climbing optimization with topological constraints	2D & 3D	32				
	C. Carthel S. Coraluppi	Disk	М, Т	Adaptive local-maxima selection	Multiple hypothesis tracking	MF, MT, MM	Motion models are user specified (near-constant position and/or velocity)	2D & 3D	33,34				
	N. Chenouard F. de Chaumont JC. Olivo-Marin	Wavelets	М, Т	Maxima after thresholding two-scale wavelet products	Multiple hypothesis tracking	MF, MT, MM, GC	Motion models are user specified (near-constant position and/or velocity)	2D & 3D	35–37				
	M. Winter A.R. Cohen	Gaussian, median and morphology	М, Т, С	Adaptive Otsu thresholding	Multitemporal association tracking		Post-tracking refinement of detections	2D & 3D					
	W.J. Godinez	Laplacian of Gaussian or	М, Т,	Either thresholding + centroid	Kalman filtering + probabilistic	MF, MM	Interacting multiple models using	2D & 3D	29,40				
	K. Rohr Y. Kalaidzidis	Gaussian fitting Windowed floating mean background subtractior		or maxima + Gaussian fitting Lorentzian function fitting to structures above noise level	data association Dynamic programming	a	Scenario 1	Scenari	o 2	Scenario 3	Scenario 4	b	Density
	L. Liang J. Duncan H. Shen Y. Xu	Laplacian of Gaussian		Gaussian mixture model fitting	Multiple hypothesis tracking	- 12 12 12 12 12 12 12 12 12 12 12 12 12 1					iv S		
	K.E.G. Magnusson J. Jaldén H.M. Blau	Deconvolution	M, T, F	Watershed-based clump splitting and parabola fitting	Viterbi algorithm on state-space representation			See.					
	P. Paul-Gilloteaux	Laplacian of Gaussian or Gaussian filtering	M, T, F	Either maxima with pixel precision (2D) or thresholding + Gaussian fitting (3D)	Nearest neighbor + global optimization	nics		ية مانية. المراجعة المراجع				*	
	P. Roudot C. Kervrann F. Waharte	Structure tensor	T, F	Histogram-based thresholding and Gaussian fitting	Gaussian template matching	Dynam					vili		Low
	I. Smal E. Meijering	Wavelets	M, F, C	Gaussian fitting (round particles) or centroid calculation (elongated particles)	Sequential multiframe assignment							1.1	
	JY. Tinevez S.L. Shorte	Difference of Gaussian	M, T, F	Parabolic fitting to localized maxima	Linear assignment problem	25		10/5		25 Crickers	Contraction of the		
	J. Willemse K. Celler G.P. van Wezel	Gaussian and top hat	т, с	Watershed-based clump splitting	Nearest neighbor								
	HW. Dan	Gaussian, Wiener and	т, с	Morphological opening-based	Nearest neighbor +	1.6		Margaret and The	P 1427-709 -83				
	YS. Tsai	top hat		clump splitting	Kalman filtering								Medium

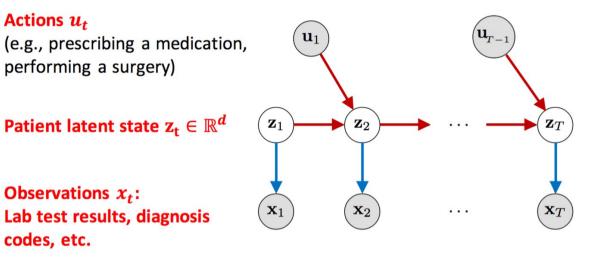
GC, gap closing.



High

Deep Kalman Filter

Deep Kalman filters



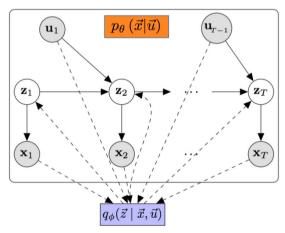
Initial state: Action-transition Emission:

$$z_{1} \sim \mathcal{N}(\mu_{0}, \Sigma_{0})$$

ion: $z_{t} \sim \mathcal{N}\left(G_{\alpha}(z_{t-1}, u_{t-1}), S_{\beta}(z_{t-1}, u_{t-1})\right)$
 $x_{t} \sim \Pi(F_{\kappa}(z_{t}))$

Optimize *jointly* over generative model $p_{\theta}(\vec{x}|\vec{u})$ and variational approximation $q_{\phi}(\vec{z}|\vec{x},\vec{u})$

Stochastic backpropagation (Rezende et al. 2014, Kingma & Welling, 2014)



Uri Shalit at DSHEP2016

https://indico.hep.caltech.edu/indico/conferenceDisplay.py?confld=102

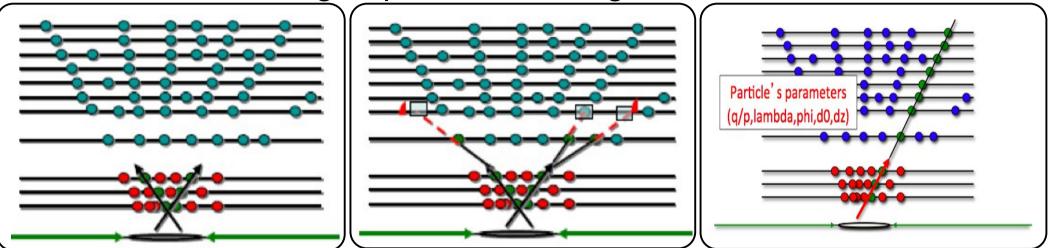
Kalman Filter in Ballistic

- Available methods to track multiple objects using kalman filters
- Deal with "splitting objects"
- Deal with crossing trajetories
- More complexe KF, more computationally intensive ...

Undisclosed contribution during DS@HEP 2016

Pattern Recognition or not

HEP charged particle tracking in a nutshell



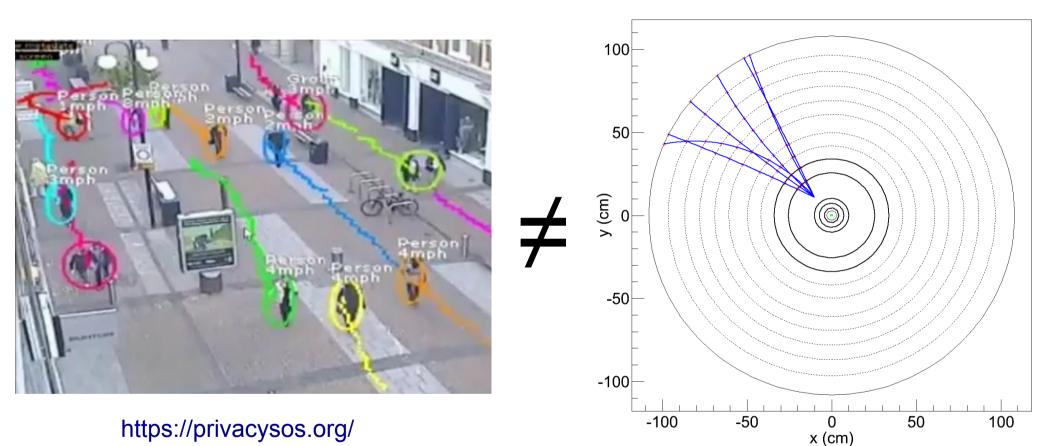
Seeding

Track Building

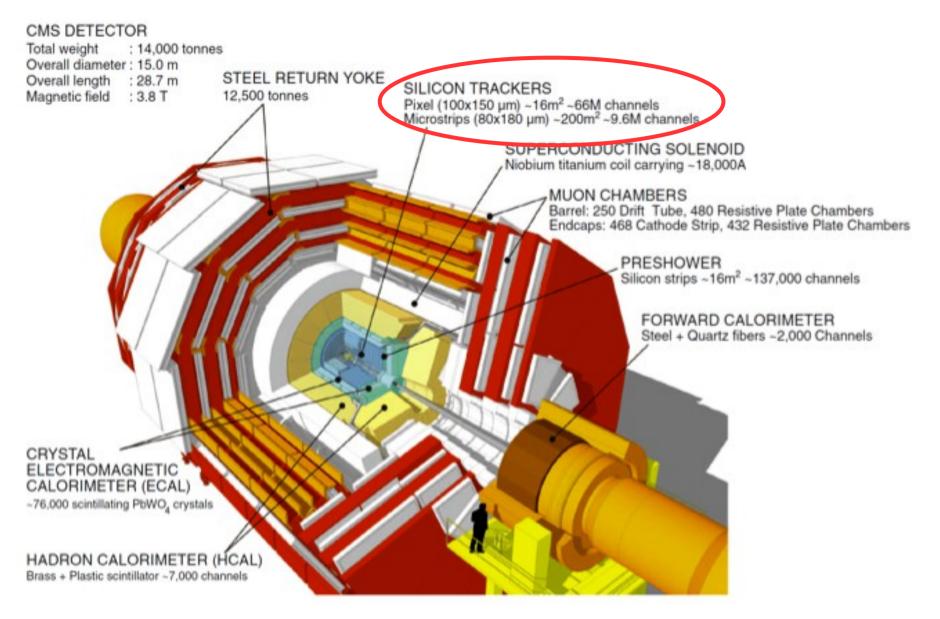
Track Fitting

- → Track building = pattern recognition HEP jargon
- Finding the list of hits belonging to a track ...
- Finding the pattern of hits left by a charged particle in the detector ...
- Not the "usual" data science pattern recognition

