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DECam @ Blanco telescope in Chile

galaxy clusters, weak lensing, large scale structure, type Ia SNe, 
gravitational waves (kilonovae), …
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Cosmic expansion
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supernovae

• stellar explosions 
(transient events)
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supernovae

• stellar explosions 
(transient events)


core-collapseType Ia

• types: 

• Ia (thermonuclear) 

• II, Ib, Ic (core-collapse)
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• very luminous


• homogeneous spectral and 
photometric properties

type Ia supernovae (SNe Ia)
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current surveys

In numbers:


* 5-year survey, started 2013


* 4 primary probes: galaxy clusters, weak 
lensing, large scale structure, type Ia SNe


* <2,000 well measured SNe Ia

Dillon Brout  -  January 10th, 2018  -  AAS #231

Preliminary SN 3Year 
Cosmology Results
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WiggleZ 
GAMA 
SDSS 
2dF 
DES

current surveys

Dillon Brout  -  January 10th, 2018  -  AAS #231

Preliminary SN 3Year 
Cosmology Results
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future surveys: large synoptic survey telescope

In numbers:


* 10-year survey, starting 2022


* 1,000 images/night = 15 TB/night


* 10,000 alerts/30 seconds = 1 GB / 30 s 


* >4,000 well measured SNe Ia

the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons

=) 15 TB/night for 10 years

- Covers 18,000 square degrees (40% of the sky)

- Tens of billions of objects, each one observed ⇠ 1000 times

2

Vera Rubin telescope
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outline
Machine learning in supernova cosmology: classification tasks

Part II: typing with photometry

1. Datasets: PLAsTiCC

2. ML classification issues


1. Representativity

2. Incompleteness

3. “probabilities” for cosmology


3. FINK broker
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Bogus detections
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1. Humans

Supernova Sighting

Your team

Citizen scientists

AM, Tucker, Armstrong & the SkyMapper Transient team 
2017-2018

Part I: real vs. bogus
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(a) SN 04D1c with its host-galaxy (b) SN 04D1c in subtracted image

Figure 4.6

(a) Starlet (b) Bi-orthogonal (c) Curvelet (d) Ridgelet

Figure 4.7 Typical atoms from the dictionaries used in the MCA algorithm. (a) starlet
atom representing circular-like signals, (b) bi-orthogonal wavelets for dipole features,
(c) curvelets for elliptical signals and (d) ridgelets representing line features (artificial
color scale).

images, see Figure 4.6). A wavelet based dictionary is suited to this kind of morphology.

We choose in particular the starlet dictionary since it is composed of isotropic atoms,

especially e�cient for representing positive structures such as our SN candidates. An

example of a starlet atom is presented on Figure 4.7a.

Artifacts

For the small scale artifacts presented in Figure 4.4 we adopt a bi-orthogonal wavelet

dictionary (Figure 4.7b). These artifacts result from improper subtraction of galaxies

which lead to characteristic dipole features. The bi-orthogonal dictionary has the ad-

vantage of representing such features more e�ciently than the starlet, enabling us to

discriminate these artifacts from the signal.

For large scale curved or line artifacts such as the one in Figure 4.3, we adopt curvelet

and ridgelet dictionaries. The curvelet dictionary is composed of localized, elongated

atoms, at di↵erent scales, which are known to provide a sparse representation for curved

features, see Figure 4.7c. The ridgelet atoms are line of di↵erent widths and orientations

(see Figure 4.7d) which are perfect to represent the second type of artifacts.
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(a) (b)

Figure 4.4 Defects on the subtracted image stacks that yield spurious detections on
small scale: (a) and (b) dipoles from imperfect galaxy subtraction. These are adjacent
positive and negative areas on the stacks (artificial color scale).

4.2 Disentangling real transient events from artifacts

Morphological component analysis allows to disentangle artifacts from other signals and

can be adapted to treat subtracted image stacks in SNLS. First, we choose dictionaries

which characterize signal and artifacts distinctively at di↵erent size scales. Then, we

present a two-step treatment designed to extract interesting SN-like signals and rejects

spurious detections.

A sub-sample of SNLS3 data was used to characterize artifacts, see Section § 4.1, and to

assign the algorithm’s parameter values. Field D4 was chosen since it is a summer field

with very good observing conditions and a large number of both detections and events

classified as SN-like candidates.

4.2.1 Choice of dictionaries

The aim of the filtering approach presented in this section is to separate the signal

of interest (SN-like events) from a complex background. The latter is constituted by

noise, defects that cannot be subtracted (e.g. Figure 4.3) and features from imperfect

subtractions (e.g. Figure 4.4).

Because these artifacts are structured, a naive strategy based on detection through a

simple threshold on signal-over-noise ratio yields a large number of spurious detections.

Our aim is to leverage additional morphological information to separate the signal of

interest from artifacts and noise, by exploiting their stark contrast in both shape and

scale.
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– Bright star residuals: part of the star’s light remains on the subtracted images.

