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@1ipmiin
High Dimensional classification

) e R?24 x {1,...,1000},i < 10— §(z)?

Estimation problem

Training set to

predict labels

*

"Rhinos"

Not a "rhino"



@ lipMLiA

Translation

-

X y |z —yll2 =2

@ Rotation @

v

Averaging is the key
_to get invariants

X Y
Averaging makes euclidean distance meaningful in high
dimension



Diipmiin Group action

e Consider a signal « and a g from a group G. We
typically consider action like:

Vu € R?, g.x(u) £ z(g” tu)

e Covariant representation:

®(g.2) = g.2(x)

e Invariant representation:

D(g.7) = D(x)

If covariance, invariance is simple to get: Z (ID(g,x) — Z g.q)(a’;)
gel gei



D1ipmiin
Symmetry group hypothesis

Ref.: Understanding deep
convolutional networks

e To each classification problem corresponds a’""
canonic and unique symmetry group G’

Ve, Vg € G, Px = Pg.x \

High dimensional

e We hypothesise there exists Lie groups, which could
be progressively linearized:

GoCcGiC...cGycaG

e Iixamples are given by the euclidean group:

G() — Rz,Gl = G() X SLQ(R)



@ 1lipMLiA
CNNs: state-of-the-art methods

Ref.: ImageNet Classification with Deep Convolutional Network, A Krizhevsky et al.
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@ilpMin  CNNs and generecity

e CNNs are a cascade of supervisedly optimized operators
from raw signals:

(Generic layers

Ref.: Visualizing and
understanding
Convolutional Networks
Zeiler, et al.

Specifity

e They necessarily learn physical law, that are generic and

relative to the nature of the signals
Do we need to learn those laws?

<—W6H StI’UCtU.I'ed ﬁltGI'S. « « Ref.: ImageNet Classification with

Deep Convolutional Network, A

Krizhevsky et al.



@1ipmiin
Fighting the curse of dimensionality

e Objective: building a representation &z of x such that a
simple (say euclidean) classifier ¥ can estimate the label

Y o o
’ ’ P . "
RD o ¢ D>>d o o Yo o

d
e Designing ®: must be regular with respect to ’E%e class:

|Ox — P2’ || < 1 = g(x) = g(2)
e Necessary dimensionality reduction and separation to

break the curse of dimensionality:




®I!m"'mHoW to tackle the curse ot

dimensionality”’
e Weak differentiability property:

OLx — P
sup | Lx d < o0 = 4 "weak” 0,P
r Lz —z = OLxr ~ Ox —|—|a;uq)L|‘|‘ o(|| L)

A linear operator

Displacement [,

e A linear projection (to kill L) build an invariant

b °
o ° > .
+ projection o




iDMI . 10
@ipmin Handcrafted features in
classification
e Until 2012, SIFT, HoG, LBPs... combined with an
(unsupervised) learning pipeline . Ref.: Improving the fisher kernel for large-scal

image classification, F Perronnin et al.

r ——SIFT|——|Fisher Vectors » LinearSVM

e They incorporate invariances w.r.t. to geometric
variabilities and discriminate them as well.

5, X -
(-

e Yet, CNNs removed them and obtain better

numerical results.
Why would we want to use them?



Dilpmun Feeding CNN with prior
representations: for what?

e Features that bring interpretation
e Speeding-up training time & computations
e Speeding-up inferences

e Reducing sample complexity (e.g., reducing
overfitting)

Tl
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@UpPMLA Tnvariances in vision tasks

Before feeding a classifier, removing unnecessary variabilities

1S necessary:
Geometric variability Class variability

Groups acting on images:

translation, rotation, scaling

Intraclass variability
\ Not informative

Extraclass variability

Other sources : luminosity, occlusion,

small deformations

L.x(u)=x(u—71(u)),€C™

T ]—7'»)




@ipMiiA Discrete image to continuous™

1m

e An image x corresponds to the discretisation of a age
physical anagogic signal (light!)

e An array of numbers:

e One can set 1 1

r(u) = Z z|n]on (u) /\ /\_5/\ /\_ /\
h nez? AURNE BNAURE
then, Fr(w) = Y afne” ™™, Fr € L2[0,1]

nez?
e Nyquiest-Shannon sampling property:

1 1
Iz € ]LQ(R)L support(Fz) C | . 2] Frj_1 1y =Fx

1
2N

N

' 4



@IUpPMLiA Reminder about Fourier

F : L*(R?) — L*(R%)

Fr(w) = Z(w) = [Rd e M (w) du
r*xy(u) = /]Rd x(u—t)y(t) de
[sometry: H]:$||2 ||37||2

T * y(u) Z(w)y(w)

2 (u) a » Z(w)

d F .