Data sparsity

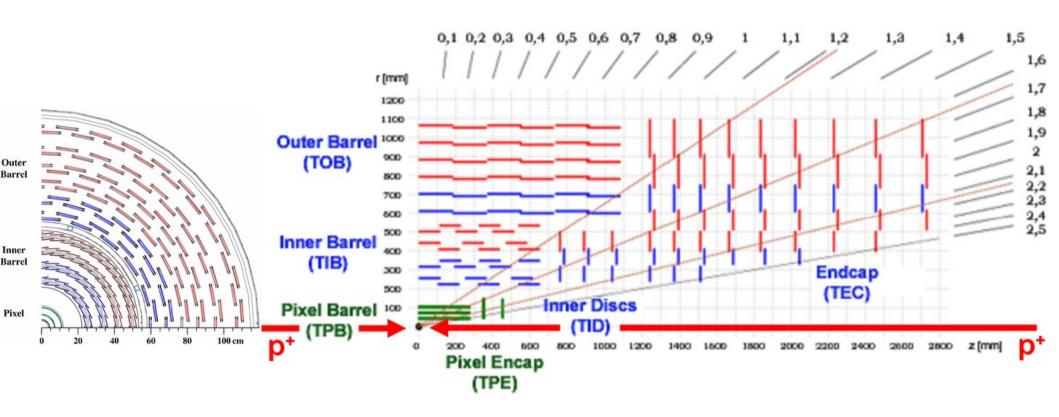


High Dimensionality



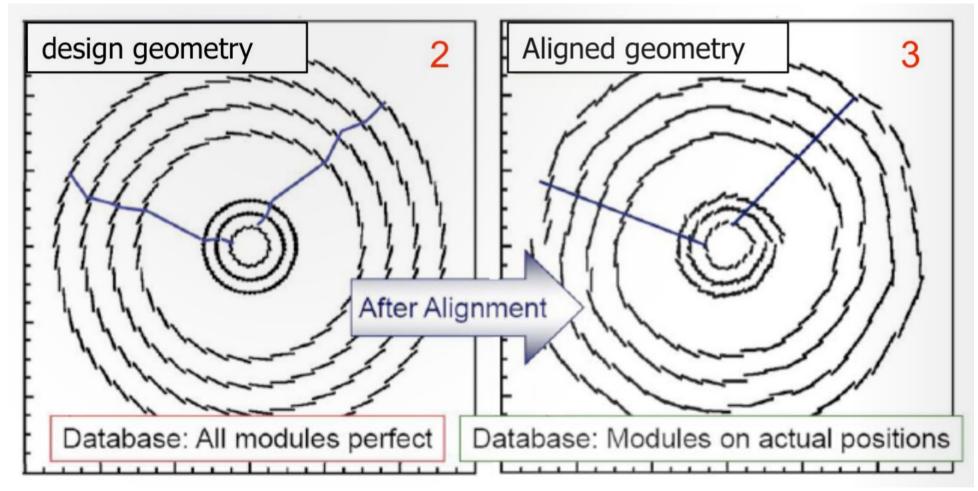
Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

Complex Geometry



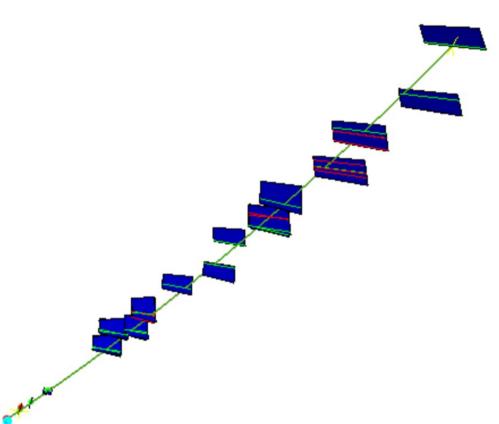
Not the typical data geometry for data science

Mis-aligned Geometry



Mechanical stress (magnetic field, cooling, ...) does modify the geometry in time

Hit Sequencing



- Hits leave on modules, modules leave on layer, layers are traverse along time.
- * "Natural" ordering when trying a hit fitting
- Not so "natural" when doing track building, and hit combinatorics

PASCA

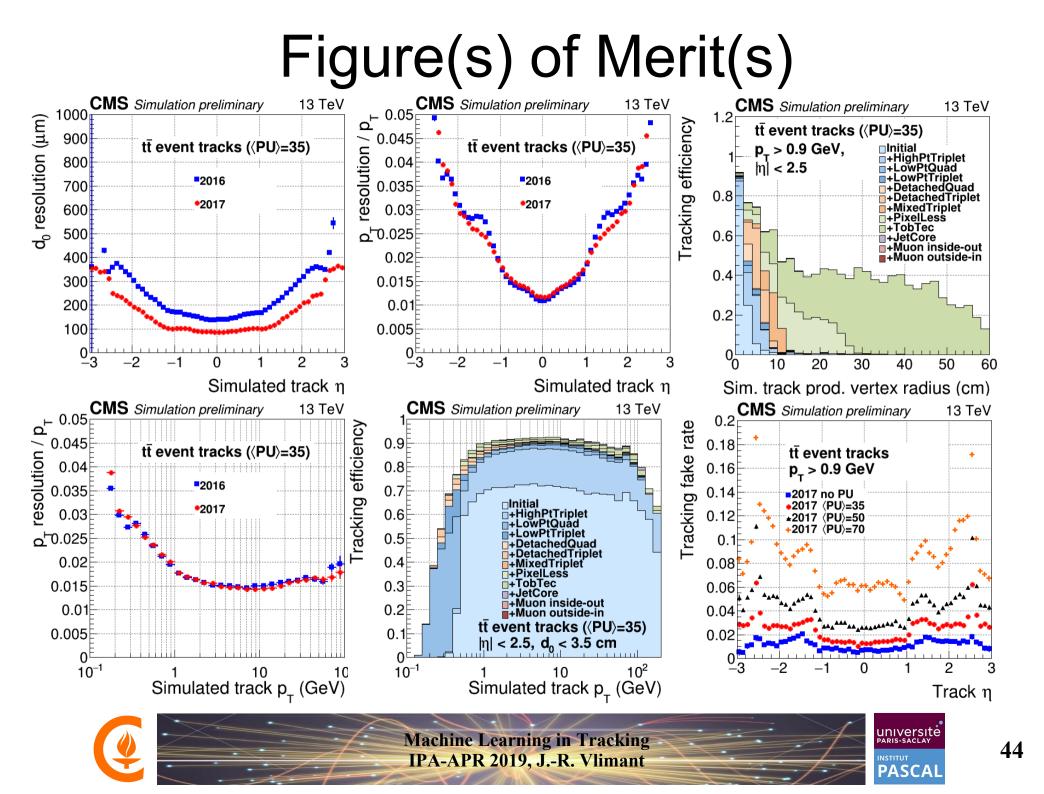
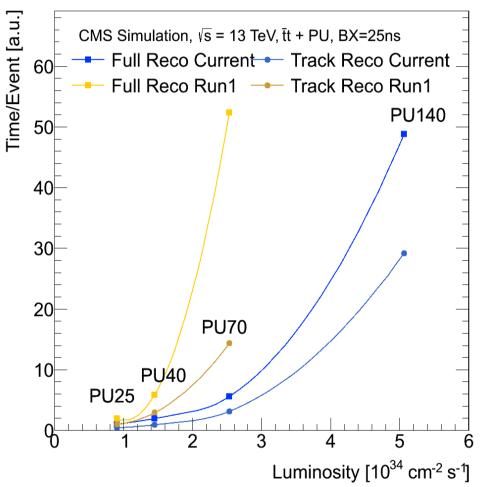


Figure of Merit

- A combination of resolution, fake rate, efficiency, ...
- Tracking has been improved within a given a method (CKF+CTF) and within processing time constraints
- Not all tracks are equal. Not all features matter
 High dimensional cost function
- No golden metric for "tracking" in a general purpose detector
- Things would be done differently, if the purpose was different
- Remember the breaking point is computation requirement
 Not something that folds in a cost function ...

Computation Performance



- Worse than quadratic
- PU200 is far off the chart.
- Memory consumption not necessarily an issue

There exists specific issues to keep in mind when applying machine learning for tracking.

Particle tracking is an active field in data science Making a track is called pattern recognition Tracking data is much sparser than regular images Tracking device may have up to 10M of channels Underlying complex geometry of sensors Unstable detector geometry ; alignment Not the regular type of sequences Defining an adequate cost function A solution must be performant during inference

47

Applications of ML in Tracking

Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

Where ML Can Fit

Hits preparation

Several Times

0/2

- Seeding
- Pattern recognition
- Track fitting
- Track cleaning

Where ML Can Fit

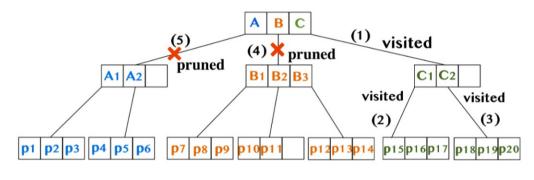
Machine Learning in Tracking

- Seeding and Clustering
- Pattern recognition
- Track Selection
- Track Parameters
- Vertexing

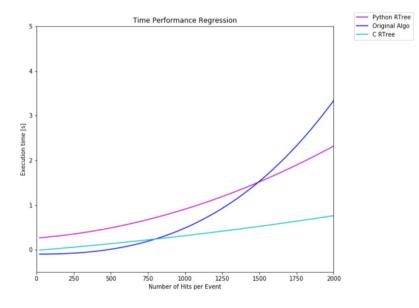
Seeds and Clusters

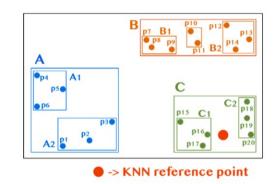
Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

Hit Searching



result for K = 3: {p16, p17, p20}

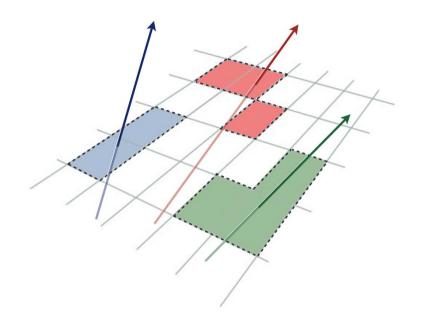




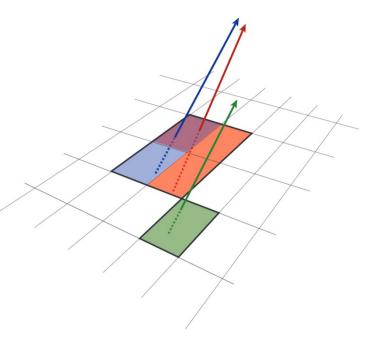
- Search for neighboring hits using R-tree
- Speedup over large event

https://indico.cern.ch/event/742793/contributions/3274363/

Tracking In Dense Environment



(a) Single-particle pixel clusters



(b) Merged pixel cluster

Converging tracks are likely in boosted jets and jets dense of charged particles. Degraded performance

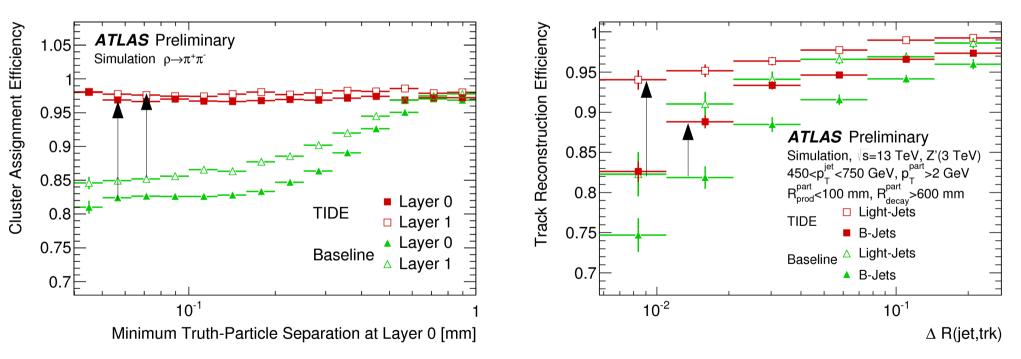
https://arxiv.org/abs/1704.07983 https://link.springer.com/article/10.1140/epjc/s10052-017-5225-7