– Masks: there is a limit value on each pixel content of an image. Then, when

a saturated star is subtracted some pixels may have the same threshold value

in both the reference and the current image. This produces a region on the

subtracted image which has pixels with zero-value.

• Shadow of the mounting on the images due to bright stars (e.g. Figure 4.3b)

• Resampling defects (e.g. Figure 4.3c)

• Imperfect galaxy subtraction, called dipoles since they are adjacent positive and

negative content areas on the stacks. They cover a smaller area than previous

defects (e.g. 4.4).

(a) (b) (c)

Figure 4.3 Di↵erent defects on the subtracted image stacks that yield spurious detec-
tions on large scale: (a) shows a saturated star with some areas masked by subtraction,
(b) a saturated star plus the camera mounting shadow and (c) defects from sampling
and dead pixel lines (artificial color scale).

These defects contribute to multiple spurious detections. For example, in Figure 4.5, a

saturated star with mounting shadow can be seen in the image while in the detection map

we can associate to it numerous detections. This image represents only one lunation,

note that when stacking several lunations, the number of spurious detections is largely

increased.
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dictionaries

objects

saturated star, optical ghost,…SN-like dipoles

dictionaries where chosen based on SN-like and artifact studies:
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Table 1. Features used as input for the random forest models.

Feature Description

xsub x coordinate on di↵erence image, in pixels
ysub y coordinate on di↵erence image, in pixels
esub ellipticity of source on di↵erence image
thsub direction of semi-major axis of source on di↵erence image
fwhmsub full width at half maximum of all di↵erence image sources
f4sub flux within 4-pixel aperture in di↵erence image
f8sub flux within 8-pixel aperture in di↵erence image
flagsub sextractor source flags in di↵erence image
starsub sextractor star-galaxy score in di↵erence image
xref x coordinate on template image, in pixels
yref x coordinate on template image, in pixels
eref ellipticity of source on template image
thref semi-major axis of source on template image
fwhmref full width at half maximum of all template image sources
f4ref flux within 4-pixel aperture in template image
flagref sextractor source flags in template image
starref sextractor star-galaxy score in template image
enew ellipticity of source on di↵erence image
thnew semi-major axis of source on di↵erence image
fwhmnew full width at half maximum of all target image sources
f4new flux within 4-pixel aperture in target image
flagnew sextractor source flags in target image
starnew sextractor star-galaxy score in target image
n2sig3 number of at least 2-sigma negative pixels in 3x3 box in di↵erence image
n3sig3 number of at least 3-sigma negative pixels in 3x3 box in di↵erence image
n2sig5 number of at least 2-sigma negative pixels in 5x5 box in di↵erence image
n3sig5 number of at least 3-sigma negative pixels in 5x5 box in di↵erence image
nmask number of masked pixels in 5x5 box in the target image
Rfwhm fwhmnew/fwhmref ratio
goodcn surface density of detected sources on subtraction
subconv direction of convolution (template-target or target-template)
nndref distance in pixels to nearest neighbour source in template image
nndnew distance in pixels to nearest neighbour source in target image
apsig4 signal-to-noise ratio of 4-pixel aperture flux in di↵erence image
apsig8 signal-to-noise ratio of 4-pixel aperture flux in di↵erence image
normrms ratio of square root of isophotal area in di↵erence image to fwhmsub
normfwhm ratio of full width at half maximum in di↵erence image to fwhmsub
Rfref signal-to-noise ratio of nearest counterpart in di↵erence image
Raref ratio of candidate semi-major axis to all sources in di↵erence image
Reref ratio of candidate ellipticity to all sources in di↵erence image
Dthref di↵erence in candidate semi-major axis direction from all sources in di↵erence image
Rfnew signal-to-noise ratio of nearest counterpart in target image
Ranew ratio of candidate semi-major axis to all sources in target image
Renew ratio of candidate ellipticity to all sources in target image
Dthnew target in candidate semi-major axis direction from all sources in target image

above with new features intended to capture the global prop-
erties of the images - these flag obviously bad (e.g., trailed)
images and subtractions. We also included SExtractor er-
ror codes and star-galaxy separation scores; the latter pro-
vide a redundant output from a di↵erent method (neural
network) that may capture aspects of point sources not cov-
ered by our existing features.

As with many other machine learning models, the clas-
sification performance depends on the particular parameter
assignments used to generate the random forest. However,
random forests are usually very robust against small modi-
fications, i. e., given reasonable parameter assignments, the
validation performance is often very similar. The main pa-
rameters that need to be tuned are: (1) the number of es-
timators, (2) the number of features tested per split, (3)

if bootstrap samples are used or not, and (4) the stopping
criterion used. Furthermore, variations of classical random
forests exist such as the extremely randomised trees (Geurts
et al. 2006), which consider“random”thresholds as potential
splitting candidates.

