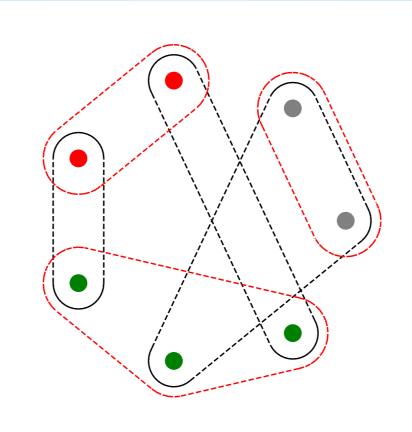
Graph networks for vertex reconstruction

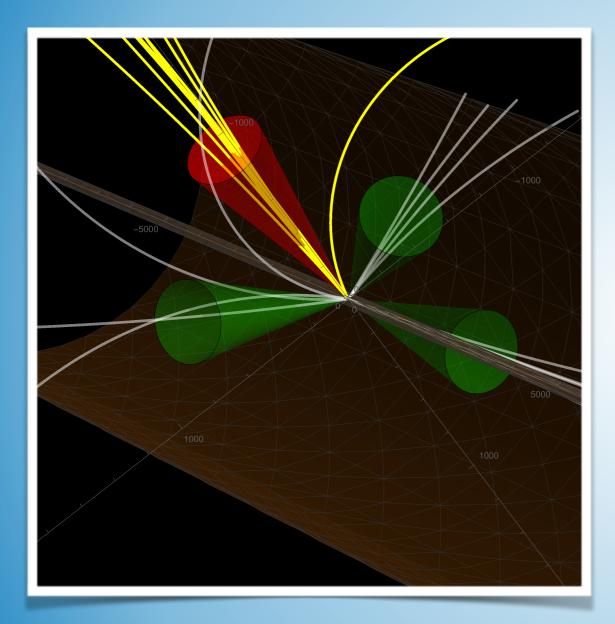


Jonathan Shlomi, Sanmay Ganguly, Eilam Gross In collaboration with Kyle Cranmer/NYU

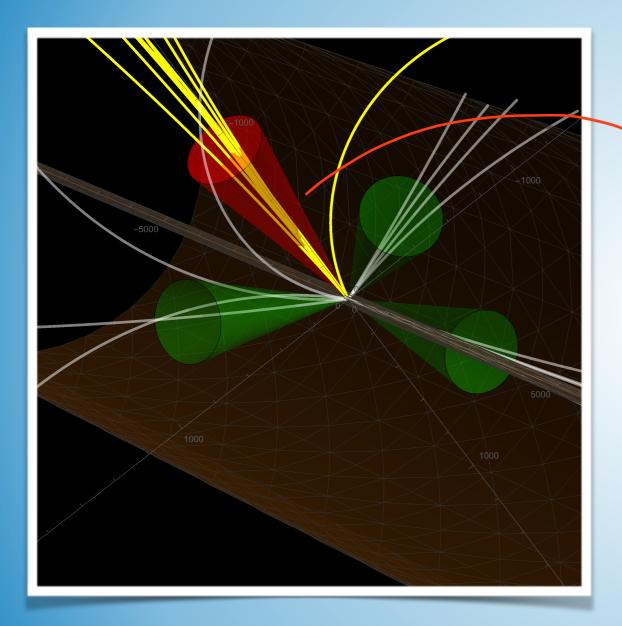
Learning to Discover : Advanced Pattern Recognition Institut Pascal, Orsay