Cluster Splitting

Feed forward NN in three stages

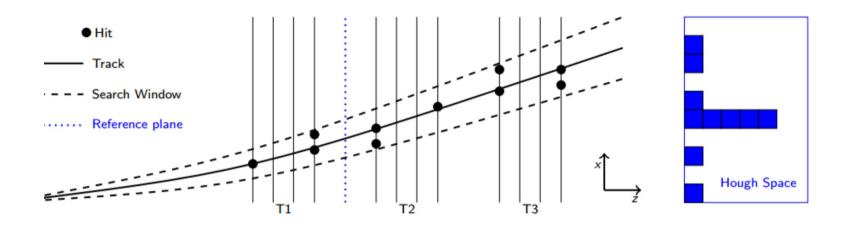
- Determines the category 1-track, 2-tracks, 3-tracks
- Determines the n-crossing positions regression
- Determines the uncertainties as a multi-bin categorization

2 hidden layers fully connected NN with batch norm



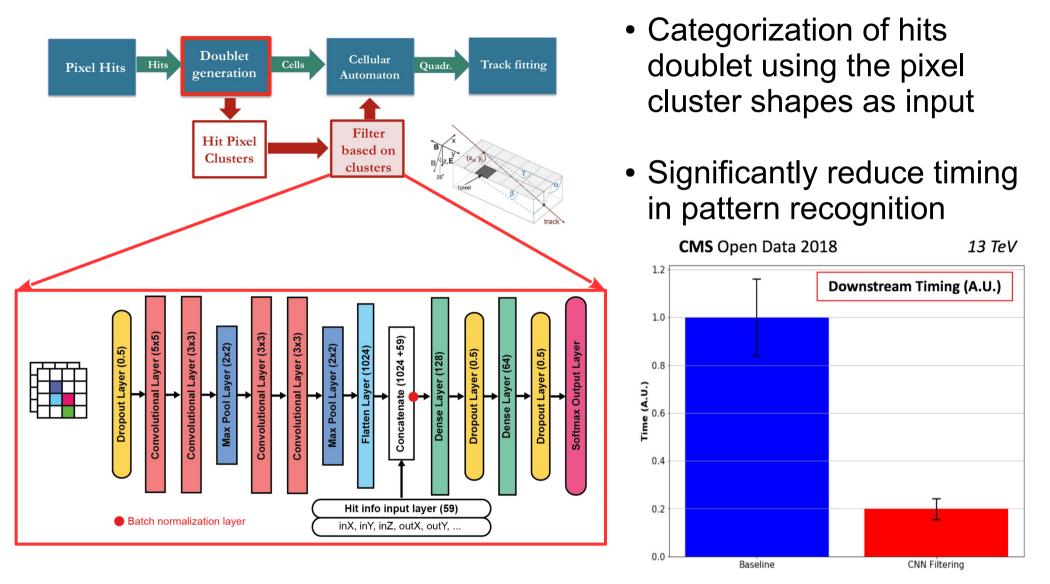
ATL-PHYS-PUB-2015-006 https://link.springer.com/article/10.1140/epjc/s10052-017-5225-7

Seed and Cluster Filtering



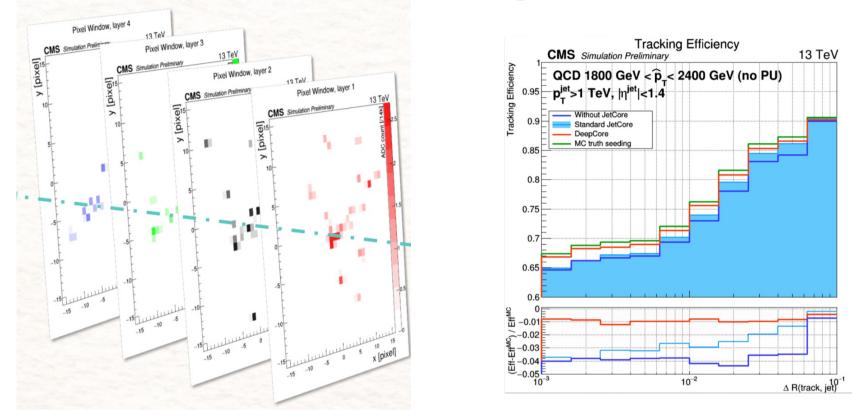
- NN classifier to distinguish good and bad clusters in the hough space during forward tracking
- Classifier to distinguish good and bad T-seed (Use of the bonsai BDT https://arxiv.org/abs/1210.6861) during downstream tracking

Seed Cleaning



https://indico.cern.ch/event/742793/contributions/3298727

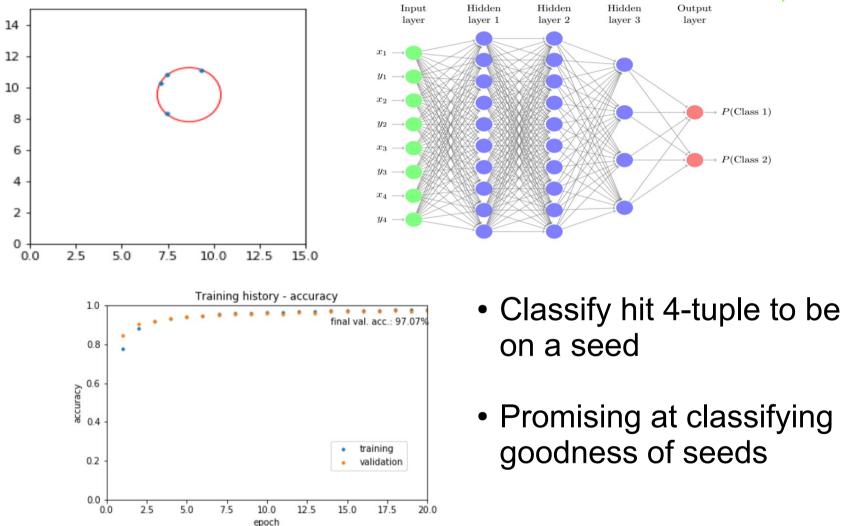
Seed Finding in Jets



- Predict tracklets parameters from raw pixels using CNN
- Approaching the maximum performance

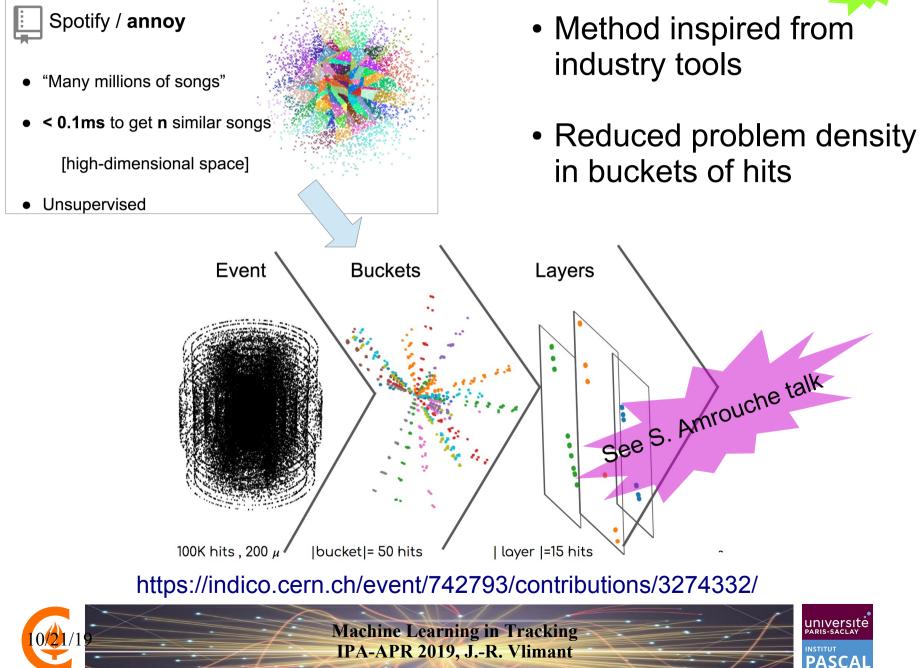
https://indico.cern.ch/event/742793/contributions/3274301/

Helix Testing



https://indico.cern.ch/event/742793/contributions/3274402

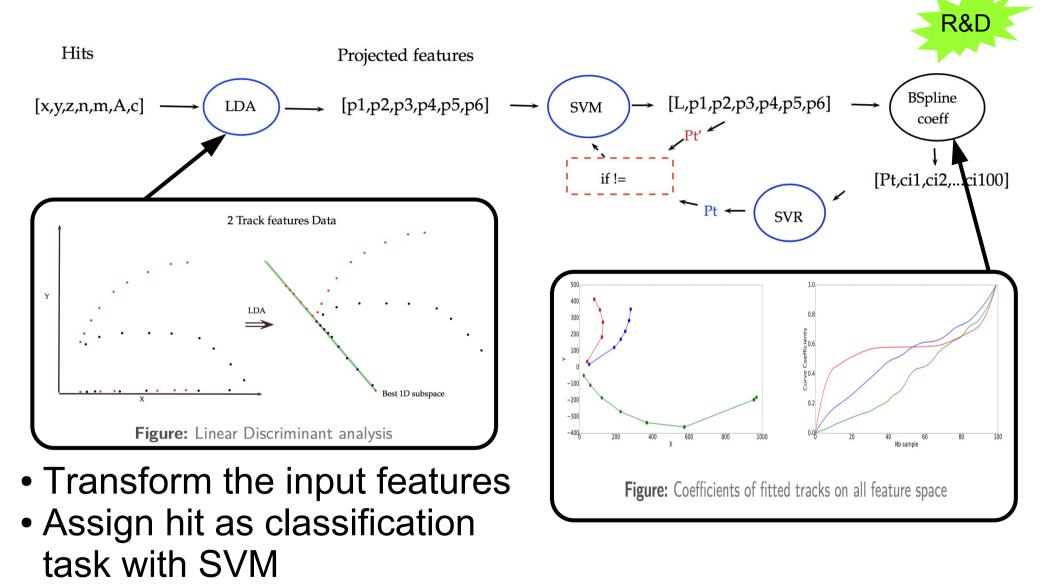
Bucketing



Track Finding

Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

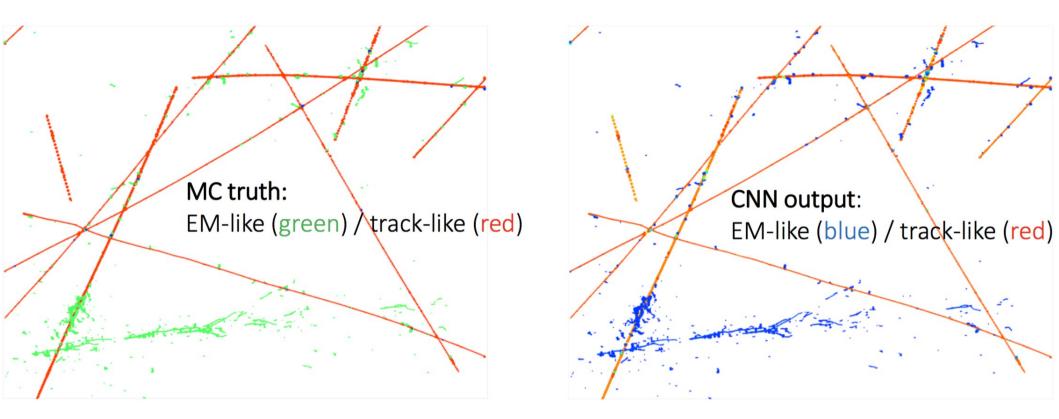
Non Parametric Functional Kernels



https://indico.cern.ch/event/577003/contributions/2444883/

Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

TPC Activity Segmentation



- Challenge to code explicitly
- Almost text-book example of de-noising AE
- Achieved with CNN