For our analysis, we have tested di↵erent random for-
est variants and parameter assignments. However, for sim-
plicity, we only report results of a single configuration (all
others yielded very similar performances). In particular, we
consider the Gini index to measure the impurity of the inter-
nal node splits, make use of 500 trees built using a bootstrap
sample, resort to fully-grown trees, and test

p
d features per

node split, where d is the number of overall features consid-

MNRAS 000, 1–14 (2017)

Random Forest

SkyMapper images

3. Machine learning
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erties of the images - these flag obviously bad (e.g., trailed)
images and subtractions. We also included SExtractor er-
ror codes and star-galaxy separation scores; the latter pro-
vide a redundant output from a di↵erent method (neural
network) that may capture aspects of point sources not cov-
ered by our existing features.

As with many other machine learning models, the clas-
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Convolu�on Layer Pooling Layer Dense 
Layer

Dense 
Layer

Output 
Layer

Input Layer

Figure 3. A convolutional neural network with one convolutional and one pooling layer, followed by two fully connected standard hidden
layers and an output layer. Prior to the fully-connected hidden layers, the pixel-based feature maps are flattened, meaning that all pixel
values of all feature maps of the previous layers are concatenated to form a single vector. Generally, by resorting to multiple convolutional
and pooling layers, convolutional neural networks are capable of learning a hierarchical feature representation of the input instances –
starting with simple features at early layers and more complex features towards the end.

3 DEEP TRANSIENT DETECTION

In this section we provide details of the di↵erent models
considered for this paper in order to detect transients.

3.1 Imaging Data

Our models were trained on early science operations, prior
to April 2015, imaging data from the Skymapper Supernova

and Transient Survey. The di↵erence imaging pipeline is de-
scribed in more detail in (Scalzo et al. 2017). The main image
processing tools used are the SWarp (Bertin et al. 2002) for
astrometric registration and resampling to a common coor-
dinate system, SExtractor (Bertin & Arnouts 1996) for
source detection and photometry, and HOTPANTS2 for
photometric registration and image subtraction. Data for
each example include the template image, the target image,
and the di↵erence image. In Figure 4 we show examples of
both “real” and “bogus” taken from the dataset.

We trained our random forest models on features ex-
tracted from the images (Table 1), while the convolutional
neural networks were applied directly on the images them-
selves. To evaluate the performance of each model, we split
the available data into a training set and a test set of roughly
equal size.

To make the most of our limited number of “real” train-
ing instances, we enabled training on multiple distinct detec-
tions of the same transient candidate on di↵erent nights; this
allowed us to sample more real variation in seeing and sky
background level for the same candidate than we would if we

2 http://www.astro.washington.edu/users/becker/v2.0/hotpants.html

included only one detection of each candidate. Because we
expected the classifier results to also be a↵ected by details
of the host galaxy placement and morphology, which would
be the same for multiple observations of the same transient,
we placed all observations of the same object (e.g., a super-
nova) within the same partition (i. e., training or test); this
choice enables our training methodology to make honest es-
timates of the generalization error to entirely new transient
sources with di↵erent host galaxy properties. Apart from
this constraint, the partition each individual transient can-
didate occupied was chosen at random. The training set con-
tains 2,237 instances (2,010 “bogus” and 227 “real”) of 851
distinct “bogus” and 140 distinct “real” sky objects. The test
set contains 2,236 instances (2,009 “bogus” and 227 “real”)
of 851 distinct “bogus” and 141 distinct “real” sky objects.

We removed those instances that were located less than
15 pixels from the edge of a CCD, in both the training and
test sets, since the pixel cut-outs we use for our analysis (see
Section 3.3) would be incomplete in these cases. This yields
a final training set with 2,162 instances (1,939 “bogus” and
223 “real”) and a test set containing 2,169 instances (1,942
“bogus” and 227 “real”).

3.2 Baseline: Random Forests & Features

For the use of random forests, we extract various features
from the imaging data (see Table 1). Most of the features are
taken from Bloom et al. (2012). A large fraction of the fea-
tures reflect properties of the source in the di↵erence image,
as well as some contextual information such as the presence
of, and distance from, a nearby neighbour in the template
image (Bloom et al. 2012). We supplemented the features

MNRAS 000, 1–14 (2017)

Gieseke…AM+ 2017

SkyMapper images
augmented for 

training
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4.2.7 Receiver Operating Characteristic (ROC) Analysis

All results reported so far are based on the default threshold
of 0.5 for deciding which class an instance should belong to
given the probability scores. For random forests, this simply
corresponds to a majority vote among the individual trees.
For the convolutional neural networks, it means the class
with the highest probability. In general, many more “bogus”
than “real” instances are observed in practice and one might
want to adapt the choice for the threshold. For example, one
might prefer finding more “real” sources at the cost of an in-
crease in false positives (i. e., “bogus” instances misclassified
as “real”). This naturally depends on the number of human
experts being available for manual inspection of all instances
classified as “real” sources by the model.

To quantify the performance of a model across a range of
thresholds, one can make use of so-called receiver operating

characteristic (ROC) curves (Fawcett 2006). Here, the recall
tp · (tp + f n)�1 = tp · P�1 is also called true positive rate

(TPR), where P denotes the number of all positive (“real”)
instances. Accordingly, one can define the false positive rate

(FPR) as f p · ( f p + tn)�1 = f p · N�1, where N corresponds
to all negative (“bogus”) objects. A classifier assigning only
the class “real” to all instances would therefore achieve an
optimal TPR of 1.0, but also a potentially very large FPR.
Ideally, one would like to have a large TPR and a small FPR;
a ROC curve captures this trade-o↵.