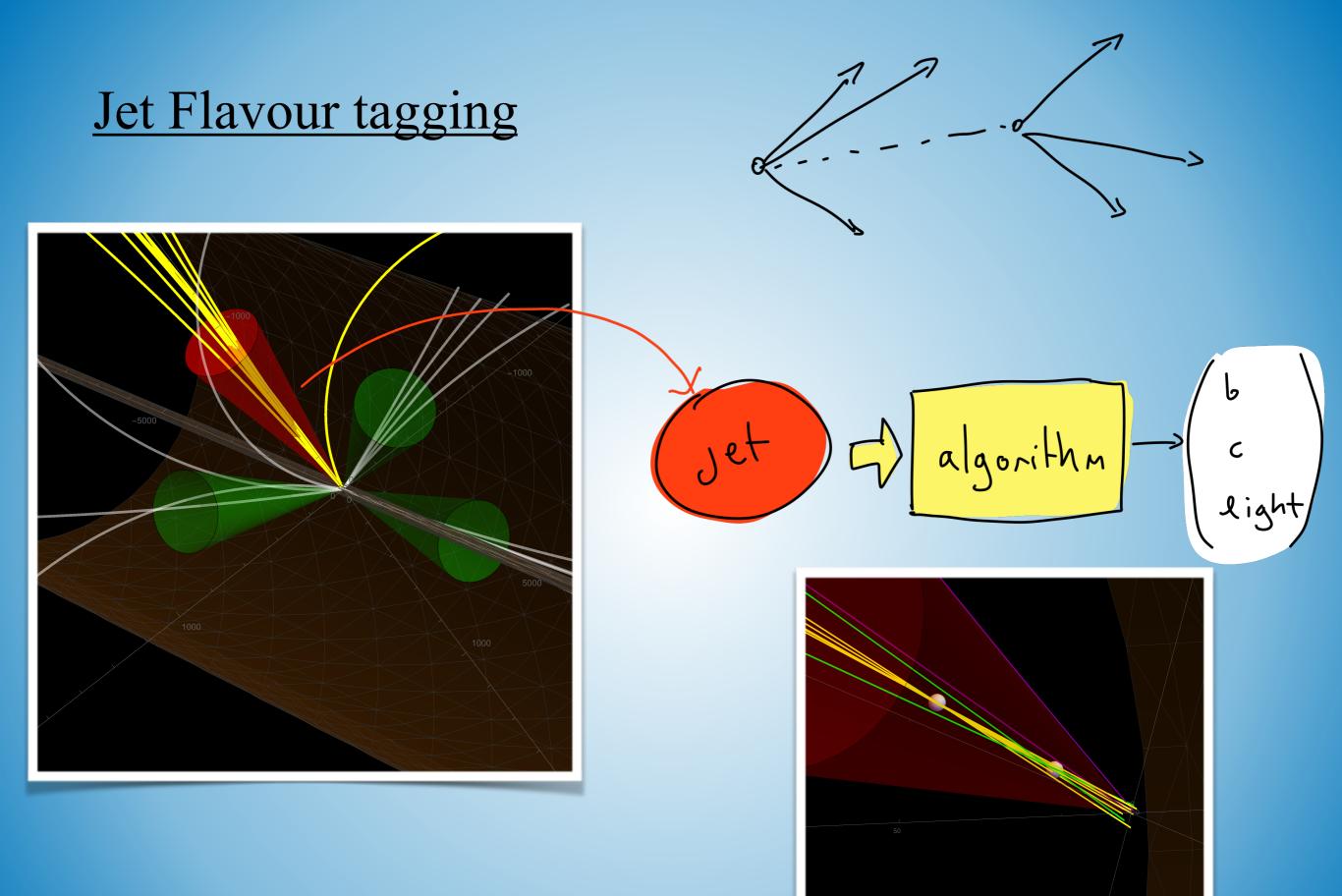
24 October 2019

Jet Flavour tagging



Jet Flavour tagging

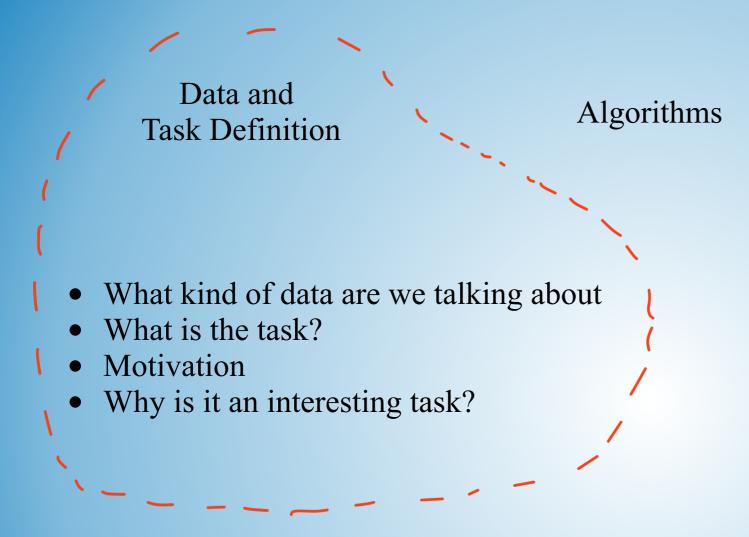




Data and Task Definition

Algorithms

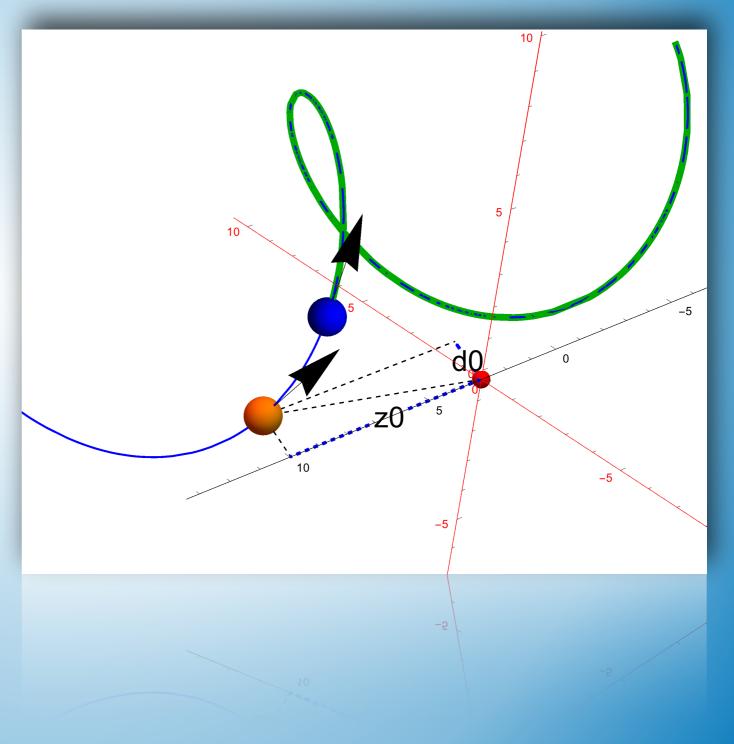
Performance Evaluation + Event Display



Performance Evaluation + Event Display

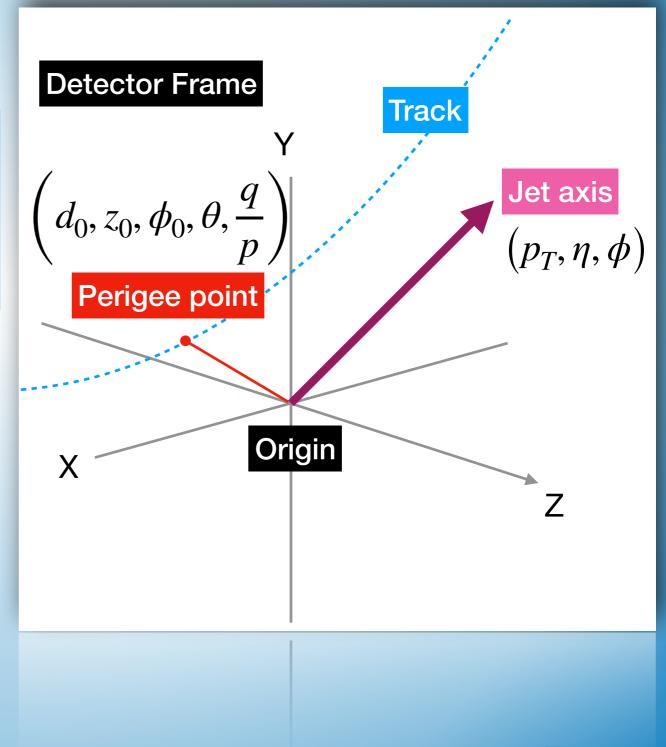
The Dataset

• A set of tracks (perigee parameters + cov matrix)

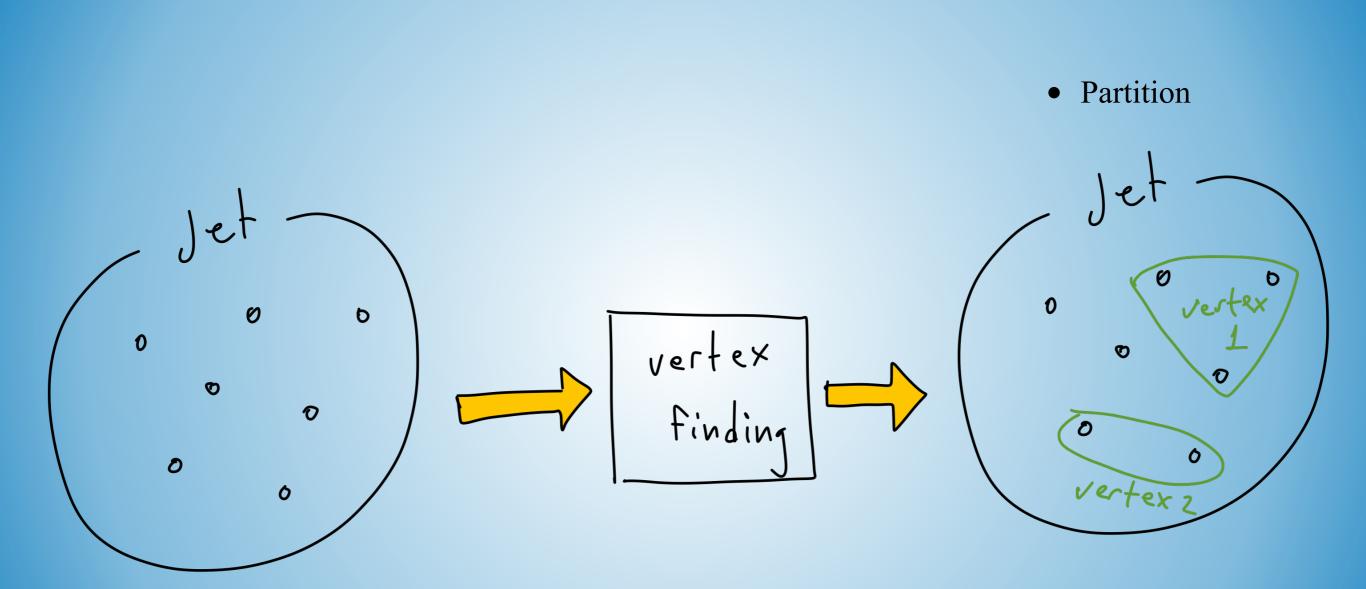


The Dataset

- A set of tracks (perigee parameters + cov matrix)
- Jet direction
- Jet momentum