TrackML Challenge

Accuracy Phase

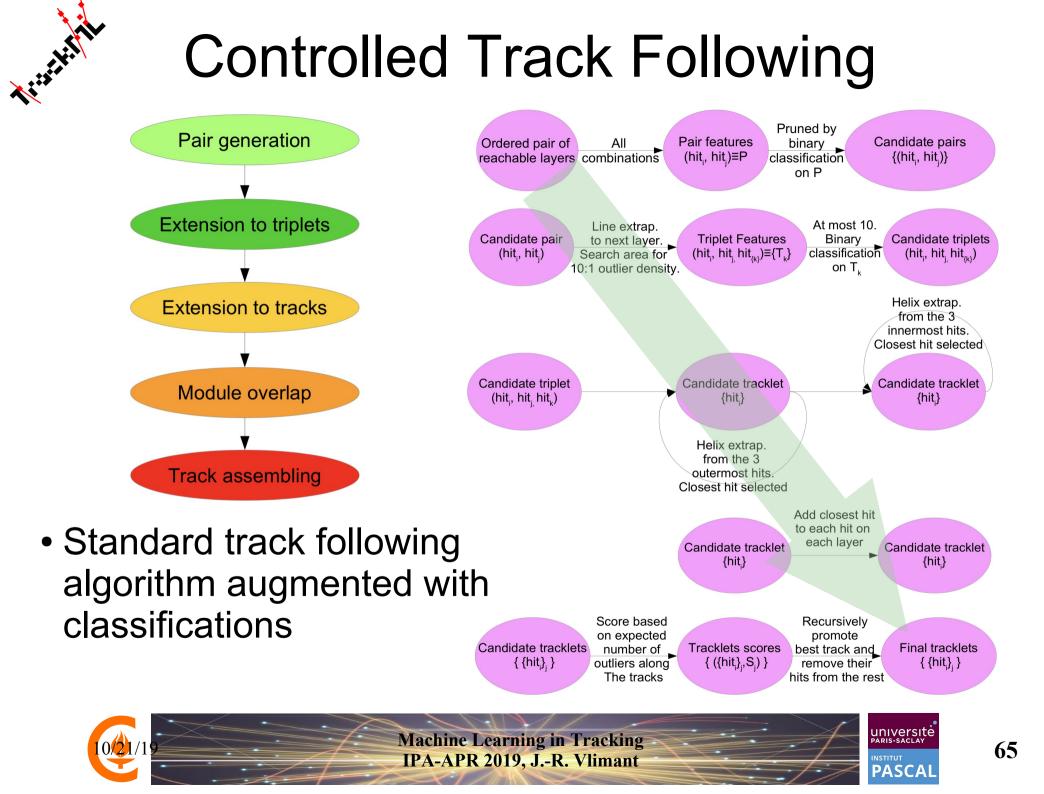
- First : Top Quarks
 - Johan Sokrates is an industrial Mathematics master student
 - Pair seeding, triplet extension, trajectory following, track cleaning, all with machine learning for quality selection
- Second :
 - Pei-Lien Chou is a software engineer in image-based deep learning in Taïwan
 - Machine learning to predict the adjacency matrix
- Third :
 - Sergey Gorbunov is a physicist, expert in tracking
 - Triplet seeding, trajectory following
- Jury "Innovative prize"
 - Yuval Reina is an electronic engineer and Trian Xylouris is an entrepreneur
 - Marginalized Hough transform with machine learning classifier
- Jury "Clustering prize"
 - Jean-François Puget CPMP is a software engineer at IBM. He is both competition and discussion Kaggle grandmaster
 - DBSCAN clustering with iterative Hough transform
- Jury "Deep Learning prize"
 - Nicole and Liam Finnie are software engineers
 - DBSCAN seeding, trajectory following with LSTM
- Organization pick
 - Diogo R. Ferreira is a professor/researcher, focusing on data science and nuclear fusion
 - Pattern matching

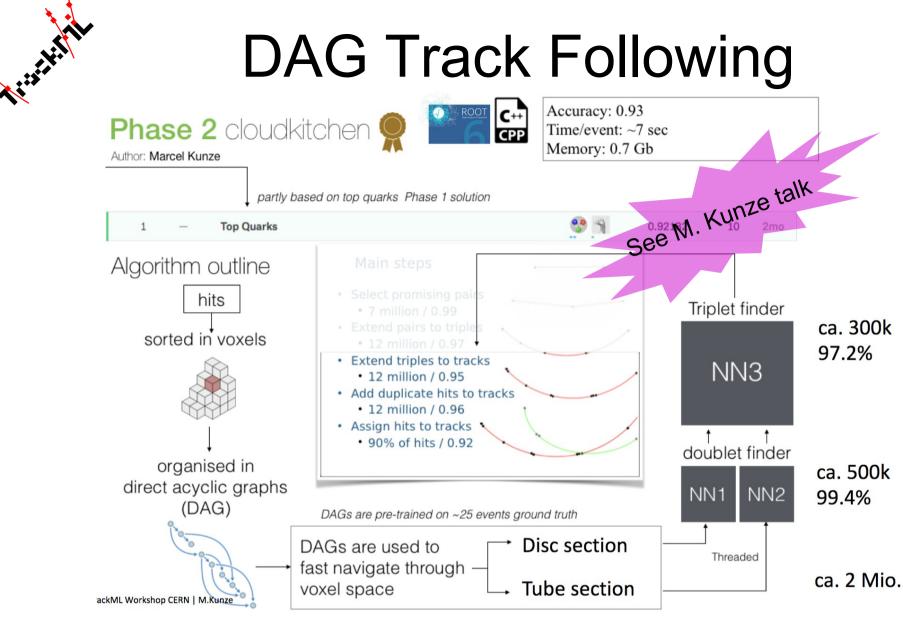
https://arxiv.org/abs/1904.06778

Throughput Phase

- First
 - > Sergey Gorbunov is a physicist, expert in tracking
 - Triplet seeding, multiple passes trajectory following
- Second :
 - > Dmitry Emeliyanov is a physicist
 - Connection graph, Cellular automaton, graph traversal with Kalman Filter
- Third :
 - Marcel Kunze is a computer scientist
 - Solution based on top quark, trained navigation on DAG of voxels to find doublets and triplets

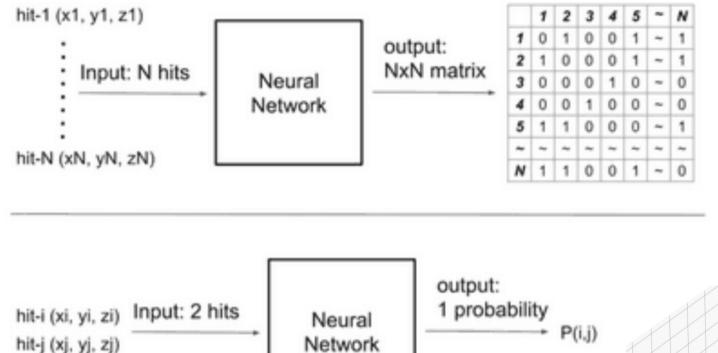
https://indico.cern.ch/event/813759/





- Improvement over accuracy phase winner
- Hit navigation using direct acyclic graph (DAG)

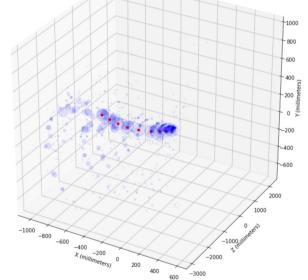
Deep Hit Adjacency

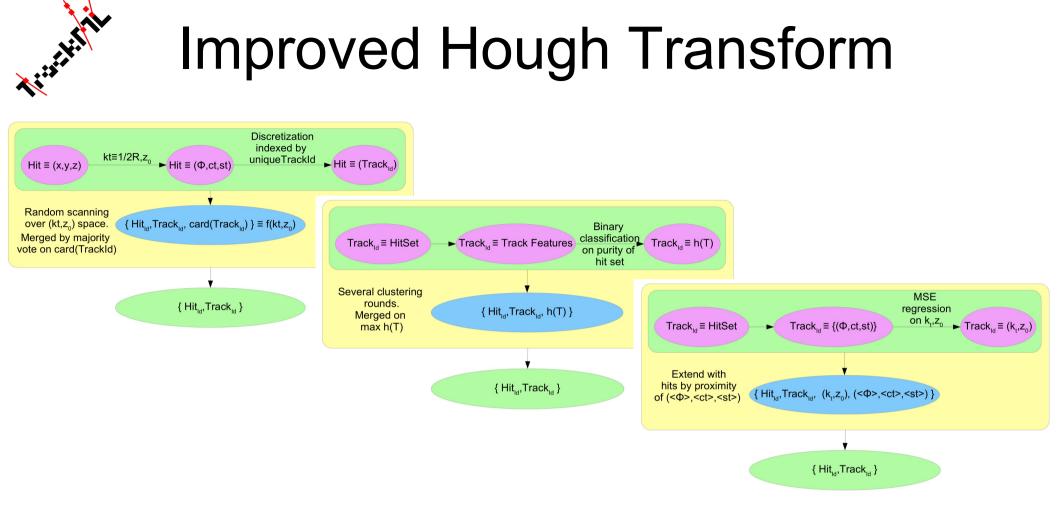


- Deep-learn the full NxN adjacency matrix
- Track following combinatorics

A statistics the

Impractical computation-wise



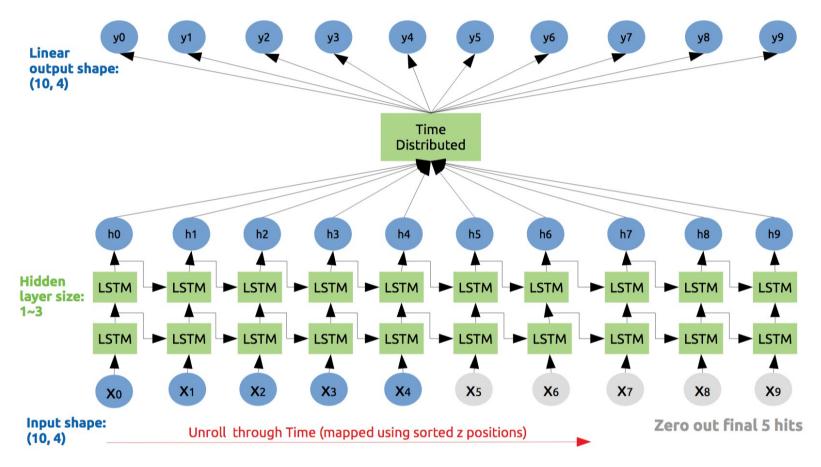


- 5D hough transform made computationally tractable by marginalizing p_{τ} and z_0
- Track extension in track feature's space