In Figure 13 the ROC curves for various models are
shown. Of the models plotted, Net3 has the best perfor-
mance, which we can verify by calculating the area under

the ROC curve (AUC). The AUC values for the models are
given in Table 3. To test the significance of the di↵erences in
AUC values, we apply two statistical tests for ROC curves:
the so-called DeLong (DeLong et al. 1988) and the boot-

strap (Hanley & McNeil 1983) methods. In both cases, we
test the null hypothesis that the performance of both models
is the same against the alternative hypothesis that Net3 per-
forms better than the random forest (one-sided test). This
results in p-values of 0.0359 and 0.0352, respectively, indi-
cating that Net3 has a significantly better performance than
the state-of-the-art random forest approach. Even though
this improvement seems small, it could result in a large de-
crease in false positives due to the large number of transient
candidates that are generated each night.

The confusion matrix for NET1(32,64) shows that we
have a TPR of 0.956 for the standard threshold of 0.5. By
moving right on the ROC curve, both the TPR and FPR
increase and the decision of which FPR is still deemed ac-
ceptable is up to the user. In the case of transient vetting,
the optimal threshold is determined by the capability to do
follow-up studies on the possible transients and the will-
ingness to search through a lot of extra “bogus” candidates
to find a couple more transients. Such decisions have to be
made per project and based on the human resources that
are available to manually check the output of the processing
pipelines.

5 CONCLUSIONS AND OUTLOOK

We propose deep convolutional neural networks for the task
of detecting astrophysical transients in future all-sky survey

Table 3. AUC for the di↵erent models.

Model AUC

Random forest 0.9907
Net1(32,64) 0.9914
Net3 0.9972
E2 0.9946

Figure 13. ROC curves for various models. The individual per-
formances for a threshold of 0.5 are marked for each curve.

telescopes. The currently used state-of-the-art approach is
based on feature extraction and a subsequent application
of random forest algorithms. In our experimental evalua-
tion, we demonstrate that even conceptually simple net-
works yield a competitive performance, which can be im-
proved further via deeper architectures, data augmentation
steps, and ensembling techniques. It is also worth mention-
ing that the networks considered also perform well (or even
better) by just using template and target images, i.e., the
networks do not rely on image subtraction. This might pave
the way for future classification pipelines not containing im-
age subtraction preprocessing steps.

The machine learning models proposed in this work can
be adapted and extended in various ways. Future telescope
projects will produce significantly more data and we expect
that taking such additional training instances into account
will be beneficial to further improve the classification perfor-
mances. The detection of extremely rare objects or artefacts
will always depict a problem (even with better models due to
many more objects being considered per night). Appropri-
ate data preprocessing and augmentation steps conducted
in the training phase might be one way to handle such in-
stances correctly. In addition, adapting deep convolutional
neural networks to the specific needs of the tasks at hand
might be essential to cope with upcoming learning scenarios
in this field (e.g., by considering specific loss functions that
are suitable for extremely unbalanced datasets). We plan to
investigate such important and interesting extensions in the
near future.
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Table 1. Features used as input for the random forest models.

Feature Description

xsub x coordinate on di↵erence image, in pixels
ysub y coordinate on di↵erence image, in pixels
esub ellipticity of source on di↵erence image
thsub direction of semi-major axis of source on di↵erence image
fwhmsub full width at half maximum of all di↵erence image sources
f4sub flux within 4-pixel aperture in di↵erence image
f8sub flux within 8-pixel aperture in di↵erence image
flagsub sextractor source flags in di↵erence image
starsub sextractor star-galaxy score in di↵erence image
xref x coordinate on template image, in pixels
yref x coordinate on template image, in pixels
eref ellipticity of source on template image
thref semi-major axis of source on template image
fwhmref full width at half maximum of all template image sources
f4ref flux within 4-pixel aperture in template image
flagref sextractor source flags in template image
starref sextractor star-galaxy score in template image
enew ellipticity of source on di↵erence image
thnew semi-major axis of source on di↵erence image
fwhmnew full width at half maximum of all target image sources
f4new flux within 4-pixel aperture in target image
flagnew sextractor source flags in target image
starnew sextractor star-galaxy score in target image
n2sig3 number of at least 2-sigma negative pixels in 3x3 box in di↵erence image
n3sig3 number of at least 3-sigma negative pixels in 3x3 box in di↵erence image
n2sig5 number of at least 2-sigma negative pixels in 5x5 box in di↵erence image
n3sig5 number of at least 3-sigma negative pixels in 5x5 box in di↵erence image
nmask number of masked pixels in 5x5 box in the target image
Rfwhm fwhmnew/fwhmref ratio
goodcn surface density of detected sources on subtraction
subconv direction of convolution (template-target or target-template)
nndref distance in pixels to nearest neighbour source in template image
nndnew distance in pixels to nearest neighbour source in target image
apsig4 signal-to-noise ratio of 4-pixel aperture flux in di↵erence image
apsig8 signal-to-noise ratio of 4-pixel aperture flux in di↵erence image
normrms ratio of square root of isophotal area in di↵erence image to fwhmsub
normfwhm ratio of full width at half maximum in di↵erence image to fwhmsub
Rfref signal-to-noise ratio of nearest counterpart in di↵erence image
Raref ratio of candidate semi-major axis to all sources in di↵erence image
Reref ratio of candidate ellipticity to all sources in di↵erence image
Dthref di↵erence in candidate semi-major axis direction from all sources in di↵erence image
Rfnew signal-to-noise ratio of nearest counterpart in target image
Ranew ratio of candidate semi-major axis to all sources in target image
Renew ratio of candidate ellipticity to all sources in target image
Dthnew target in candidate semi-major axis direction from all sources in target image