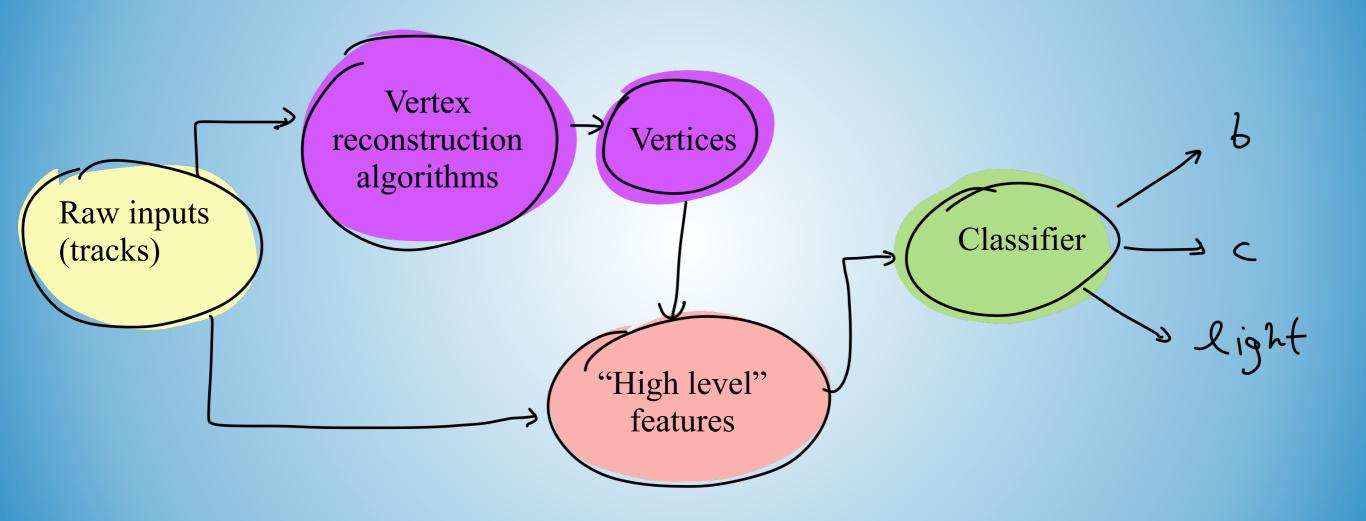


The Task



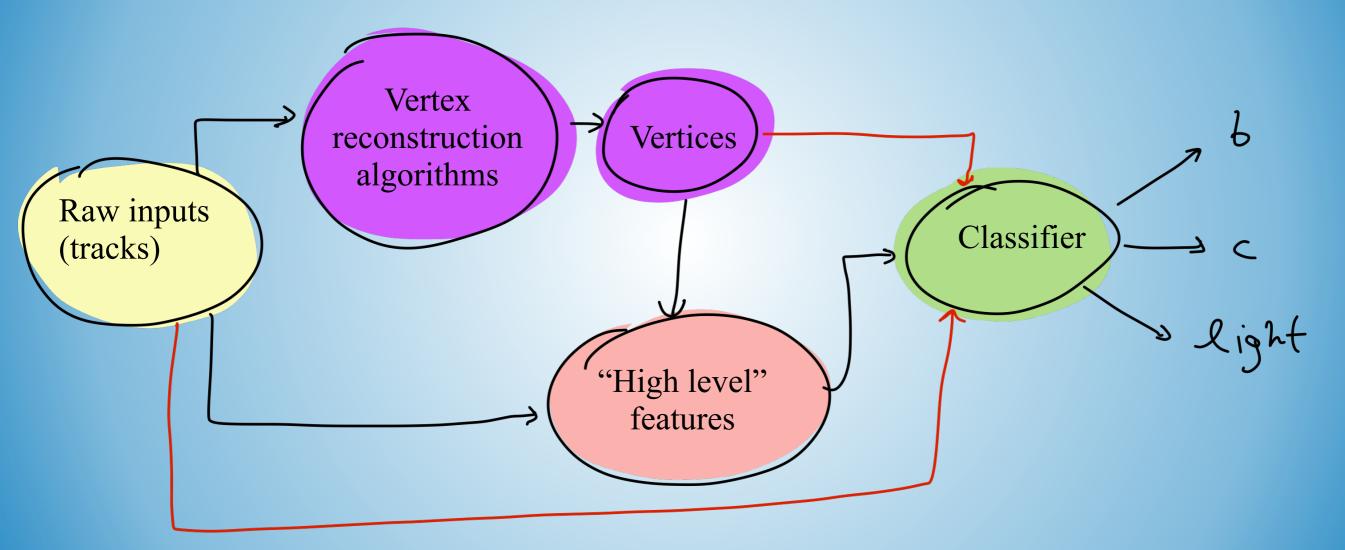
The Task

What we know so far about ML for flavour tagging



The Task

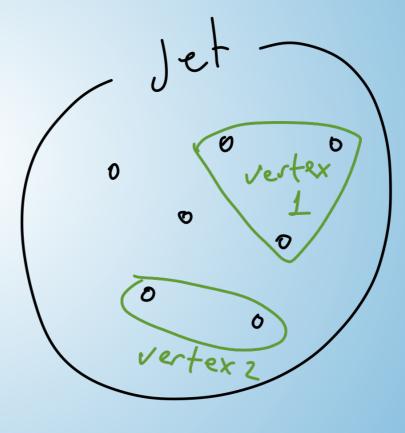
Adding the "low" and "medium" level features to the neural network classifier is helping the classification performance



Motivation - zooming in on the vertex finding

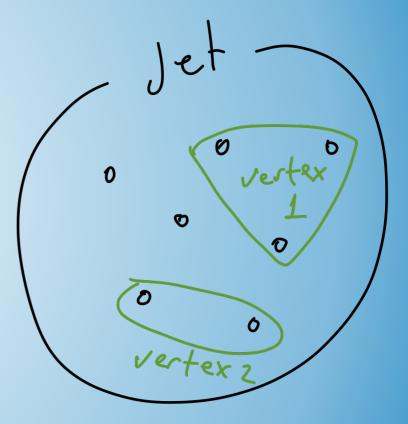
• End-to-End solution Existing algorithms require multiple stages and manual fine-tuning

• Context Sensitive Vertex finding can we take into consideration factors other than "geometry"



Why is it an interesting task?

- Easy. small sets, easy to explore, easy to compare solutions
- Not straight-forward Classification It is clustering, but fully supervised clustering (more exotic)
- Room for improvement



Motivation - better charm tagging

Out of the three classes (b, c, light) - charm is the hardest to correctly identify If we have a better picture of the underlying decay, we can identify them more effectively

~ 80% efficiency

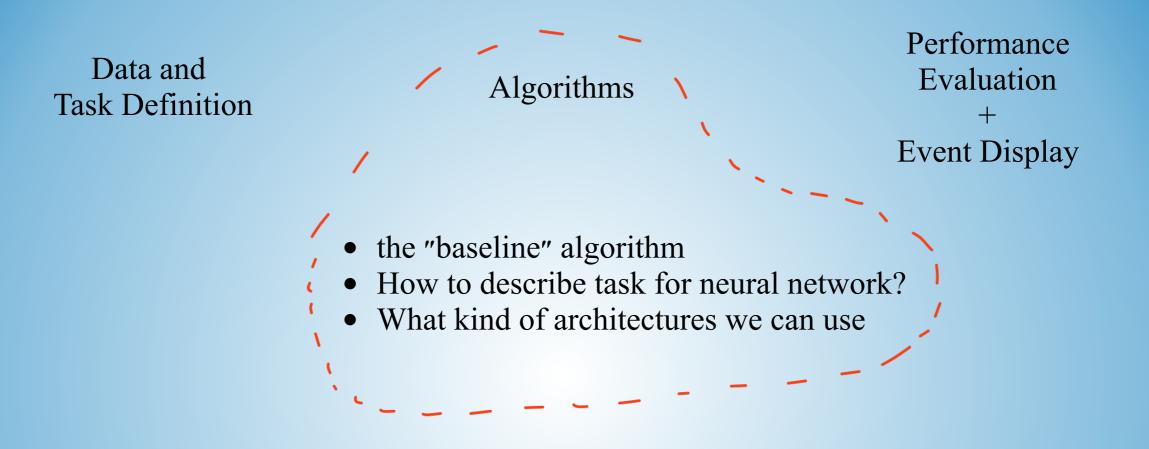
jets

~ 40% efficiency

The Dataset

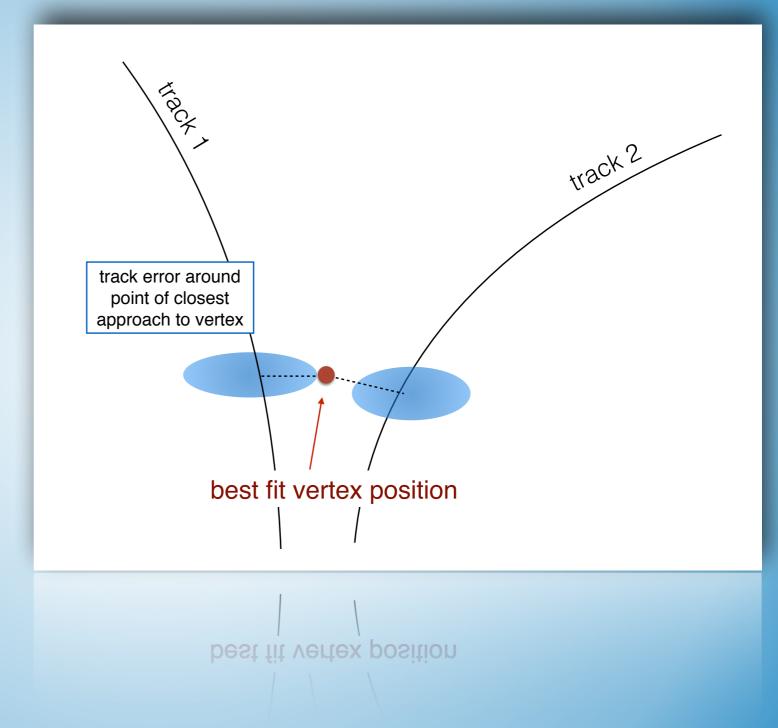
This dataset is generated with a "fast simulation", meaning the truth particles are "smeared" Ideally we would need a "full simulation" but for the purposes of trying different algorithms this is sufficient.