LSTM Track Following

Input/Output: Φ, r, z, z/r

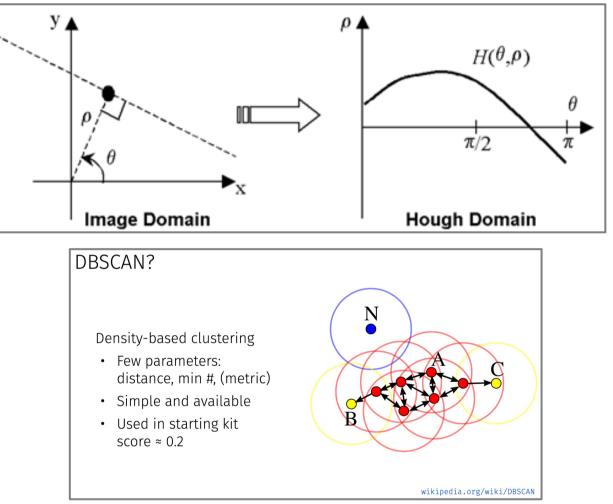
A issisting the



- Rely on existing seeding
- Follow tracklets with LSTM for predicting the hit positions

DBSCAN – Hough Transform

· instrikt

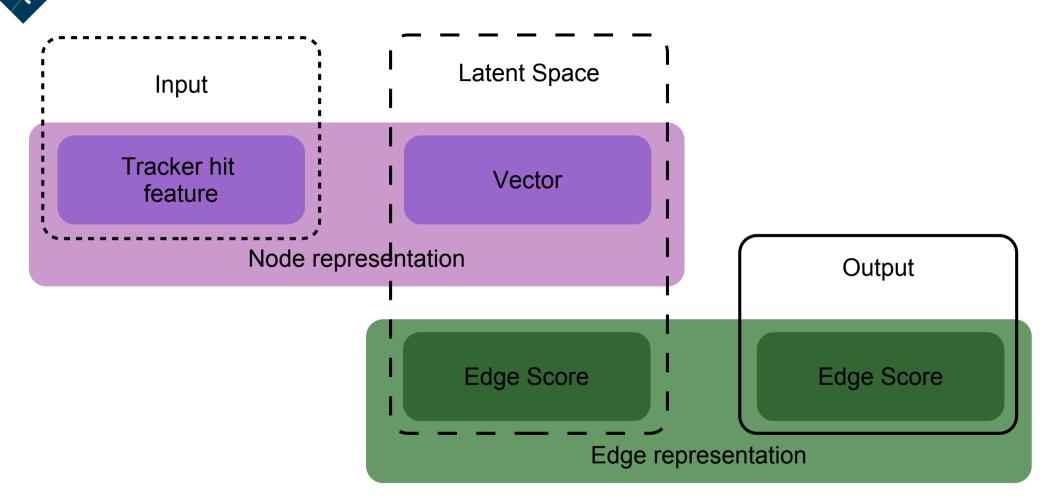


 Iterative hough transform using DBSCAN for unbinned clustering in track feature space

Edge Classification with Graph Neural Network https://heptrkx.github.io/ digression

Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

Node & Edge Representations



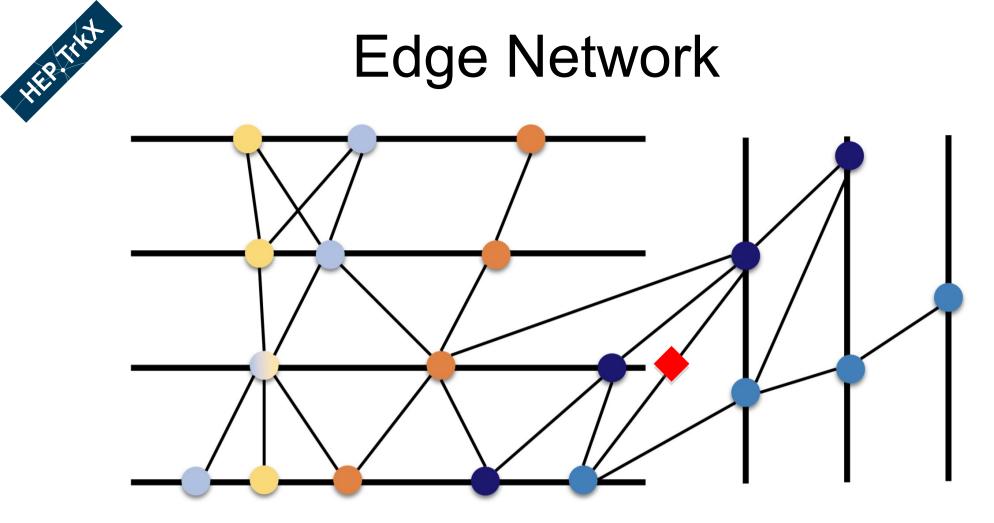
Latent edge representation taken to be the classification score instead of some latent vector representation

Neural Networks

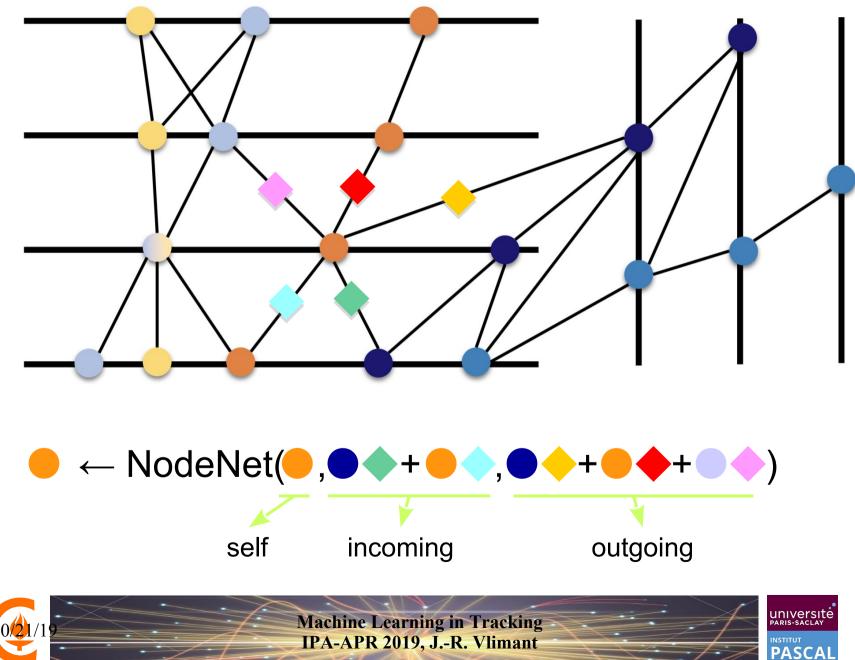
Input Network

- Transforms from hit features (r,φ, z) to the node latent representation (N for 8 to 128)
- Dense : $3 \rightarrow .. \rightarrow N$
- Edge Network
 - Predicts an edge weight from the node latent representation at both ends
 - Dense : $N+N \rightarrow \dots \rightarrow 1$
- Node Network
 - Predicts a node latent representation from the current node representation, weighted sum of node latent representation from incoming edge, and weighted sum
 - Dense : N+N+N \rightarrow ... \rightarrow N

Edge Network

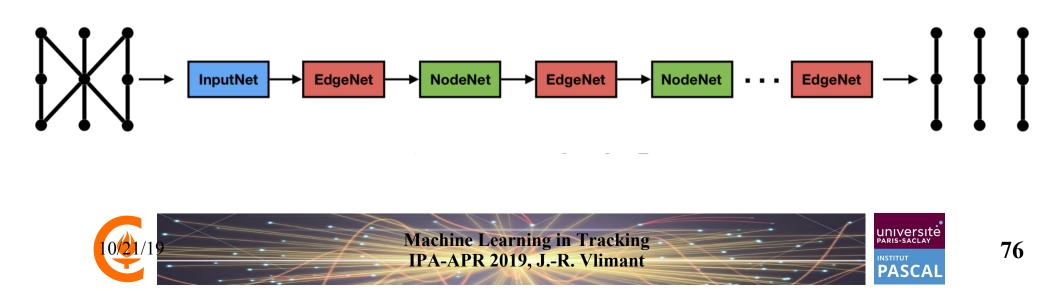


Node Network



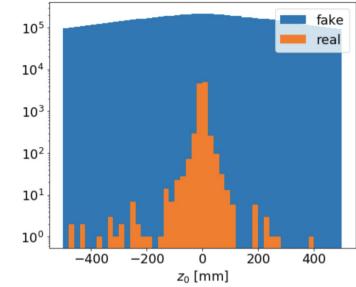
Information Flow

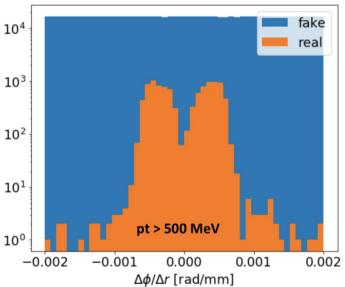
- Graph is sparsely connected from layer to layer
- InputNet + EdgeNet + NodeNet only correlates hits information on triplet of layers
 - * The information from the outer hits and inner hits are not combined
- Several possible ways to operate the connection
- Correlates hits information through multiple iterations of (EdgeNet+NodeNet)