above with new features intended to capture the global prop-
erties of the images - these flag obviously bad (e.g., trailed)
images and subtractions. We also included SExtractor er-
ror codes and star-galaxy separation scores; the latter pro-
vide a redundant output from a di↵erent method (neural
network) that may capture aspects of point sources not cov-
ered by our existing features.

As with many other machine learning models, the clas-
sification performance depends on the particular parameter
assignments used to generate the random forest. However,
random forests are usually very robust against small modi-
fications, i. e., given reasonable parameter assignments, the
validation performance is often very similar. The main pa-
rameters that need to be tuned are: (1) the number of es-
timators, (2) the number of features tested per split, (3)

if bootstrap samples are used or not, and (4) the stopping
criterion used. Furthermore, variations of classical random
forests exist such as the extremely randomised trees (Geurts
et al. 2006), which consider“random”thresholds as potential
splitting candidates.

For our analysis, we have tested di↵erent random for-
est variants and parameter assignments. However, for sim-
plicity, we only report results of a single configuration (all
others yielded very similar performances). In particular, we
consider the Gini index to measure the impurity of the inter-
nal node splits, make use of 500 trees built using a bootstrap
sample, resort to fully-grown trees, and test

p
d features per

node split, where d is the number of overall features consid-
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Figure 3. A convolutional neural network with one convolutional and one pooling layer, followed by two fully connected standard hidden
layers and an output layer. Prior to the fully-connected hidden layers, the pixel-based feature maps are flattened, meaning that all pixel
values of all feature maps of the previous layers are concatenated to form a single vector. Generally, by resorting to multiple convolutional
and pooling layers, convolutional neural networks are capable of learning a hierarchical feature representation of the input instances –
starting with simple features at early layers and more complex features towards the end.

3 DEEP TRANSIENT DETECTION

In this section we provide details of the di↵erent models
considered for this paper in order to detect transients.

3.1 Imaging Data

Our models were trained on early science operations, prior
to April 2015, imaging data from the Skymapper Supernova

and Transient Survey. The di↵erence imaging pipeline is de-
scribed in more detail in (Scalzo et al. 2017). The main image
processing tools used are the SWarp (Bertin et al. 2002) for
astrometric registration and resampling to a common coor-
dinate system, SExtractor (Bertin & Arnouts 1996) for
source detection and photometry, and HOTPANTS2 for
photometric registration and image subtraction. Data for
each example include the template image, the target image,
and the di↵erence image. In Figure 4 we show examples of
both “real” and “bogus” taken from the dataset.

We trained our random forest models on features ex-
tracted from the images (Table 1), while the convolutional
neural networks were applied directly on the images them-
selves. To evaluate the performance of each model, we split
the available data into a training set and a test set of roughly
equal size.

To make the most of our limited number of “real” train-
ing instances, we enabled training on multiple distinct detec-
tions of the same transient candidate on di↵erent nights; this
allowed us to sample more real variation in seeing and sky
background level for the same candidate than we would if we

2 http://www.astro.washington.edu/users/becker/v2.0/hotpants.html

included only one detection of each candidate. Because we
expected the classifier results to also be a↵ected by details
of the host galaxy placement and morphology, which would
be the same for multiple observations of the same transient,
we placed all observations of the same object (e.g., a super-
nova) within the same partition (i. e., training or test); this
choice enables our training methodology to make honest es-
timates of the generalization error to entirely new transient
sources with di↵erent host galaxy properties. Apart from
this constraint, the partition each individual transient can-
didate occupied was chosen at random. The training set con-
tains 2,237 instances (2,010 “bogus” and 227 “real”) of 851
distinct “bogus” and 140 distinct “real” sky objects. The test
set contains 2,236 instances (2,009 “bogus” and 227 “real”)
of 851 distinct “bogus” and 141 distinct “real” sky objects.

We removed those instances that were located less than
15 pixels from the edge of a CCD, in both the training and
test sets, since the pixel cut-outs we use for our analysis (see
Section 3.3) would be incomplete in these cases. This yields
a final training set with 2,162 instances (1,939 “bogus” and
223 “real”) and a test set containing 2,169 instances (1,942
“bogus” and 227 “real”).