+ ideal track



the "baseline" algorithm

Adaptive vertex finding/fitting



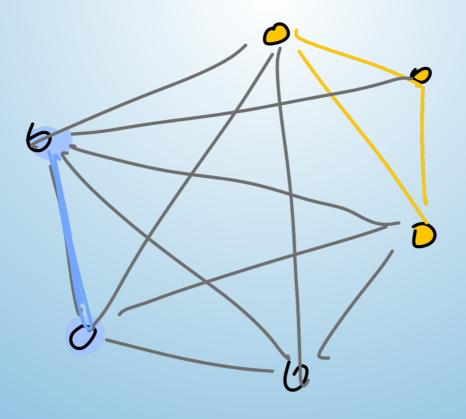
https://rave.hepforge.org/

W. Waltenberger. "RAVE: A detector-independent toolkit to reconstruct vertices". In:IEEETrans. Nucl. Sci.58 (2011), pp. 434–444

How to describe the task for a neural network?

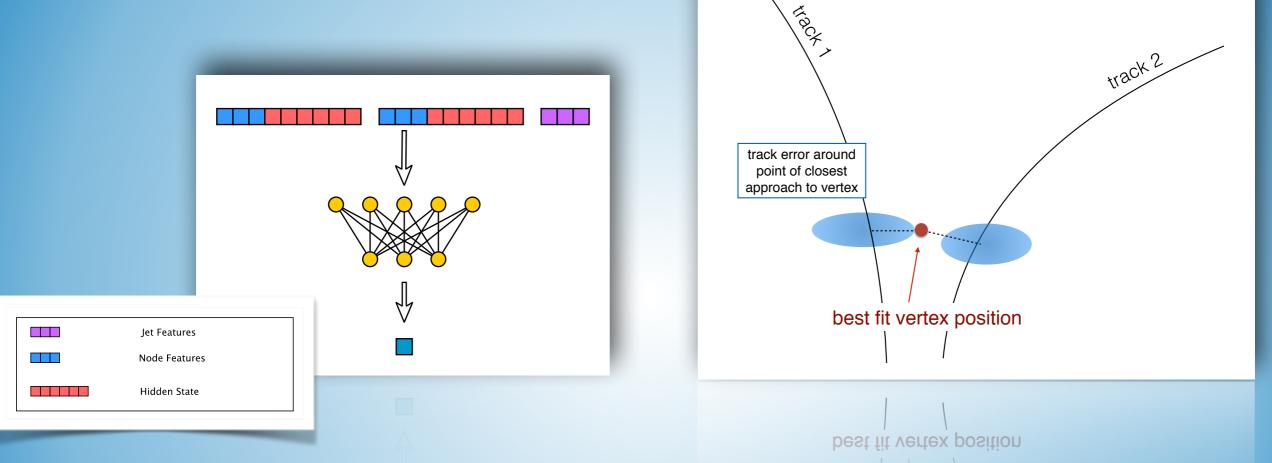
Take the set of tracks, and describe the tracks as nodes in a graph, Fully connect the graph with edges between every node

Now the task can be thought of as "edge classification"



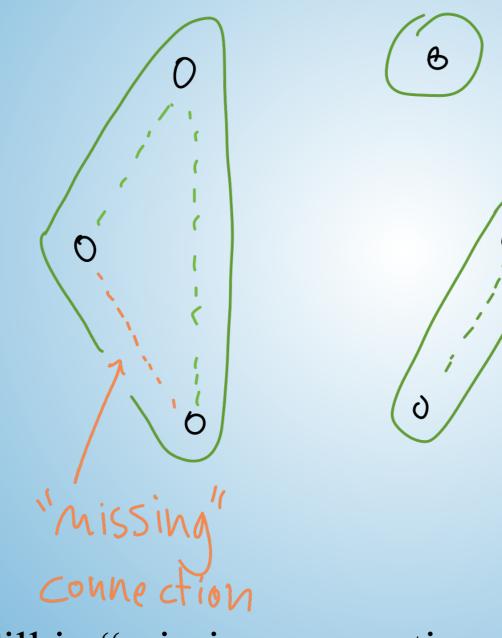
the "baseline" neural network solution

Track pair classifier:



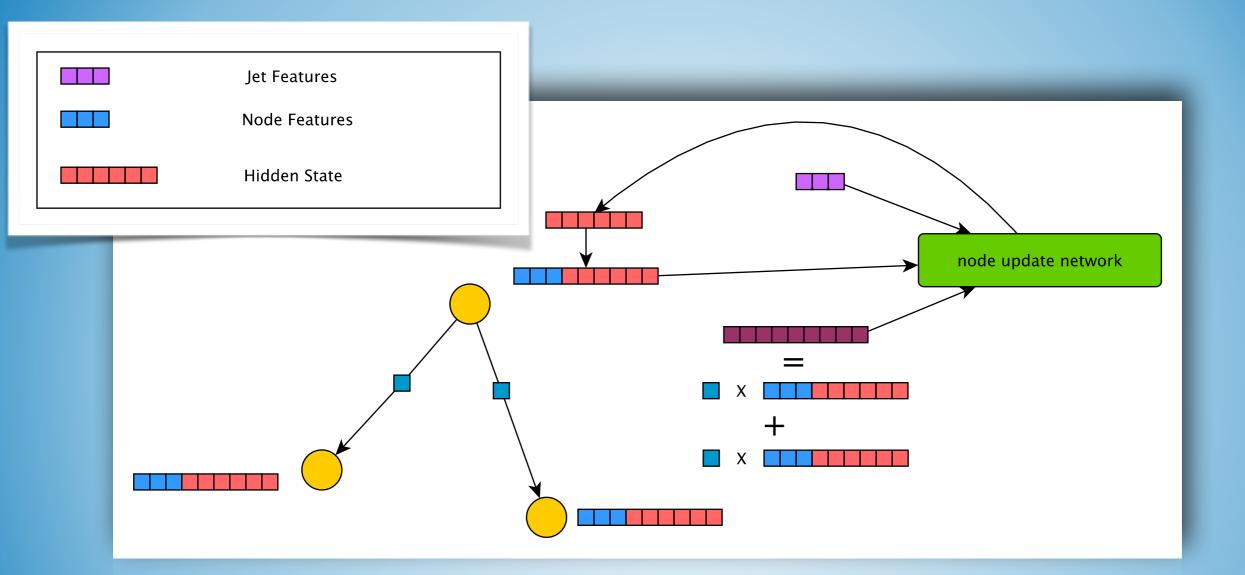
Binary classifier:

input: a pair of tracks (+jet 4 vector) output: is this pair in the same vertex Once the pairs are classified, join together clusters for tracks that have connecting edges



Fill in "missing connections"

