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The	High	Luminosity	LHC	
•  End	of	Run	3	(2023)	:	300	Gb-1	

•  With	current	luminosity,	10	extra	
year	need	to	halve	statistical	
errors	

•  Plan	to	increase	the	instantaneous	
luminosity	from	(1-2)×1034cm-2s-1	
to	7.5×1034cm-2s-1	

•  A	total	integrated	luminosity	of							
4000	Gb-1	at	the	end	of	the	LHC				
in	2037	
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LHC	Upgrades	:	
•  Smaller	bunches	with	more	protons	->	larger	

density	of	proton	->	larger	luminosity	
•  Improved	insertion	magnet	(squeeze	the	

bunches	pre-collision)	
•  Crab	cavities	to	improve	geometrical	factor	of	

the	collision	
•  Luminosity	levelling	



Pile-up	at	the	HL-LHC	
•  Pile-up	increase	with	the	luminosity	:	

•  Large	PU	increase	at	the	HL-LHC	:	
•  Harder	object	reconstruction	
•  Large	radiation	dose	deposited	in	the	detector		

•  From	<μ>=25	to	<μ>=200,	larger	PU	density	
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H->eeμμ,	<μ>=25		 Simulation				,	<μ>=200		tt



Pile-up	at	the	HL-LHC	
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•  The	pile-up	(PU)	increase	with	luminosity	

•  Same	size	beamspot	->	larger	PU	density	

•  Close	by	vertices	might	not	be	differentiated	
by	the	tracker	->	merged	vertices	

•  Result	in	additional	PU	jets	and	contamination	
of	hard	scatter	(HS)	objects	

	

Example	with	jets:	
•  Pile-up	can	contaminate	HS	jets	

•  Pile-up	jet	can	appear	to	come	from																									
the	HS	vertex	

•  Pile-up	particle	can	be	combine																				to	
and	create	jets	

Jet from 
pileup

Hard-scatter jet

Hard scatterPileup

Spurious
pileup jet



ATLAS	Beamspot	
•  Proton	bunches	->	gaussian	density		

•  Crab	cavities	maximize	the	overlap	of	the	
bunch	

•  Bunch	length	of	90	mm	

•  Crossing	non-instantaneous	:	interaction	
spread	in	time	
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Removing	Pile-up	verCces	
•  Vertices	are	spread	in	position	and	time	:	

•  σz	=	45	mm	(≈	150	ps)	
•  σt	=		175	ps	

•  Some	pile-up	interaction	are	merged	
with	the	hard	scatter	one	by	the	tracker	
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•  The	use	of	timing	information	can	be	
used	to	separate	pile-up	and	hard	scatter	

•  Limited	by	the	timing	resolution	and	the	
timing	association	capability	



The	High	Granularity	Timing	Detector	
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Principle	:	
•  Tracks	extended	to	the	HGTD	
•  Associated	with	Hits	(time)	
•  The	more	hits	the	better	the	
resolution	:	

•  30	ps	resolution	per	track	
before	irradiation																				
50	ps	at	the	end	of	life	

Trackres =
Hitres
N

HGTD	:	
•  In	both	endcap	of	ATLAS	(z=	±3.5	m)	
•  Cover	:	120	<	r	<	640	mm	(2.4	<	|η|	<	4)	
•  2	double	sided-layer	per	endcap		
•  1.3×1.3	mm2	LGAD	sensor	



HGTD	moCvaCon	
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•  Resolution	of	the	tracker	worst	in	the	
forward	region	(order	of	the	mm)	

•  High	PU	density	(1.4	vertices/mm)		

•  High	likelihood	of	having	a	PU	vertices	
merged	with	the	signal	vertex	

•  Could	be	complemented	by	time	
information	to	separate	PU	track	from	
signal	one	

•  Negligible	impact	in	the	forward	region	η
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HGTD	layout	
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•  To	maximise	the	resolution	of	the	HGTD	the	number	of	
hit	associated	to	each	track	need	to	be	maximize	

•  2	double	sided-layer	per	endcap	:	from	0	to	4	hit	per	
track	

•  More	module	in	the																																																														
inner	region	to	compensate																																																							
the	larger	radiation	

•  Layout	optimised	to																																																						
maximise	the	efGiciency	
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MIP	Timing	Detector	
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MIP	Timing	Detector	
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Barrel	:		
•  LYSO	crystal	+	SIPM																								
(similar	to	calorimeter)	

•  Layer	built	at	the	end	of	the	tracker	

•  Less	radiation	than	the	forward	
region	

Endcap	:		
•  LGAD	(similar	to	ATLAS	HGTD)	

•  Single	layer	between	the	tracker	and	
calorimeter	

•  High	radiation	dose	

•  Fewer	layers	:	worst	timing	resolution	and	efGiciency	

•  Full	timing	coverage	:	Easier	to	reconstruct	vertices	times	



MTD	moCvaCon	
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•  CMS	rely	on	a	Particle	Glow	algorithm	:	
information	from	the	different	
subdetector	are	combined		to	fully	
reconstruct	the	events	