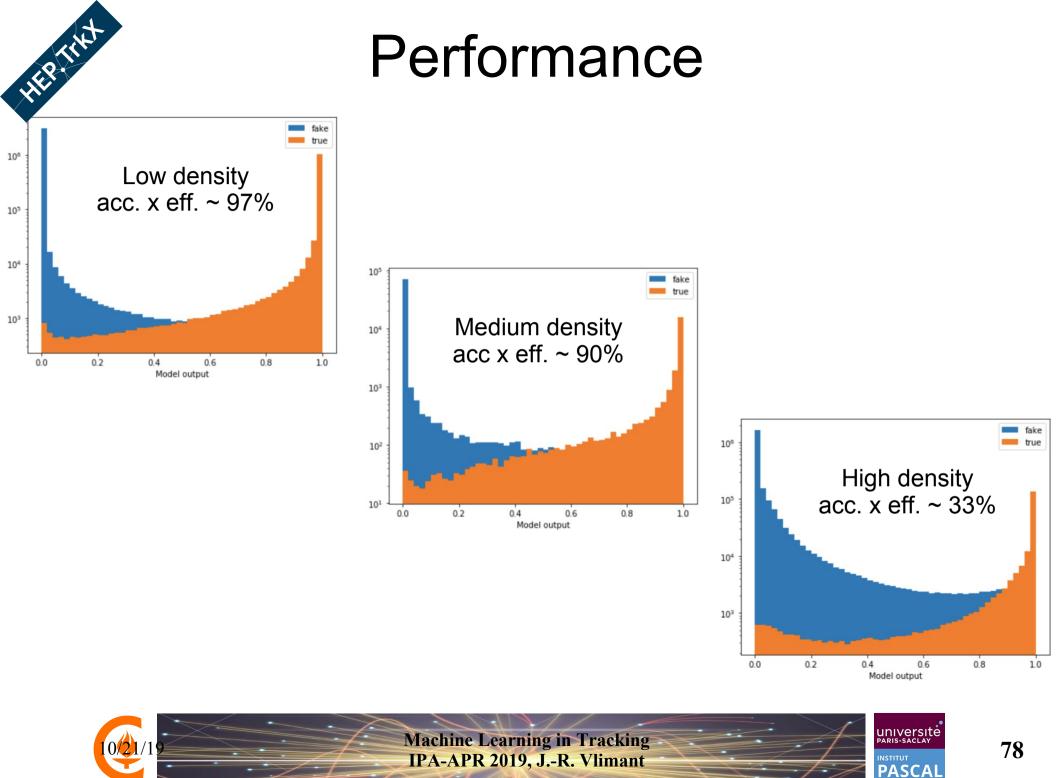


Downgraded Complexity

- TrackML dataset generated from ... with an average of 200 pileup events.
- Not computational possible at this time to embed the smallest relevant sector of full event on a graph
- Sub-dataset are constructed by
 - Low density
 - $p_{T} > 1 \text{ GeV}, \Delta \phi < 0.001, \Delta z_{0} < 200 \text{ mm}$
 - acceptance: 99%, purity: 33%
 - Medium density
 - $\sim p_T > 500 \text{ MeV}, \Delta \phi < 0.0006, \Delta z_0 < 150 \text{ mm}$
 - acceptance: 95%, purity: 25%
 - High density
 - p_{T} >100 MeV, $\Delta \phi$ < 0.0006, Δz_{0} < 100 mm $_{10^{\circ}}$
 - → acceptance: 43%, purity: 9%



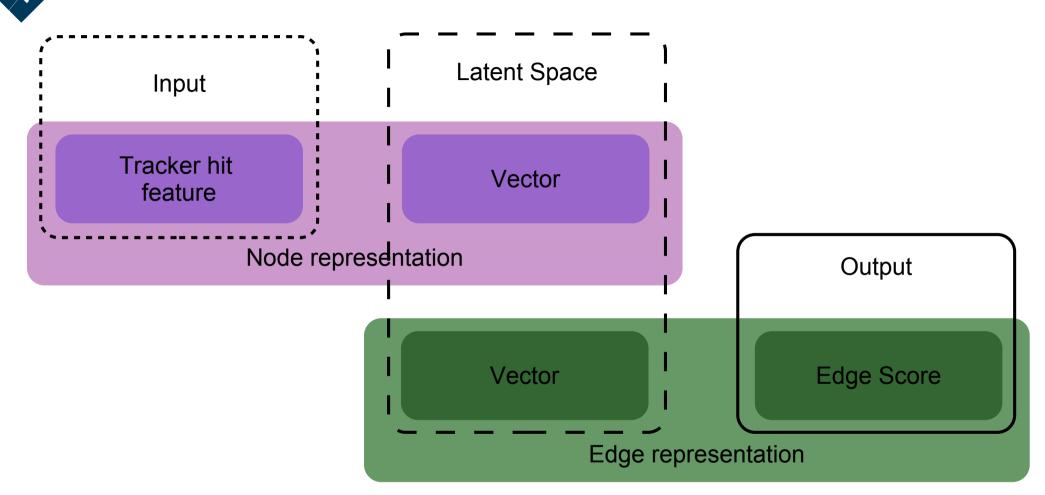




Dealing with Large Graphs

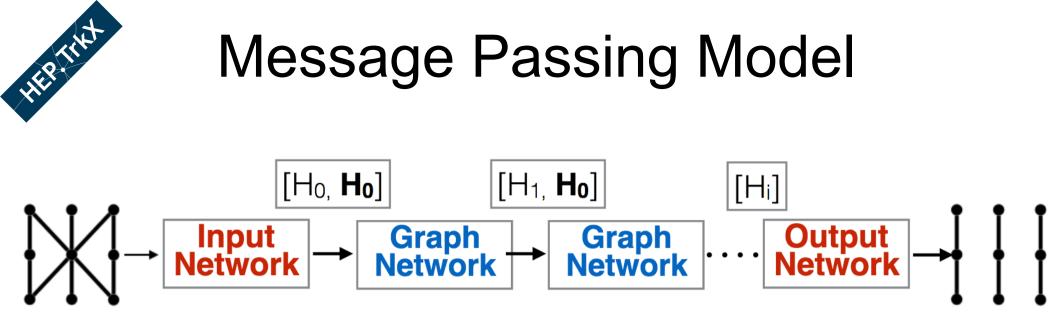
- Full event embedding
 - * A graph with ~120k nodes (14.4B edges) and ~1M potential edges is a big graph
- Split the problem
 - > currently using 16 sectors in ϕ
- Use sparse matrix implementation
 - https://github.com/deepmind/graph_nets for example
- Identify disjoint sub-graphs
 - > Geometrical cuts, segment pre-classifier, ...
- Implement distributed learning of large graphs
 - Scope of the Exa.TrkX Project

Node & Edge Representations



Edge representation is not the edge score.

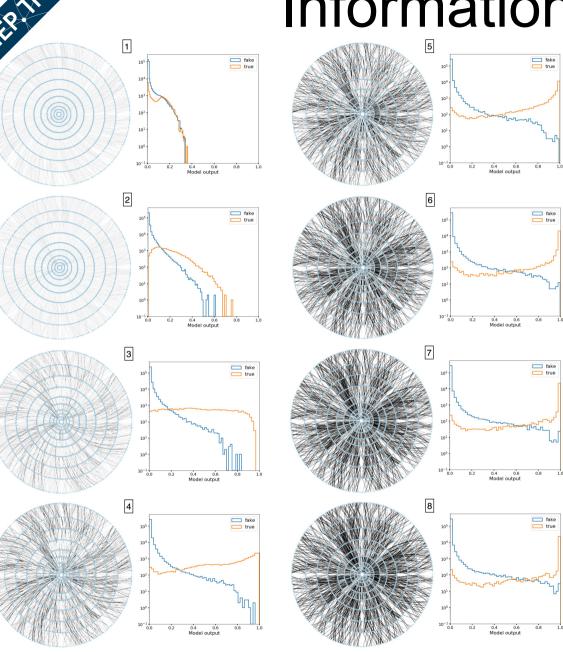
Final edge score extracted from the latent edge representation.



- Same graph connectivity
- No explicit attention mechanism
- Edge representation computed from end-nodes features
- Node representation computed from the sum over all connected edges
- Correlates hits information through multiple (8) iterations of (Graph Network)
- Uses https://github.com/deepmind/graph_nets TF library

PASCA

Information Flow



- Checking edge score after each step of graph network.
- Effective output of the model is in step 8.
- Full track hit assignment learned in last stages of the model.
- Tracklets learned in intermediate stages.

Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant PASCA

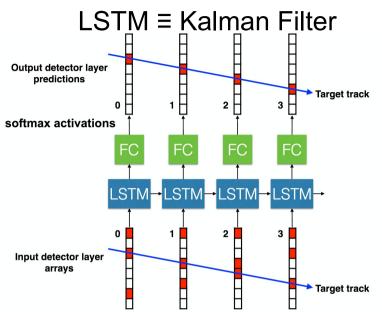
Algorithm Efficiency

one-event	N-particles	ratio w.r.t Total	ratio w.r.t Reconstructable	relative ratio
Total	11170	100%		100%
Reconstructable	9635	86%	100%	86%
Barrel	7492	67%	78%	78%
No-missing hits	6600	59%	69%	88%
Edge selection	3114	28%	32%	47%
Split graph	2668	24%	28%	86%
GNN	2590	23%	27%	97%

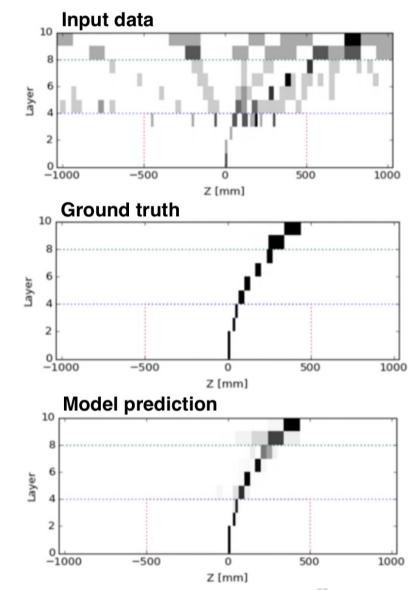
Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

Surrogate Kalman Filter Approaches https://heptrkx.github.io/ digression

Finding Tracks with LSTM



- Search seeded from a known tracklet
- > Hit location is discretized to fixed length
- Model predicts the binned position of the hit on the next layer