- (u) v twT(w)

zq(u) = z(u — a) a - 2T (w)

Let L : L. — L“continuous, if Lz, = (Lx)qfor any  then
dk, Lx = k*x

Easy to generalise on compact and commutative groups.

14



@1ipmiin
A motivating example

e Translation invariance? Why not: Deformations
Lyx(u) =x(u—71(u))

bz (w) = [Z(w)] CT)

then:
|Px, — Px|| ~ swy = ||VT||wo



@1ipMiin
Wavelets

e ¥ is a wavelet iff/w(U)du = 0 and /|¢|2(u)du < 00

e Typically localised in space and frequency.

Group action!

 Rotation, dilation of a wavelets: b W'
1 T (u)

e Design wavelets selective to rotation variabilities.

N | w | Non-Isotropic

‘ v v -

Isotropic



@ lipMLA

(for sake of simplicity, formula
are given in the isotropic case)

The Gabor wavelet

1T



@lipMmlin Invariances o

Deformatlons
L.x(u) =x(u— 7(u))

(1 J via wavelets

e Analytic wavelets permit to build stable invariants

Ref.: Group Invariant Scattering, Mallat S

to:
- small translations by a:

/\

Low #h(w) = € 93 (w)(w) 9 (w)y
= 3

T\ R
o 3 A i)
_ eiwgam(w)

The variability corresponds to a phase!
- small deformations:

|(Lrx) x 9 — Le(zx )| < CV||7][o




@ ipmiin

Wavelet Transtorm

o Wayvelet transform: Wax = {zx ¢, 9, xx d5}o i<
NS

o Isometric and linear operator of L?with ‘ '

I
Wal? = 35 [loxvial+ [oro; _Watle g
HZ J : - W1
e Covariant with translation Lg: ‘ e ‘
WL, =L,W »

e Nearly commutes with diffeomorphisms

‘ ‘ [ ) LT] | | _— C ‘ ‘ 7- | | Ref.: Group Invariant Scattering, Mallat S

e A good baseline to describe an image!




@ lipMLiA

Scattering Transform

e Scattering transform at scale J is the cascading of

complex WT with modulus non-linearity, followed

by a low pass-filtering:

Ref.: Group Invariant Scattering, Mallat S

SJZE:{ZU*¢J,

Depth

\4

TP 0, %O,

T x Vi, 00| % Vjy.0,] x P}
h

Wj 0 order 0

WQ order 1
ib/ | order 2

e Mathematically well defined for a large class of

wavelets.

.20



@ipMin Feature map

e Several featur

1st order
coefficients

Example of Scattrin coefficients

21



@1ipmiia
On SIFT descriptors. ..

SIFT performs a histogram of gradient

(Gradient
noy= > gt

Zg€(0,0+n]

= Z 11 ge10,64m9|

4/

Quantification. . . g‘x * Qpe ‘ * ¢

The averaging leads to a loss of information. . .

SIF'T is very similar to an order 1 scattering!

.22



@pMiA | |
Filter bank implementation of a

I l\ t ‘ N ; | I \ Ref.: Fast WT, Mallat S, 89

o Assume 1}: is possible to find 7 and 9  such that
w w A w

o (w) = ﬁge(zw(g) and ¢(W)=7h(2)¢(2)
e Set:

zj(u,0) =z x¢j(u) = h*(z+d;-1)(2u) and
xj(u,0) =z xj0(u) = go* (z*¢;-1)(2u)

e The WT is then given byyj . — {;(.,0),25(.,0)}<s0
e A WT can be interpreted as a deep cascade of
linear operator, which is approximatively verified

for the Gabor Wavelets.