3.2 Baseline: Random Forests & Features

For the use of random forests, we extract various features
from the imaging data (see Table 1). Most of the features are
taken from Bloom et al. (2012). A large fraction of the fea-
tures reflect properties of the source in the di↵erence image,
as well as some contextual information such as the presence
of, and distance from, a nearby neighbour in the template
image (Bloom et al. 2012). We supplemented the features
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4.2.7 Receiver Operating Characteristic (ROC) Analysis

All results reported so far are based on the default threshold
of 0.5 for deciding which class an instance should belong to
given the probability scores. For random forests, this simply
corresponds to a majority vote among the individual trees.
For the convolutional neural networks, it means the class
with the highest probability. In general, many more “bogus”
than “real” instances are observed in practice and one might
want to adapt the choice for the threshold. For example, one
might prefer finding more “real” sources at the cost of an in-
crease in false positives (i. e., “bogus” instances misclassified
as “real”). This naturally depends on the number of human
experts being available for manual inspection of all instances
classified as “real” sources by the model.

To quantify the performance of a model across a range of
thresholds, one can make use of so-called receiver operating

characteristic (ROC) curves (Fawcett 2006). Here, the recall
tp · (tp + f n)�1 = tp · P�1 is also called true positive rate

(TPR), where P denotes the number of all positive (“real”)
instances. Accordingly, one can define the false positive rate

(FPR) as f p · ( f p + tn)�1 = f p · N�1, where N corresponds
to all negative (“bogus”) objects. A classifier assigning only
the class “real” to all instances would therefore achieve an
optimal TPR of 1.0, but also a potentially very large FPR.
Ideally, one would like to have a large TPR and a small FPR;
a ROC curve captures this trade-o↵.

In Figure 13 the ROC curves for various models are
shown. Of the models plotted, Net3 has the best perfor-
mance, which we can verify by calculating the area under

the ROC curve (AUC). The AUC values for the models are
given in Table 3. To test the significance of the di↵erences in
AUC values, we apply two statistical tests for ROC curves:
the so-called DeLong (DeLong et al. 1988) and the boot-

strap (Hanley & McNeil 1983) methods. In both cases, we
test the null hypothesis that the performance of both models
is the same against the alternative hypothesis that Net3 per-
forms better than the random forest (one-sided test). This
results in p-values of 0.0359 and 0.0352, respectively, indi-
cating that Net3 has a significantly better performance than
the state-of-the-art random forest approach. Even though
this improvement seems small, it could result in a large de-
crease in false positives due to the large number of transient
candidates that are generated each night.

The confusion matrix for NET1(32,64) shows that we
have a TPR of 0.956 for the standard threshold of 0.5. By
moving right on the ROC curve, both the TPR and FPR
increase and the decision of which FPR is still deemed ac-
ceptable is up to the user. In the case of transient vetting,
the optimal threshold is determined by the capability to do
follow-up studies on the possible transients and the will-
ingness to search through a lot of extra “bogus” candidates
to find a couple more transients. Such decisions have to be
made per project and based on the human resources that
are available to manually check the output of the processing
pipelines.

5 CONCLUSIONS AND OUTLOOK

We propose deep convolutional neural networks for the task
of detecting astrophysical transients in future all-sky survey

Table 3. AUC for the di↵erent models.

Model AUC

Random forest 0.9907
Net1(32,64) 0.9914
Net3 0.9972
E2 0.9946

Figure 13. ROC curves for various models. The individual per-
formances for a threshold of 0.5 are marked for each curve.

telescopes. The currently used state-of-the-art approach is
based on feature extraction and a subsequent application
of random forest algorithms. In our experimental evalua-
tion, we demonstrate that even conceptually simple net-
works yield a competitive performance, which can be im-
proved further via deeper architectures, data augmentation
steps, and ensembling techniques. It is also worth mention-
ing that the networks considered also perform well (or even
better) by just using template and target images, i.e., the
networks do not rely on image subtraction. This might pave
the way for future classification pipelines not containing im-
age subtraction preprocessing steps.

The machine learning models proposed in this work can
be adapted and extended in various ways. Future telescope
projects will produce significantly more data and we expect
that taking such additional training instances into account
will be beneficial to further improve the classification perfor-
mances. The detection of extremely rare objects or artefacts
will always depict a problem (even with better models due to
many more objects being considered per night). Appropri-
ate data preprocessing and augmentation steps conducted
in the training phase might be one way to handle such in-
stances correctly. In addition, adapting deep convolutional
neural networks to the specific needs of the tasks at hand
might be essential to cope with upcoming learning scenarios
in this field (e.g., by considering specific loss functions that
are suitable for extremely unbalanced datasets). We plan to
investigate such important and interesting extensions in the
near future.
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Figure 10. Misclassifications made by Net3 with data augmen-
tation (“real” instances misclassified as “bogus”). The di↵erent
colours along with the colour bars illustrate the pixel intensities
per image.