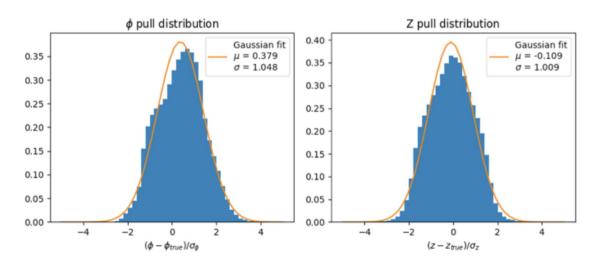


PASCA

Hit Following with Uncertainty

$$\begin{array}{l} \overrightarrow{r_{0},\vec{r_{1}},\ldots,\vec{r_{N-1}}} \rightarrow \texttt{LSTM} \rightarrow \texttt{FC} \rightarrow (\overrightarrow{r_{1}},\Sigma_{1}), (\overrightarrow{r_{2}},\Sigma_{2}),\ldots,(\overrightarrow{r_{N}},\Sigma_{N}), \\ \overrightarrow{r} = (r,\phi,z) & \widehat{\vec{r}} = (\widehat{\phi},\widehat{z}) \quad \Sigma = \begin{pmatrix} \sigma_{\phi}^{2} & \sigma_{\phi z}^{2} \\ \sigma_{\phi z}^{2} & \sigma_{z}^{2} \end{pmatrix} \\ \text{Loss function incorporates the position and} \\ \text{the predicted uncertainty} \\ L(x,y) = \log |\Sigma| + (y - f(x))^{\mathrm{T}} \Sigma^{-1} (y - f(x)) \end{array}$$

- Search seeded from a known tracklet
- Hit positions taken in sequential input
- Model predicts the position/error of the hit on the next layer



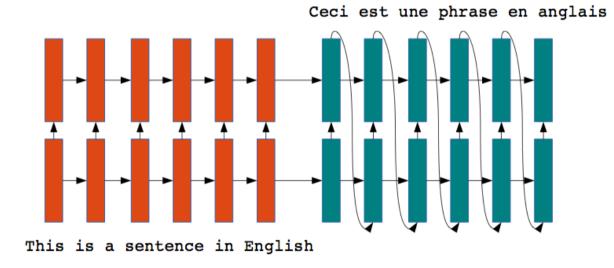
Pattern Recognition / Seeding https://heptrkx.github.io/ digression

87

Text Translation

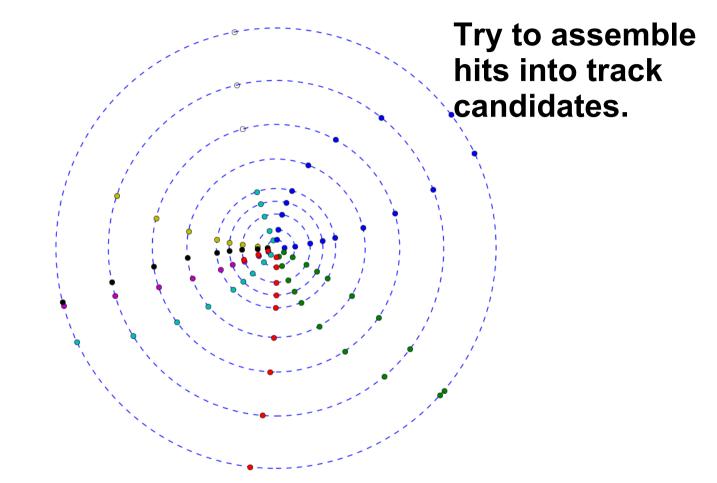
[Sutskever et al. NIPS 2014]

- Multiple layers of very large LSTM recurrent modules
- English sentence is read in and encoded
- French sentence is produced after the end of the English sentence
- Accuracy is very close to state of the art.



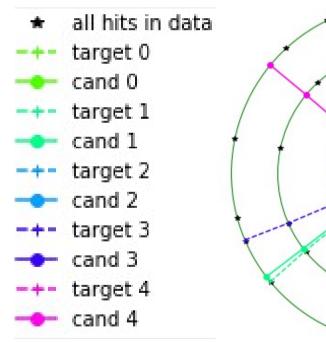
From sequence of hits on layer to sequence of hits on track

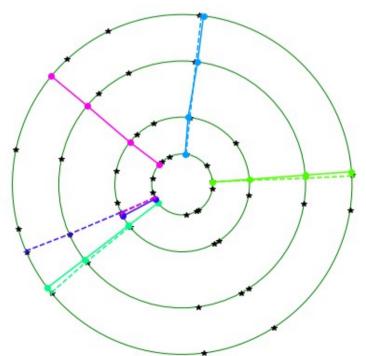
Pattern Recognition



Pattern Recognition with LSTM

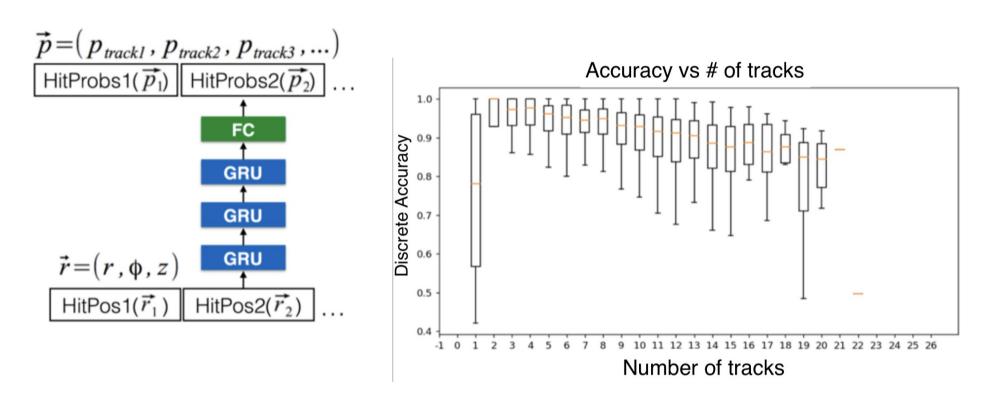
- Input sequence of hits per layers (one sequence per layer)
 - One LSTM cell per layer
- Output sequence of hits per candidates
 - Final LSTM runs for as many candidates the model can predict





- Still work in progress
- Restricted to 4 layers (with seeding in mind)
- Work to some extend

Hit/Track Assignment

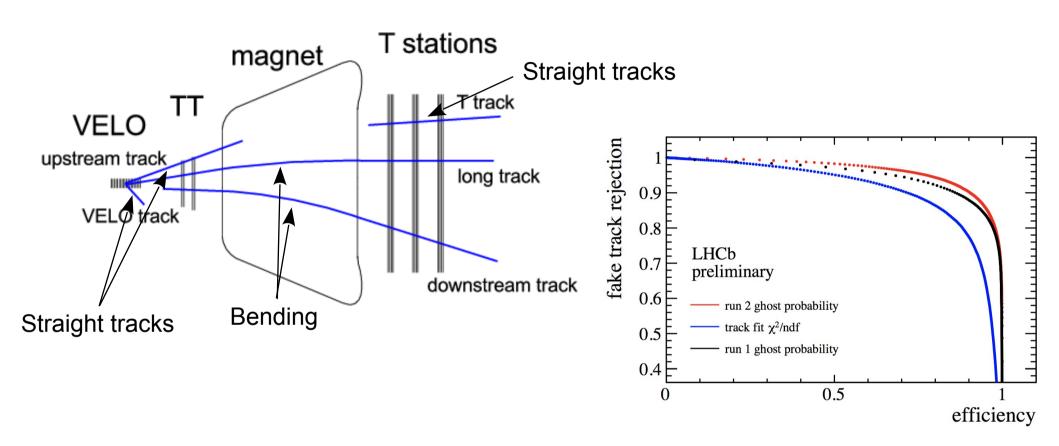


- > Unseeded hit-to-track assignment (clustering)
- > Hit positions taken in sequential input
- Model predicts the probability that a hit belongs to a track candidate

Track Selection

Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

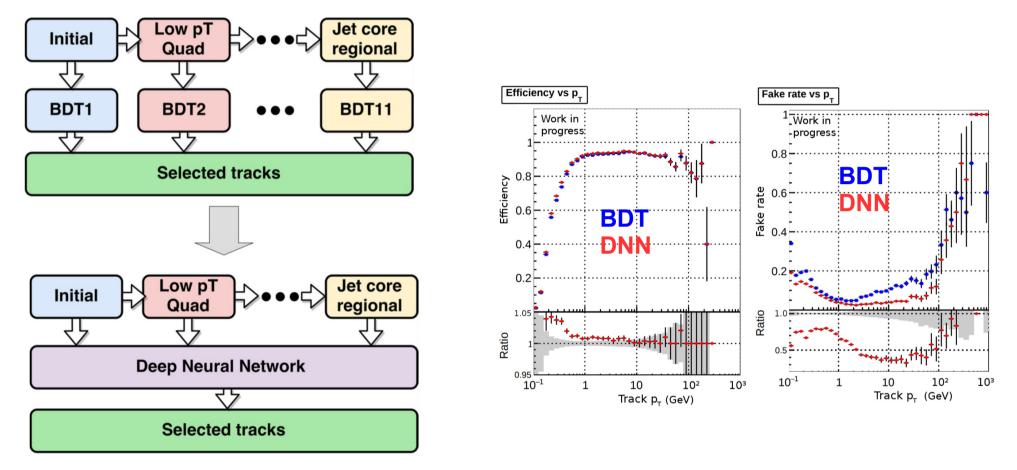
Track Selection



NN classifier implemented to select good from bad tracks in forward tracking and downstream tracking

http://cds.cern.ch/record/2255039

Track Quality with DNN



Simplifies and improves track selection within the scope of CMS iterative tracking

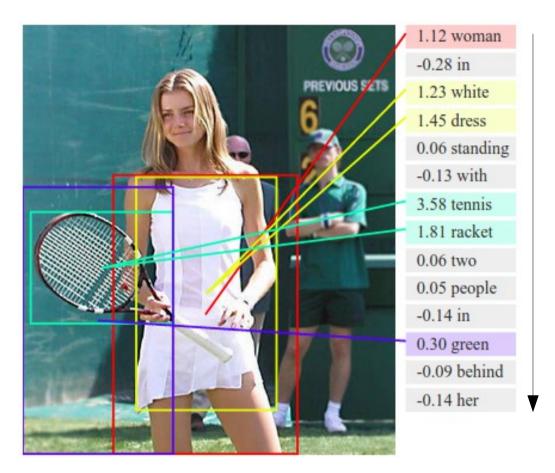
https://indico.cern.ch/event/658267/contributions/2813693/

