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e What kind of data are we talking about |
e What is the task? (
e Motivation /
e Why is it an interesting task?
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at we know so far about ML for flavour tagging

( Raw inputs
| (tracks)

“High level”
features




lding the “low” and “medium™ level features to the neural
etwork classifier 1s helping the classification performance

Raw inputs
(tracks)

“High level”
features




10n - zooming in on the vertex finding

¢ End-to-End solution
Existing algorithms require multiple stages
and manual fine-tuning

e Context Sensitive Vertex finding
can we take into consideration
factors other than “geometry”



it an interesting task?

Easy.
small sets, easy to explore, easy to compare solutions

e Not straight-forward Classification
It 1s clustering, but fully supervised clustering (more exotic)

e Room for improvement




on - better charm tagging

f the three classes (b, c, light) - charm 1s the hardest to correctly identify
¢ have a better picture of the underlying decay, we can i1dentify them more effectivel




lly we would need a “full sitmulation” but for the purposes of trying different algorith
ficient.
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Data and
Task Definition

¢

, e What kind of architectures we can use
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e How to describe task for neural network?
/

7

e

e
s




track error around
point of closest
approach to vertex

best fit vertex position
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0 describe the task for a neural network?

ake the set of tracks, and describe the tracks as nodes 1in a
graph,
Fully connect the graph with edges between every node

Now the task can be thought of as “edge classification”




track error around
point of closest
approach to vertex

best fit vertex position

|
|

pe2f lif A6L[eX boaifiou

B . | |
assifier: \ )
ir of tracks (+jet 4 vector)
pair 1n the same vertex




¢ the pairs are classified, join together clusters
cks that have connecting edges

O,

Couhe ctigi
Fill in “missing connections”



Jet Features

Node Features

Hidden State

O x CITTTTTTT]

+
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ack) looks at a weighted sum of tt

ind updates 1ts latent represen



ation

_7%_ =

sum of node representations 1s rep
>sentations




neural network’

edicting a binary classification for the

ass output for the individual r




€ passing “graph neural network”™
¢ classification
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y e How to quantify vertex finding performance?
e What performance metrics do we care about?
[ e How to visualise the results
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o quantify vertex finding performance?

# correct pairs

()

Rand Index =




to quantify vertex finding performance?

RI - E[RI]
| - E[RI]

Adjusted Rand Index =

1 perfect
Adjusted Rand Index = { 0 as good as random guessing
< (0 worse then guessing

V\o{' | / FQF‘FQ‘A_




Rave mean: 0.32
baseNN mean: 0.44
GNN mean: 0.43
edgeHS mean: 0.47
nodeClass mean: 0.38

—1.0 —0.5 0.0 0.5 1.0

jet Adjusted Rand Index




rrovement for the ne

light jets

Rave mean: 0.32 Rave mean: 0.33 Rave mean: 0.92
baseNN mean: 0.44 baseNN mean: 0.43 baseNN mean: 0.92
GNN mean: 0.43 GNN mean: 0.41 GNN mean: 0.93
edgeHS mean: 0.47 edgeHS mean: 0.44 edgeHS mean: 0.92

1 nodeClass mean: 0.38 1 nodeClass mean: 0.42 nodeClass mean: 0.87

-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

jet Adjusted Rand Index jet Adjusted Rand Index jet Adjusted Rand Index

80 BIUQ |UO
0°0 0

small advantage to the network W1t
ntation




ndary vertex,

Mean ARI
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really great way to understand the dataset 1s to
visualise individual examples -

What we need:

- to see the secondary vertices and tracks clearly

- To understand what tracks the algorithm
clustered together

- To know what the “truth” was
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The 1image is made by “rotating” the 3d image to
the “Jet Frame™ and taking a projection

232.79 mm

e
o 2%

fom

Jet Frame
Detector Frame .

(pT’ m, ¢)

Rotation PI’OjeCtiOI'l 1
between Jet

and Z axis




17.21 mm

r notebook

In [62]: np.where( ( algo_ari['edgeHS']==1 ) & (algo_ari['Rave']<0.2) & (sec_vtx max size_all_jets > 2)
& (n_vertices > 2))[0]

69.76 mm

vles of the neural network
ter than the adaptive vertex

80.05 mm

232.79 mm




d

e Neural networks are a viable option for this task

\ SN

7~

Raw 1nputs
(tracks)

“High level”
features

N

e Graph neural networks are a natural fit for the task

e The GNN performs better than the baseline algorithm,

but there 1s a lot of room for improvement - looking for an
rchitecture that takes the context into account




ext Step

e Use particle flow particles (include neutral particles in the vertex finding)
e Release the dataset to the world to try out different solutions

Open gquestion

e Scalability to large graphs (event-level vertex finding)
e What are the causes for vertex finding “failure”