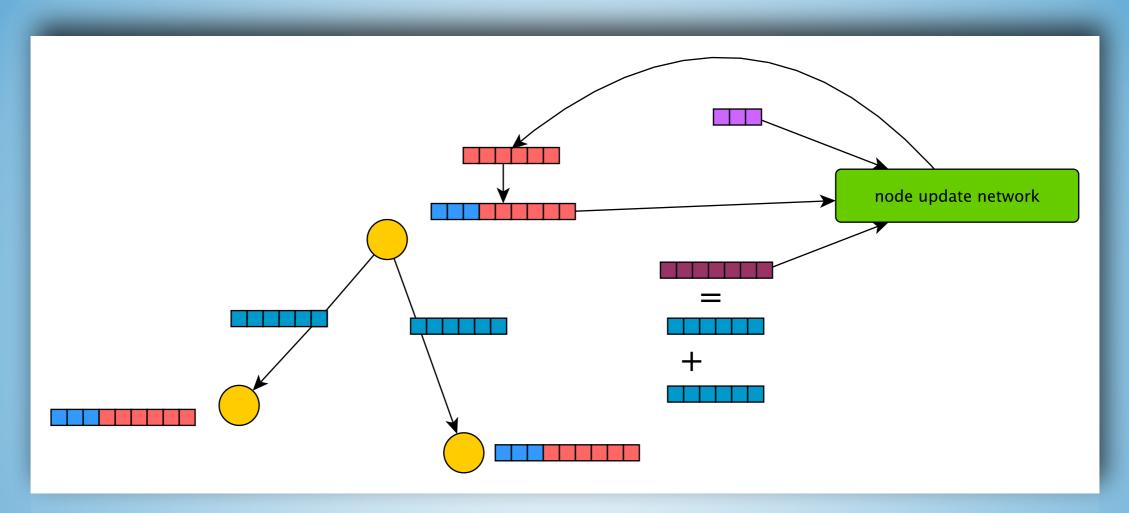
Message passing "graph neural network"



Each "node" (track) looks at a weighted sum of the rest of the nodes in the jet, and updates its latent representation.

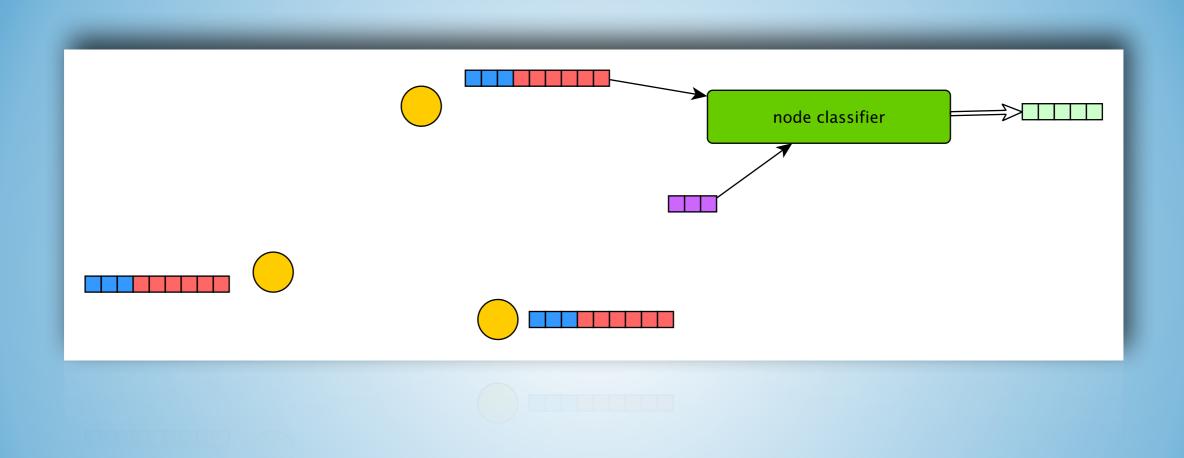
Then - apply same binary classifier as baseline solution

Message passing "graph neural network" + edge latent representation



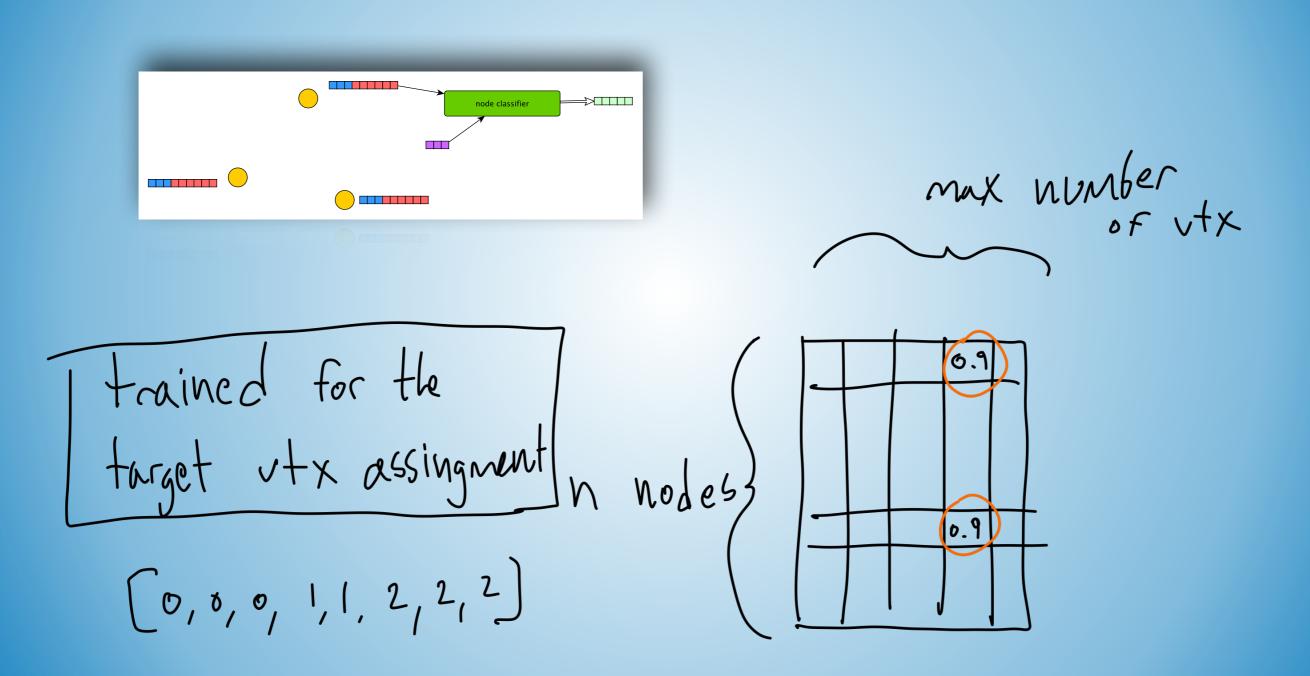
The weighted sum of node representations is replaced by a sum of edge latent representations

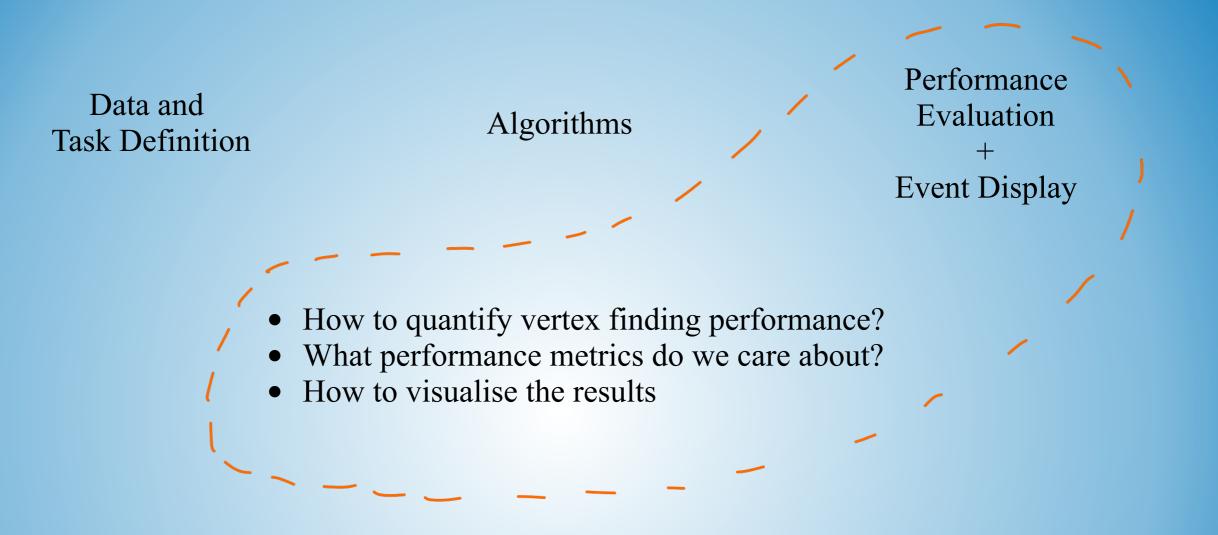
Message passing "graph neural network" + node classification