4.2.6 Ensembles

A common way to improve the classification performance
is to consider ensembles of di↵erent models. As mentioned
above, random forests depict ensembles of classification or
regression trees and usually yield a significantly better per-

(a) Net1(32,64)

(b) Net3

Figure 11. Classification performance of Net1(32,64) and Net3
(with data augmentation) in case only the template and target
(left) or the di↵erence images (right) are provided to the networks.

(a) E1 (b) E2

Figure 12. Confusion matrices for two ensemble classifiers. E1
combines three di↵erent neural networks. E2 two neural networks
and a random forest.

formance than the individual models. We consider two en-
sembles E1 and E2:

• E1: Net2 (data augmentation), Net3 (data augmenta-
tion), Net1(32,64) (template and target images only), and
Net3 (data augmentation, template and target images only).

• E2: Net2 (data augmentation), Net3 (data augmenta-
tion), and the random forest model.

The results are shown in Figure 12. It can be seen that en-
sembling reduce the number of misclassifications. Further-
more, incorporating the random forest appears to be benefi-
cial, potentially due to features that capture the character-
istics of special cases.

The improvements over the best-performing single con-
volutional neural networks are really small and, due to the
relatively small test dataset, we do not argue that the en-
sembles outperform the individual classifiers. Nevertheless,
the ensembles might exhibit a slightly better performance
on completely new, unseen data since the combination of
many di↵erent classifiers usually yield more “stable” results.
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Les 14 classes...

credit: E. Gangler

The Metric
● The metric needs to be probabilistic
● The metric depends on the science goal
● We need to select a metric that balances a variety of goals

Malz et al. 2018

metric:
each class is roughly 
equally important for 

the final score.

Models

Kessler et al. 2019
Slide credit: Rick Kessler
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Figure 3. Examples of GP models for SN Ia light curves. Left: A well-sampled, high signal-to-noise light curve. Right: a
poorly-sampled, lower signal-to-noise light curve. The mean GP flux prediction for each band is shown as a solid line surrounded
by a shaded contour indicating the one-standard-deviation uncertainty on the flux prediction.

producing photometric classifiers have seen strongly de-
graded performance when trained on non-representative
datasets, and have concluded that obtaining represen-
tative training sets is essential for photometric classi-
fication (e.g. L16). More recently, R18 showed that
it is possible to apply various transformations to the
light curves in the original training set to generate a
new training set that is more representative of the test
set. We call this process “augmentation” of the training
set. Using their STACCATO framework for augmentation,
R18 train a classifier whose performance is significantly
better (AUC of 0.96 on the SNPhotCC dataset) than
one trained on the original non-representative training
set (AUC of 0.93), and approaching the performance
of a classifier trained on a representative training set
(AUC of 0.977).
In STACCATO, GPs are fit to the observations of each

object in the training set, with separate GPs for each
band. “Synthetic light curves” are then produced for
each object by sampling from the GPs. Each sample
from a GP produces a di↵erent continuous function that
can be interpreted as a synthetic light curve that is con-
sistent with the observations of the original object. By
repeatedly sampling from the GPs, many synthetic light
curves can be produced for each object in the training
set. In STACCATO, for every object, a “propensity score”
is calculated, which is an estimate of how likely the ob-
ject is to make it into the training set. The propen-
sity score is then used to determine how many di↵erent
synthetic light curves to make for each object in the
training set. By generating di↵erent number of syn-
thetic light curves for each object in the training set,
an “augmented” training set of synthetic light curves is

produced that is more representative of the test set. Fi-
nally, a classifier is trained on the set of synthetic light
curves.
Our approach to augmentation di↵ers in several ways

from the approach of R18. In STACCATO, di↵erent syn-
thetic light curves are generated for each object, but
these synthetic light curves all use the same set of obser-
vations. Instead, our augmentation procedure involves
simulating entirely new sets of observations for each ob-
ject. When augmenting a light curve from the train-
ing set, we throw out large blocks of observations to
simulate season boundaries, take originally well-sampled
light curves and degrade their sampling, and add noise
to the light curve in di↵erent bands. We measure the
cadence and depth of observations in the test set, and
generate augmented light curves that have similar ca-
dences and depths of observations to the test set. This
ensures that the light curves in the augmented training
set have observations that are representative of the ob-
servations of light curves in the test set regardless of the
light curve quality in the original training set. We also
interpret the GP uncertainty as an uncertainty due to
poor measurement rather than intrinsic variation of the
light curve. For this reason, we choose to use the mean
prediction of the GP for our augmented light curves, and
we propagate the GP prediction uncertainties into the
uncertainties of the generated observations.
Additionally, we introduce the concept of “redshift

augmentation” where we take an object in the training
set and simulate observations of it at di↵erent redshifts.
Because we are using a Gaussian process in both time
and wavelength, we can shift the redshift of an object by
evaluating the Gaussian process predictions for the light

GP modelling 12 Boone

Figure 4. Example of a feature that probes the fit quality. Left panel: Example of the GP model for a SN Ia light curve
with no data before maximum light. See Figure 3 for details of the plot. The GP is unable to constrain the rise time, and
produces a model with large uncertainties. Right panel: Histogram of the measured rise times for SNe Ia. The rise time is
well-constrained (blue histogram) for objects with an observation between 20 observer-frame days before maximum light and
5 days after maximum light. Objects without such an observation (orange histogram) have rise time measurements that are
biased to higher values with large dispersions.