Track Parameters

Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

Track Parameters Measurement https://heptrkx.github.io/ digression

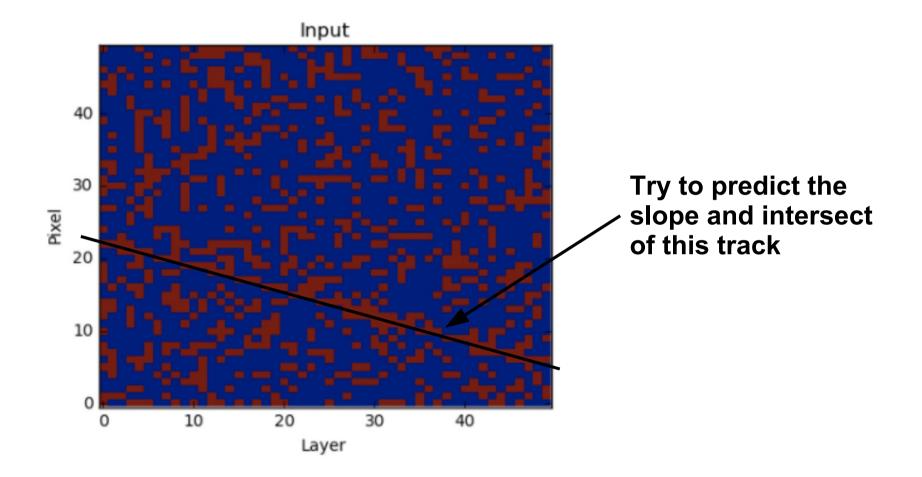
Scene Captioning



Karpathy, Fei-Fei, CVPR 2015

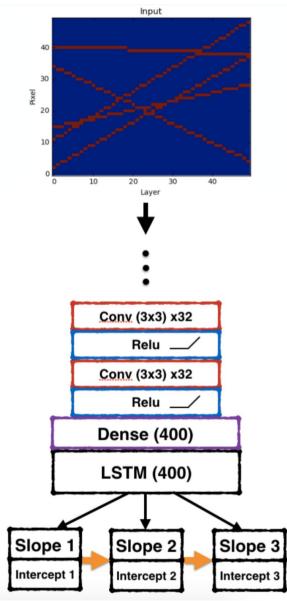
Compose tracks explanation from image

Track Parameter Estimation

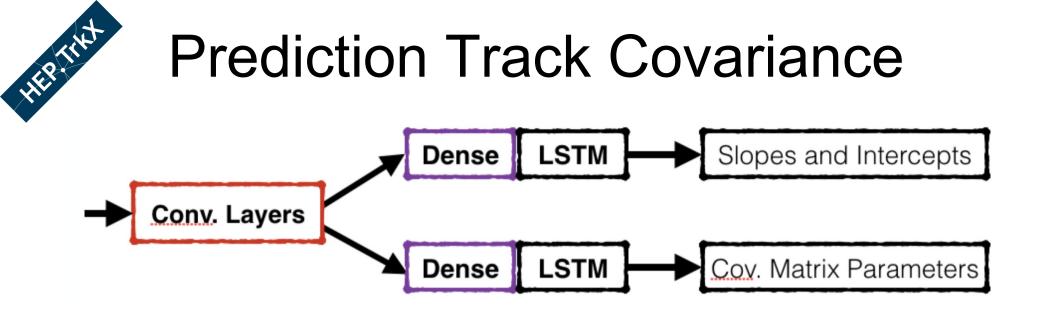


Multi-Track Prediction with LSTM

- Hit pattern from multiple track processed through convolutional layers
- LSTM Cell runs for as many tracks the model can predict.



Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant PASCA

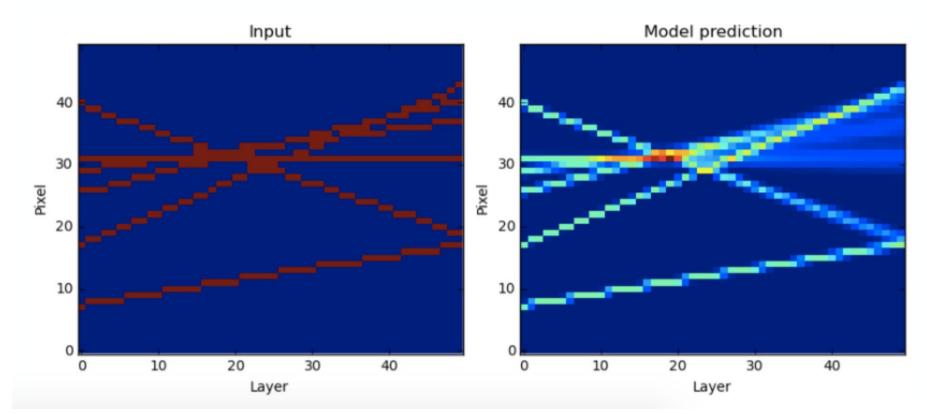


Model is modified to predict a covariance matrix for which there is no ground truth, but is used with the modified loss function

$$L(\boldsymbol{x}, \boldsymbol{y}) = \log |\boldsymbol{\Sigma}| + (\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x}))^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x}))$$

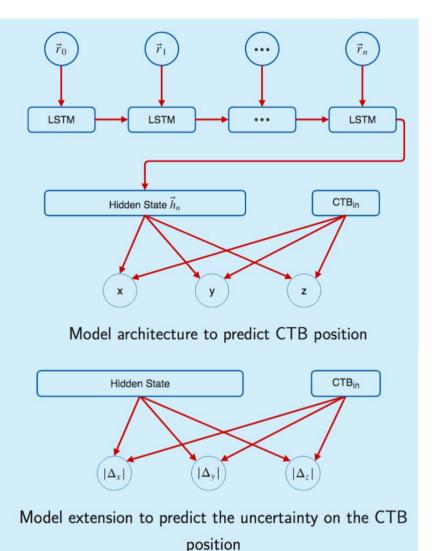
Track Parameters Uncertainty

HEPTINY



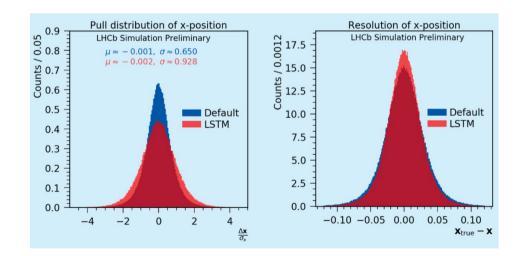
Representation of track slope, intersect and respective uncertainties

Impact Parameters



• LSTM model supplements a Kalman Filter approach

 Improve resolution and estimation of track impact parameters in LHCb

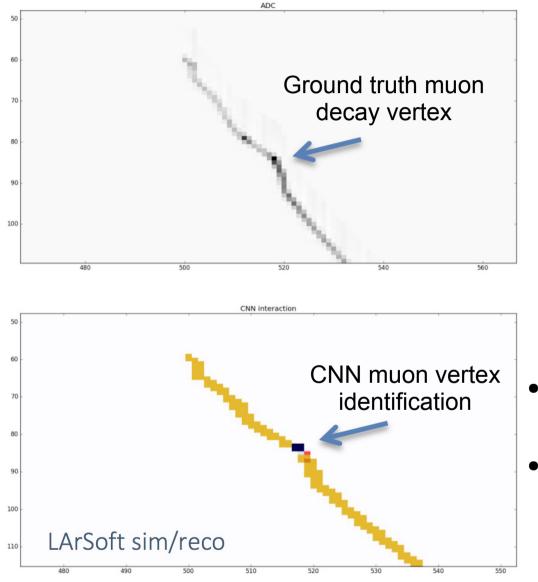


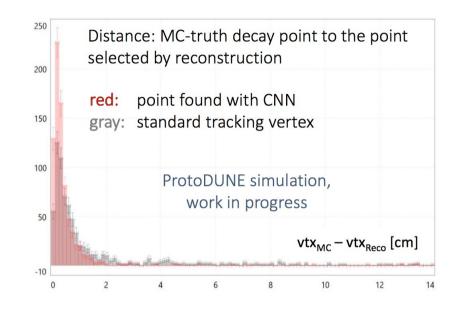
https://indico.cern.ch/event/587955/contributions/2935754/

Vertexing

Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

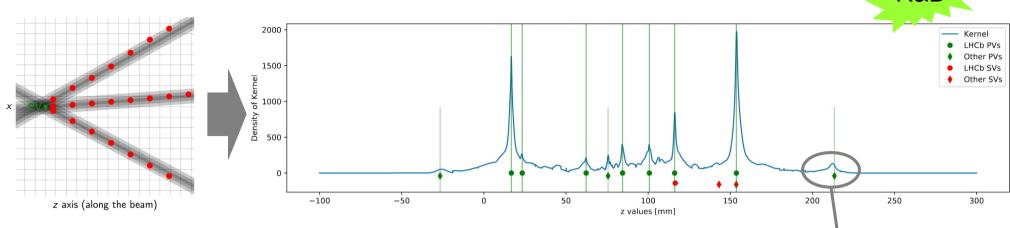
Decay Point Identifier





- CNN slightly outperform the classical approach
- Much less complication in programming the vertex finding

Hybrid Vertexing



- Form a track density over longitudinal axis using Gaussian kernels
- Learn vertex position from local longitudinal density
- Similar performance with traditional approach.

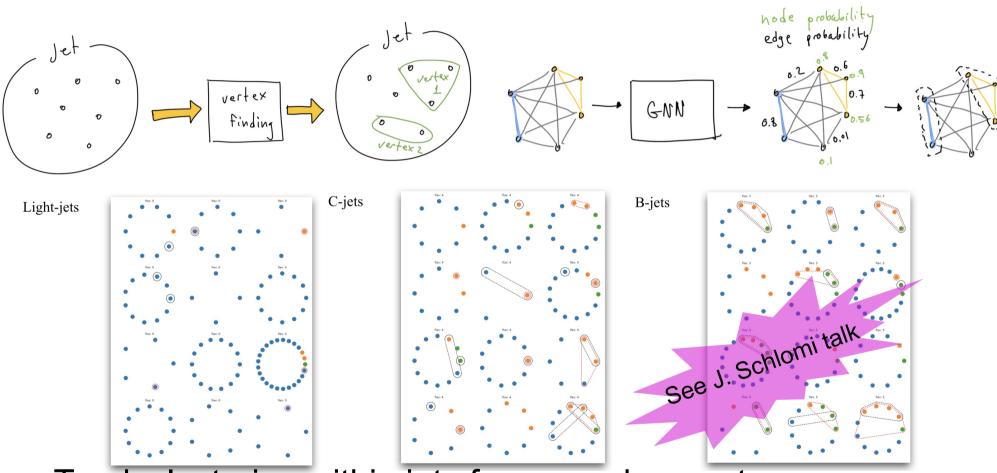
• Advantage of ML in deployment

https://indico.cern.ch/event/708041/contributions/3269692/

Graph Network Vertexing

In terms of an algorithms input/output:

How a GNN is used to assign nodes to vertices:



 Track clustering within jets for secondary vertex reconstruction and jet-tagging in-fine

Variety of application of machine learning for tracking-related tasks.

and beyond

Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

- > ML-4-Tracking already in production
- > End-to-end tracking with ML is unlikely
- Active field of R&D for novel methods
- Interesting directions for ML
 - Reducing the running complexity
 - Graph network approach
 - ML-guided combinatorial track finder
 - Incorporating domain knowledge

Thank you !

A A STANDARD AND AND A

Machine Learning in Tracking IPA-APR 2019, J.-R. Vlimant