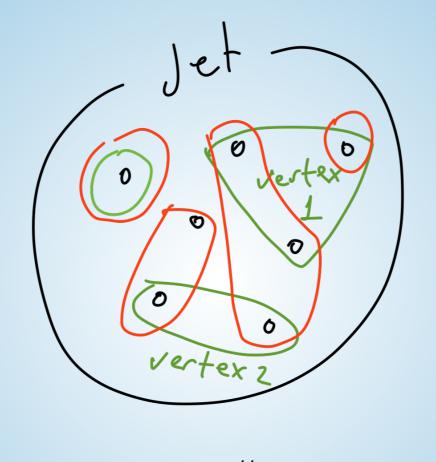
Instead of predicting a binary classification for the pairs of tracks, Output a multi-class output for the individual nodes

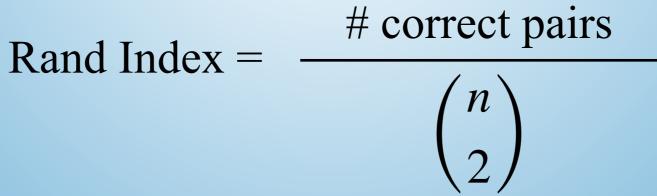
Message passing "graph neural network" + node classification





How to quantify vertex finding performance?

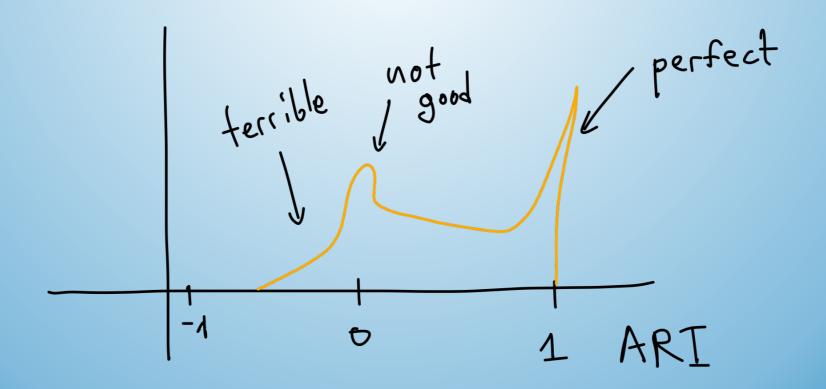


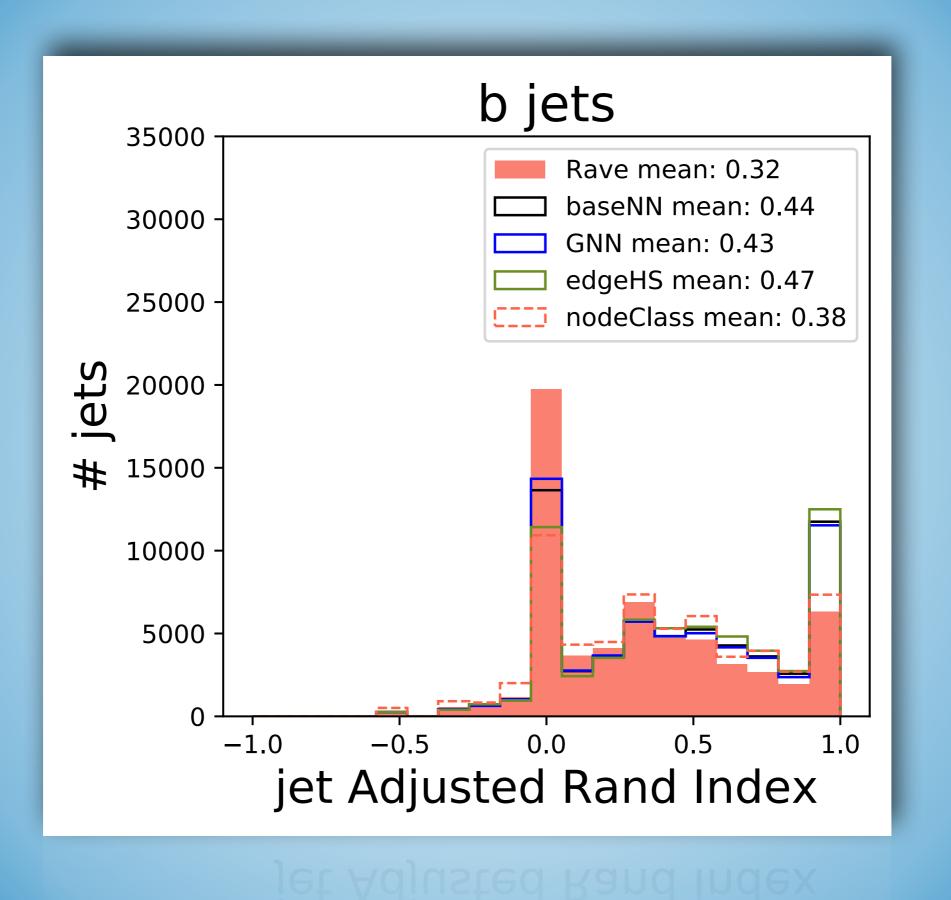


How to quantify vertex finding performance?

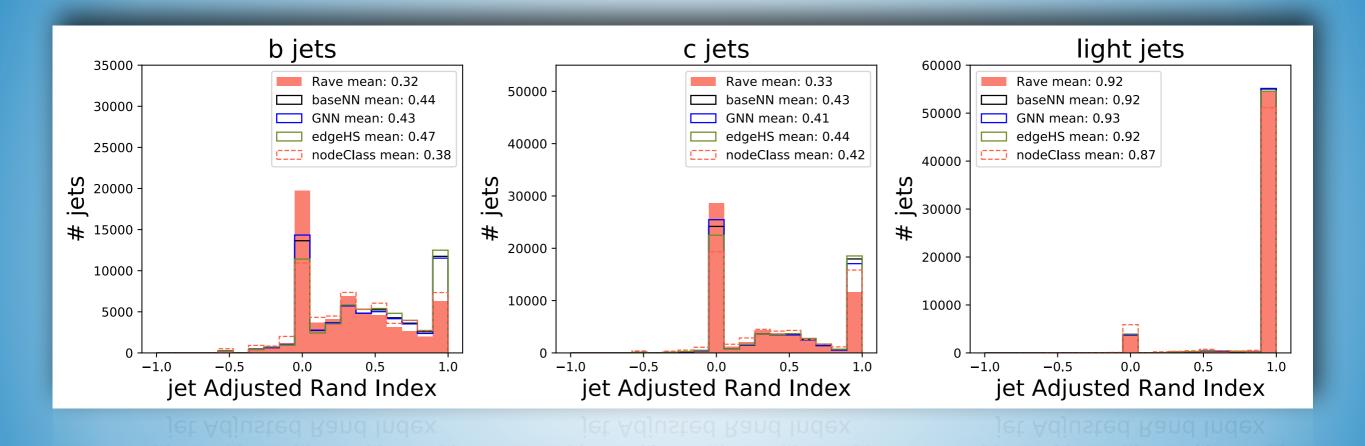
Adjusted Rand Index =
$$\frac{\text{RI} - \text{E[RI]}}{1 - \text{E[RI]}}$$

Adjusted Rand Index =
$$\begin{cases} 1 \text{ perfect} \\ 0 \text{ as good as random guessing} \\ < 0 \text{ worse then guessing} \end{cases}$$