@iipmiin
Scattering as a CNN

™ T 37

. Order 2
J:3,96{0,4,2, 4} \/y Order 1

O Modulus h >0 Scattering coefficients
are only at the outpu
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Silpmun Properties of a Scattering
Transform

Deformations
e Scattering is stable: Lyx(u) =x(u—7(u))

|Syz— Syl < ||z -yl (1)

e Linearize small deformations:
|SsLrx — Syz| < C||\VTl||z]]
e Invariant to local translation:
|CL‘ << 2J :> S J Laib ~ S J Ref.: Group Invariant Scattering, Mallat S

o Forh,u,Syx(u,\) is covariant with SO, (R):

if Vuvg € SO5(R), g.(u) = x(g™"u) then,
S;(g.x)(u,\) = Syz(g  u, g N = .5 z(u, \)



i i : . 26
®meﬁ successful representation in
~vIslon
e Successfully used in several applications: All variabilities
N KUY 4 ahy ggy  ackom
. Dlglts S 5-’ S 5 S 5 5 S’. g C meformations
7 7 7 7 7 ', ¥ a 7 7 7 +Translation
I E5E5% 7 BEE S
e Textures tion-+Scale

Ref.: Rotation, Scaling and Deformation Invariant Scattering
for texture discrimination, Sifre L and Mallat S.

e The design of the scattering transform is guided by the euclidean
group

e To which extent can we compete with other architectures on more
complex problems (e.g. variabilities are more complex)?



@ lipMLA

LLoss of information?

Ref.: Bruna and Mallat

arg inf ||Sg£1§‘ — Sng
Y

>

invariance up to
2° pixels

.27



@ipmia Separable Roto-translation ™*
Scattering

W, spatial, angular wavelets o *x 7 » S

Scattering

®(u, )(¢® )*¢J

Roto-Translation

Scattering

u *Q
* w » Separable Roto-Translation
Scattering

e Simplification of the Roto-translation scattering

e Discriminates angular variabilities thanks to a
wavelet transform along 01 (no averaging!)

e We combine it with Gaussians SVM

Ref.: Deep Roto-Translation Scattering
for Object Classification. EO and S Mallat
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®EPM@Cattering on Complex Image

(lassification
Dataset Type Accuracy No learning
________________________ Caltechl0l . Scattering . 80
: Supervised 98
________________________ CIFAR100 . Seattering 57
Supervised 82
CALTECH
. Can we fill the gap by CIFAR
10* 1mages

incorporating supervision?’

101 classes

51'(1)84 images
classes
32 x 32 color 1mages

oy TERN i o | |
e d Do we want to learn CESCEs«RSS

) FECENEE g R

5 S &
the filters" S iy v R
s I o [V
= R [
EEELONEREE
S el
dELREE ST




@ipMin
Scaling scattering on GPUs

Ref.: Thesis, EO

Y

EEssEEEEEgEEEEnnn

-

Lowpass
— 1st wavelet

—  2nd wavelet

® Modulus

ScatNet algorithm

Save a lot of memory!
100 speed-up on GPU

ALY A

g

Proposed algorithm



@ lipMLA

T C RstQ

\

Sjm

/

Invariancejup
to 2

32

32

128
128
206

Computation time

J

N B~ DN

Save a lot of memory too

ScatNetLight
MATLAB (CPU)

19

101

125
406
1250

.31

Ref.: Scaling the Scattering Transform:

N

PyScatWave
PyTorch (CUDA)

0.2

1.5

2.0
4.2
5.0

Deep Hybrid Networks

EO, E Belilovsky, S Zagoruyko

GPU: GTX 1080
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Srlpma Scattering meets Neural
Networks

Ref.: Scaling the Scattering Transform:
r— S;— — -
J Deep Hybrid Networks

EO, E Belilovsky, S Zagoruyko

e We input raw Scattering coeflicients in CNNs.

e All engineering tricks are kept identical: randém
data augmentation, learning rate schedule,
regularization. . .

e Scattering transform is covariant with the natural
symmetries group: structuring R? by incorporating
R2 X SLQ -