•  Time	information	signiGicantly	improve	
such	algorithm	by	providing	a	way	to	
determine	if	track	are	from	PU	or	HS	

•  CMS	calorimeter	is	also	capable	of	
achieving	a	time	resolution	of	the	order	of	
100-150	ps,	the	timing	can	thus	help	
associate	tracks	to	calorimeter	cluster	



Time	resoluCon	
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•  Energy	deposit	in	the	
sensor	change	the	
pulse	shape		

•  Uncertainty	on	the	
reconstructed	time	 Noise	affect	the	

reconstructed	time	

Reconstructed	time	change	
with	the	amplitude	of	the	
pulses	
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Technology	to	measure	Cme		
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Gain	->	Good	timing	resolution	

LGADs	:	ATLAS	and	CMS	
forward	timing		

•  Relatively	new	technology	

•  Lots	of	R&D	still	on	going	

•  Si	sensors	:	particle	create	e-	/	hole	pairs,	
they	drift	through	the	sensor																														
->	signal	

•  LGAD	sensors	:	Same	but	the	e-	go	through	a	
high	E	Gield	->	showering	->	gain	

•  Gain	of	the	order	of	10-15	->	time	
resolution	of	~30	ps	

•  Good	radiation	resistance,	loss	of	
resolution	with	the	dose	received	



Technology	to	measure	Cme		
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Gain	->	Good	timing	resolution	

LYSO	crystal	+	SIPM	

•  Crystal	:	produce	photons	when	particles	go	
through	them		

•  SIPM	:	Multiply	the	number	of	photon	(gain)	
and	collect	them	to	create	a	signal	

•  Already	used	in	CMS	calorimeters	

•  Can	provide	a	resolution	of	~40	ps		

•  Less	radiation	resistant		



ResoluCon	
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•  ATLAS	and	CMS	have	study	extensively	the	resolution	of	their	sensor	in	
different	test	beam	campaign	

•  Good	resolution	of	30	ps	have	been	shown	to	be	achievable	pre-
irradiation	

•  After	irradiation	the	resolution	worsen	up	to	50-60	ps	
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ResoluCon	in	the	detector	
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•  The	more	hits	from	the	timing	detector	associated	with	the	track	the	better	the	
resolution	of	the	tracks	

•  The	reconstruction	algorithm	used	to	associate	the	hits	to	the	tracks	thus	has	a	
major	impact	on	the	performances	
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Two	approaches	:	
	
•  The	times	of	the	tracks	can	be	
compared	with	each	other										
(track	to	track)		

•  Tracks	can	be	used	to	reconstruct	
global	t0	time																																											
(vertex	to	track)	

		



Impact	of	the	Cming	detector	
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•  Both	ATLAS	and	CMS	studied	the	impact	on	such	detector	on	the	
performances	using	simulation	

•  Most	reconstruction	algorithms	were	not	reoptimized	for	those	studies	
better	improvement	could	be	expected	with	smarter	algorithm	



Pile-up	jet	rejecCon	
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•  Improved	by	the	time	information	

•  ATLAS	:	Rejection	of	PU	jets	based	on	
ratio	of	pT	(tracks)	and	pT	(jet)		

•  Removing	out	of	time	tracks	improve	
the	algorithm		

•  In	CMS	track	out	of	time	are	removed	
from	the	particle	Glow	algorithm	

•  This	also	result	in	a	reduction	of	the	
number	of	PU	jets	
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Heavy	flavor	tagging	
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•  IdentiGication	of	heavy	Glavor	quarks	improved	by	time	
information	

•  When	reconstructing	such	jets	more	track	are	accepted	
due	to	the	longer	lifetime	of	the	b	hadron																									-
>	more	PU	jet	contamination		

•  Time	help	keep	the	PU	contamination	low	and	improve	
the	reconstruction	
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Electron	IsolaCon	
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•  Track	isolation	used	in	many	analyses	
with	leptons	to	Gight	QCD	background	

•  Isolated	lepton	->	Lepton	that	come	from	
the	studied	process	(and	not	from	
showering)	

•  Isolated	:	with	no	other	track		with	pT	>1	
GeV	in	ΔR<0.2	
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•  PU	can	reduce	the	Isolation	efGiciency		

•  A	time	compatibility	of	the	close	track	
with	the	electron	track	can	be	added		

•  	Improve	the	efGiciency	of	such	algorithm	



Conclusion	
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•  Time	information	can	greatly	improve	the	performances	
of	the	detectors	in	high	pile	up	environments	

•  The	performance	of	such	detector	greatly	depend	on	the	
reconstruction	algorithm	

•  Different	experiment	can	use	timing	in	different	way	
depending	on	their	needs	

•  The	technology	is	evolving	quiete	quickly	:	Smaller	
granularity	(pixel	like),	better	resolution	(1	ps)	

•  Currently	part	of	their	own	subdetector	but	will	probably	
be	in	the	future	part	of	most	trackers	