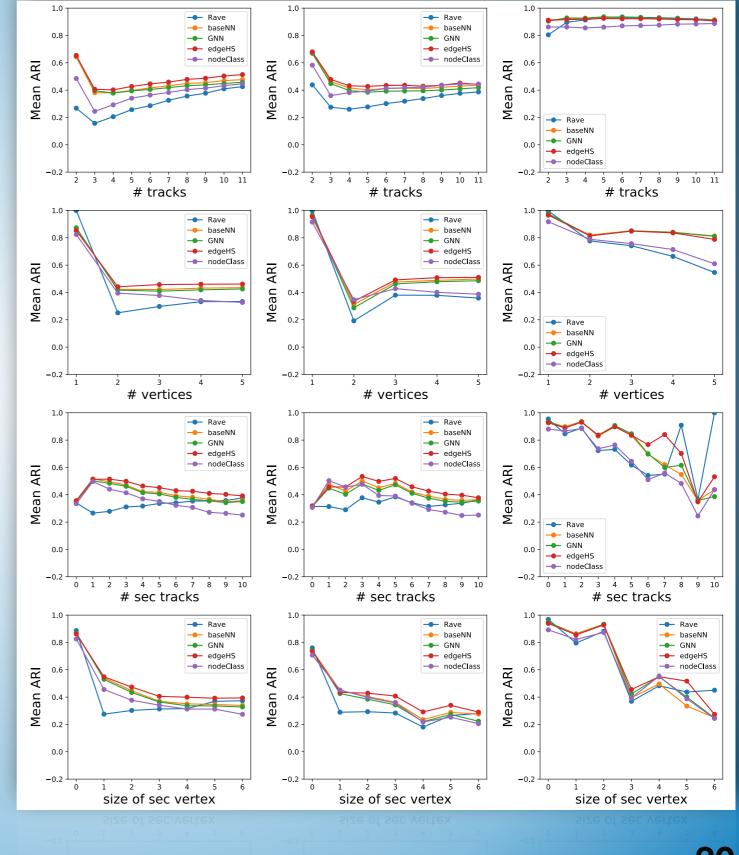
Slight (very slight) improvement for the neural networks over the geometric algorithm



Another small advantage to the network with edge latent representation

The same picture remains when we look at the mean ARI as a function of:

#tracks,
#vertices,
of displaced tracks,
size of the secondary vertex,

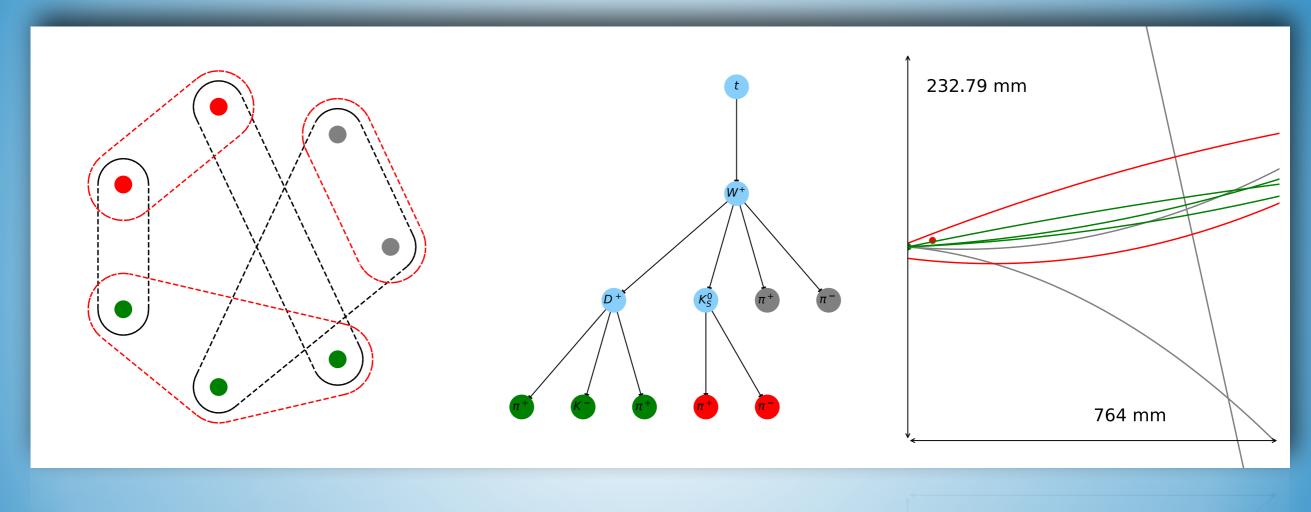


A really great way to understand the dataset is to visualise individual examples -

What we need:

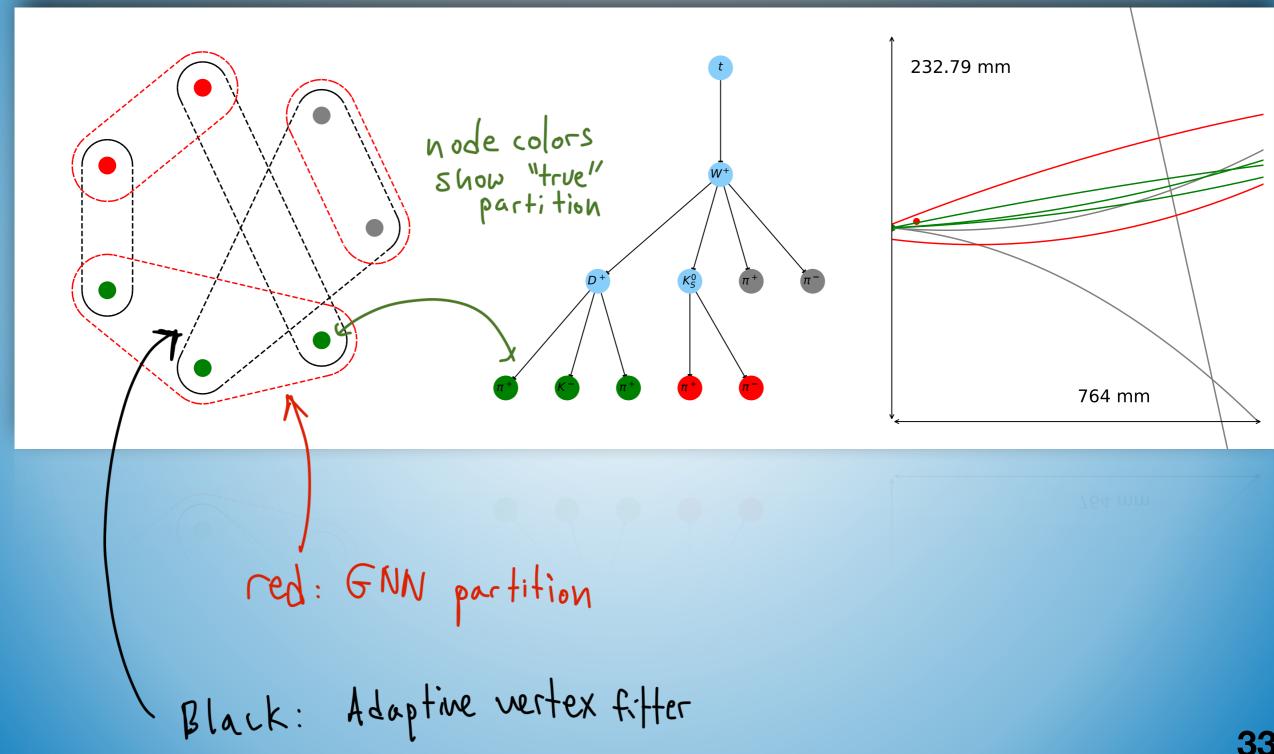
- to see the secondary vertices and tracks clearly
- To understand what tracks the algorithm clustered together
- To know what the "truth" was