Dilpmun ImageNet benchmarking

L —

e State-of-the-art result on Imagenet2012:

Scat+Resnet-10
VGG-16
ResNet-18
ResNet-200

S;——ResN ef—
Top 1 Top 5
69 90
69 90
69 89
79 95

.33

Ref.: Scaling the Scattering Transform:
Deep Hybrid Networks
EO, E Belilovsky, S Zagoruyko

Hparams
12.8M
138M
11.7M
64.7TM

e Demonstrates no loss of information -+ less layers

(10 vs 18)

o Scattering + 5-layers perceptron on CIFAR: 85%

acCC. (SOTA w.r.t. non-convolutional learned representation)



@ lipMLA

losfrme | -

Scat+SLE
FV+FCs
FV-+SVM
AlexNet

.34

Shared Local Encoder

Ref.: Scaling the Scattering Transform:
Deep Hybrid Networks

EO, E Belilovsky, S Zagoruyko

S4 BN B V7 Wy — W \
S4—>W1 > Wo » 13 >W4—>W5_’W6
S4 —> W1 > WQ —> W3 /

< > < >

1 X 1 convolution Fully Connected Layers

(encoder) (classifier)
Is it really a classifier?
Top 1 Top 5

57 30 e AlexNet performances with 1x1 conv
50 79
54 75 |
56 81 e QOutperform unsupervised encoders based

on SIFT + Fisher Vectors(FV)



@ ilpmiin A local descriptor for

classification

e We analyse the scattering’s encoder, which is a descriptor on
neighbourhood of size 2* x 2* pixels:

241 S4 — W _’WQ —> W3 >

e Good transfer learning performance on Caltech101(83%)!
Analog to previous reported performance.

Open question: Could this representation generalise to other
vision tasks? (e.g. scene matching)

.35



@ lipmiin
Understanding SLE

e The rotation group SO, acts of 6 on the scattering coefficient via a
translation Lg, it thus acts on the first layer W;:

Sr_gxr = LgSx = W1Sr_gx = W1LgSx
e Atoms’ index of W, are structured by the order 0, 1, = of S;:

(W1S4)k = wo k(T * ¢5)

57 wi o w (T %50 0] 6) What> is the .natlolre of the
j1,61 recombination?

+ Z w(jl,j2,91,92),k(”x*¢j2,92| *%‘1,01‘ *¢j)
J2,31,01,02

Fourier along 61: W, we, )k = FOr(wii,.yn) (wey)

Fourier along (61, 62): w(jl,j%wel,u%),k = F(el’QQ)(w(jl,jg,.,.),k)(w917w@g)
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@1ipmiin
Explicit invariance to rotation

1.0
3
0.8} CUgl E : ‘w(Jl,wel
_ 1071 7.71
%; 0.6} N
E > 0 B R 2
§ 0.4} 3 Qz(wel,weg) — Z ’w(j17j2,w91,w6)2),k“
k7j17j2
0.2
-3
0.0 )
-3 0 3
CUgl
Ql Q 5 method: similar to AlexNet
first layer analysis

e Invariance to rotation is explicitly learned.

0.35 ! ———T——

Distribution
Distribution

Fourier basis
sparsifies the operator!

0.00 ' ' ' ‘ ‘ ' '
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Amplitude Amplitude

e Thresholding 80% of the coefficients in Fourier: 2% acc. loss
Open question: Can we find more complex invariance than rotation?



@1ipmiin
Learning with few samples

Ref.: Scaling the Scattering Transform:

T —— S J > R € SNe% ) Deep Hybrid Networks

EO, E Belilovsky, S Zagoruyko

e We show incorporating geometrical invariants
help learning.(with limited adaptation)

e State-of-the-art results on STL10 and CIFAR10:

Cifar10, 10 classes
keeping 100, 500 and 1000 samples
and testing on 10k

STL10: 5k training, 8k testing, 10 classes
+100k unlabeled(not used!!)