This 3-piece event display gives us all the information,

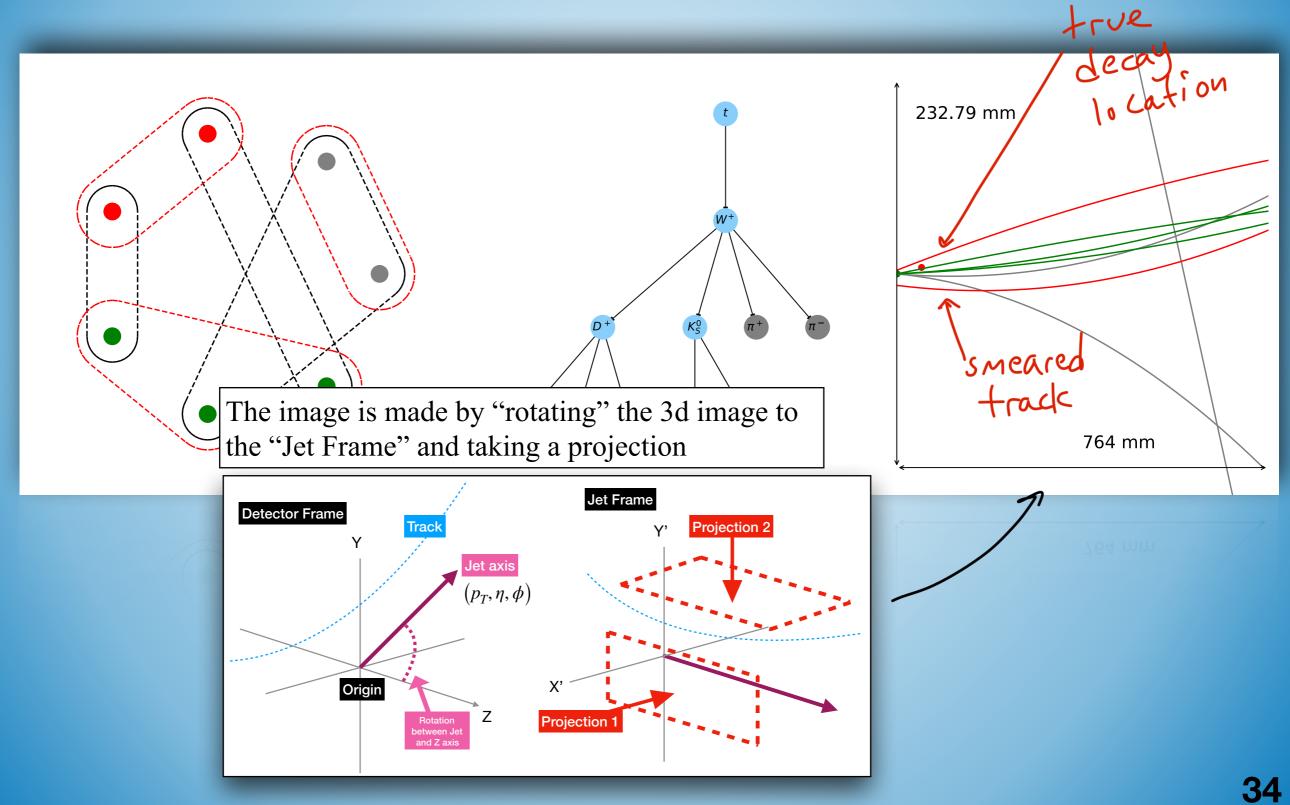


764 mm

This 3-piece event display gives us all the information,



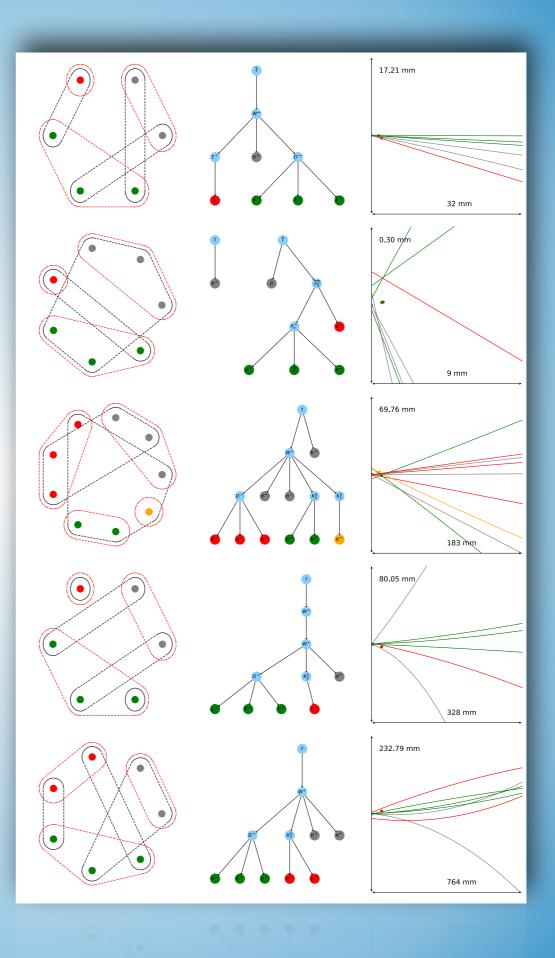
This 3-piece event display gives us all the information,



And its easily browsable in a Jupyter notebook

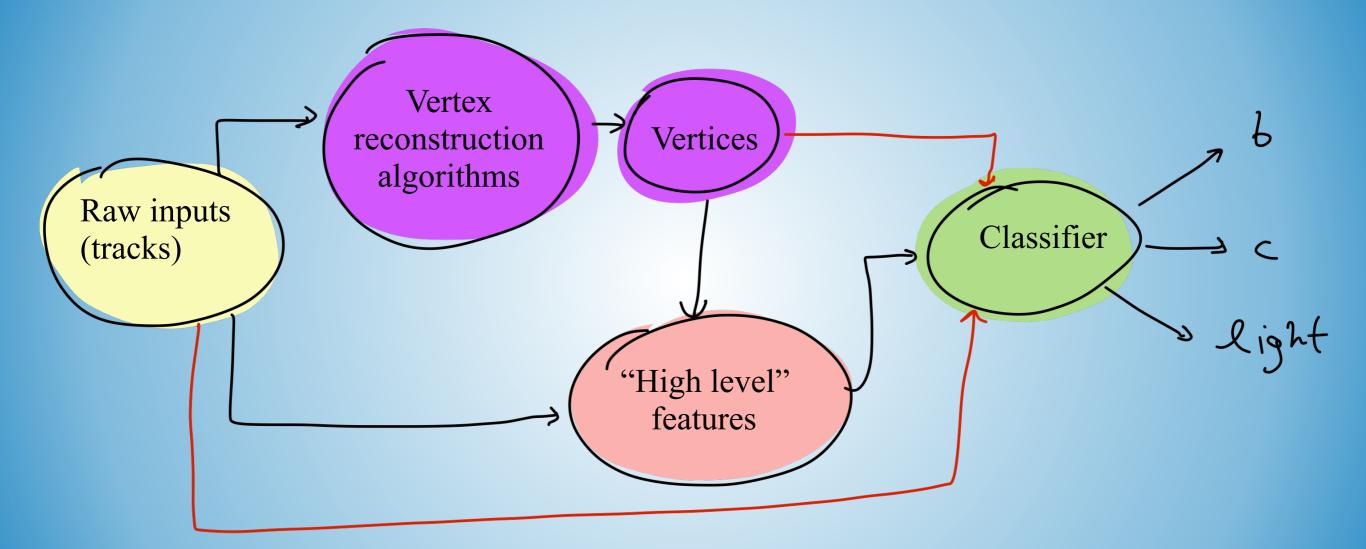
In [62]: np.where((algo_ari['edgeHS']==1) & (algo_ari['Rave']<0.2) & (sec_vtx_max_size_all_jets > 2)
 & (n_vertices > 2))[0]

Here are some examples of the neural network performing much better than the adaptive vertex fitter



Summary

• Neural networks are a viable option for this task



- Graph neural networks are a natural fit for the task
- The GNN performs better than the baseline algorithm, but there is a lot of room for improvement - looking for an architecture that takes the context into account

Next Step

- Use particle flow particles (include neutral particles in the vertex finding)
- Release the dataset to the world to try out different solutions

Open question

- Scalability to large graphs (event-level vertex finding)
- What are the causes for vertex finding "failure"