Acc.
+#train 100 500 1000 Full

Scat+ResNet 76
WRN 16-8 35 47 60 96
Supervised 70 VGG 16 2% 47 56 93

Unsupervised 76 Scat+ResNet 38 55 62 93
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@1ipmia Compressing the input for CNNs+

dim a’/‘ o 22 J Ref.: Compressing the input for CNNs with

the first-order Scattering Transform
EO, E Belilovsky, S Zagoruyko, M Valko

e For J > 3, one has a compression.

e We noticed that this value was the most etficient for
reconstructing natural images.

e Simple model to understand why:

Ty (u) X e_“TE“ then for ¥’ Gabor:

s % Y| (u) oc s * ih](u)

R /

smooth

T J=3 J=4



@iipMia Advantage of "compression'

Works for detection + allows to process more images:

Classification Models Detection Models

' -

Speed Max im. Speed Max im.
Architecture (64 images) ImageNet | (4 images) Coco
Order 1 + ScatResNet-50 0.072 175 0.073 9
ResNet-50 0.095 120 0.104 7
ResNet-101 0.158 70 0.182 2
Coco Pascal VOC7
Architecture mAP Architecture mMAP

Faster-RCNN Order 1 + ScatResNet-50 32.2

Faster-RONN ResNet-50 (ours) 310 Faster-RCNN Order 1 + ScatResNet-50 (ours) 73.3

Faster-RCNN ResNet-101 (ours) 34.5 Faster-RCNN ResNet-50 (ours) 70.5

— — Faster-RCNN ResNet-101 (owrs)  72.5
Faster-RCNN VGG-16 [31]  29.2
Detectron [40] 41.8 Faster-RCNN VGG-16 [34] 70.2

.40



@ipMiA  Scattering with phase A

Phase Harmonic Correlations an d
Convolutional Neural Networks,
Mallat, Zhang and Rochette

Let p(u) = max(u,0) and ;9.0 = Real(e_mwjyg(u))

e Adding redundant representation which captures
interactions between different scales.

e Better reconstruction properties/slight classification
improvement: but much bigger representation.

If (4,0) # (5',0")then:

[ plarxi0)p(a s vy o) du 0
[ o dialle oy du 0



@ipMmia  Scattering on Graph

» Similar ideas hold for graphs (E. G).

e« Wavelets use require a good notion of duality, which

.42

Ref.: Wavelet Scattering on Graphs,

is given by the graph Laplacian. F G, Bruna

e Laplacian in the Fuclidean case:

A | Az(w) = —|lw|*2(w)

103
3 4
e 2
1 $
3
v D ~ 0
-1 "
-2
-3 4

We lose the angle’. .

107
Wavelet 3 N Wavelet 4
D

c : ﬁ»
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@iipMia Can we introduce more
structures”’

Convolutions along the spatial angles permit to build more

robust invariants along g0, :

Ref.: Deep Roto-Translation Scattering

zx by, | @D (1, 0, @ k) (u, 07)
for Object Classification. EO and S Mallat

Rotation, scaling and deformation invariant scattering
for texture discrimination, L Sifre and S Mallat

e Extension: Hierarchical CNN that is convolutional along axis
channel, recursively defined via: 4

£Uj+1(2}1, oy Vg ’Uj_|_1) = pPj (.Cl?j K sl wvj+1)(1}1, cees Uj)
Ref.: Hierarchical Attribute CNNs, Jacobsen et al. ‘%
-~




@UPMiAHiearchical CNN: numerical
results, o

We demonstrate 12
a reduction in #param 6

while 91% on CIFAR10 0

+#M params

Translations are present in the last layer j(vs—1,v7)
Bird |

e L
vJ-1 ..----. But not in the previous layers

Bird 2 Incorporating more structures?

o .
" gl
- "
- -
i -
- - -

Modelization issue?

Ref.: Multiscale Hierarchical Convolutional Networks
J Jacobsen, EO, S Mallat, AWM Smeulders



@UPMiA v mat.io

A fast software for TensorFlow, PyTorch and
NumPy.

Lot of examples, work out of the box.

Differentiable Scattering, multi-GPU. ..

A significant team of developer is involved!

.45


http://kymat.io

@lipMLA
Conclusion

e Scattering Transform is a strong baseline based
purely on geometric priors.

e We propose competitive models, software. . .

More about my research: https://edouardovallon.github.io/

Thank you!

.46


https://edouardoyallon.github.io/