Table 4. Optimized hyperparameter values
used for the LightGBM model.

Hyperparameter name Value

boosting type gbdt

learning rate multi logloss

colsample bytree 0.05

reg alpha 0

reg lambda 0

min split gain 10

min child weight 2000

max depth 7

num leaves 50

early stopping rounds 50

ent sets of features and target metrics, so for simplicity
we use the same hyperparameter values for all of the
analysis variants.
We train two separate versions of our classifier, one of

which is optimized for performance on the flat-weighted
metric defined in Equation 2, and one of which is op-
timized for performance on the redshift-weighted met-
ric defined in Equation 3. Both of these classifiers are
trained on the same augmented training set. For the
training set, the Kaggle metric is nearly identical to the
flat-weighted metric, so we do not train a separate clas-
sifier to optimize it.

LightGBM outputs a measure of how much each fea-
ture contributed to the classification. We call this mea-
sure the “importance” of that feature for classification.
The importance of each feature for a classifier trained
to optimize the flat-weighted metric are shown in Fig-
ure 5. The most important features for classification are
the photometric redshift of the host galaxy, the peak
brightness, and the colors of the light curves at maxi-
mum light. The feature importance plot for a classifier
trained to optimize the redshift-weighted metric looks
nearly identical.

4. RESULTS

4.1. Overall performance

The results of both of our classifiers for many of the
metrics defined in 2.2 are shown in Table 5. In general,
we find that both classifiers have similar performance
across all of these global metrics. In the blinded phase of
the PLAsTiCC, an earlier version of our algorithm won
the challenge with a score of 0.680 on the Kaggle metric
(lower is better). The updated algorithm presented in
this paper achieves a slightly better score of 0.649 on this
metric. This improvement mainly came from restricting
the allowable redshift range for the data augmentation
procedure and propagating uncertainties. Our original
augmentation algorithm was allowed to modify the red-
shifts of objects arbitrarily. At high redshifts, unreliable
extrapolations of the GP models far into the restframe
UV were being used to produce the light curves. Addi-
tionally, we were not propagating the GP modeling un-
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Figure 8. Completeness of the sample of SNe Ia in the WFD sample of the test set as a function of redshift for a fixed overall
sample purity of 95% when di↵erent biases have been introduced in the training set. Left panel: Results for classifiers trained on
the flat-weighted metric. Right panel: Results for classifiers trained on the redshift-weighted metric. The flat-weighted classifier
is highly sensitive to the redshift distribution of objects in the training set while the redshift-weighted classifier shows very little
di↵erence in performance.

full intrinsic diversity of objects of the test set. Note
that the augmentation procedure does not attempt to
simulate new objects, it simply produces light curves
for previously-measured objects under di↵erent observ-
ing conditions and at di↵erent redshifts. If there are
rare subtypes of objects that only appear in the test
set (e.g. peculiar supernovae), and that have very dif-
ferent light curves from the objects in the training set,
then the augmentation procedure will not be able to pro-
duce light curves that are similar to the ones observed
for these objects. This issue can be addressed by using
active learning when obtaining the training set used for
classification, as described in Ishida et al. (2019). In this
procedure, the output of the classifier is used to deter-
mine which objects should be targeted for spectroscopic
followup. This helps to ensure that the original training
set contains examples of all of the di↵erent object types
that are present in the full dataset.
The second major challenge for representativeness is

in handling the di↵erent redshift distributions for object
types between the training and test sets. As discussed
in Section 3.4, the rates of di↵erent transients are not
currently known well enough as a function of redshift to
produce an augmented dataset that is truly representa-
tive of the test dataset. Instead, by training a classi-
fier on a redshift-weighted metric, we obtain a classifier
whose output is independent of the redshift distributions
of the classes in the training sample, as shown in Sec-
tion 4.2. Such a classifier e↵ectively produces classifica-
tion probabilities assuming the same arbitrarily chosen
redshift distribution for every class. In our implementa-

tion, we are using a log-uniform distribution in redshift
for our classification, and this assumed distribution can
easily be propagated to further analyses. Analyses that
depend on photometric classification, such as cosmol-
ogy with SNe Ia, are already typically required to fit
for or model the rates and selection e�ciencies of di↵er-
ent transient types as a function of redshift to achieve
their science goals. A redshift-weighted classifier pro-
duces output classification probabilities that depend on
known redshift distributions, and the biased redshift dis-
tributions in the original training set will have no e↵ect
on the classification probabilities.
Our redshift-dependent classifier specifically ad-

dressed the issue of having di↵erent redshift distri-
butions between the training and test sets. A simi-
lar procedure could be applied to other observables of
the transients, including but not limited to their peak
brightnesses, host properties, or rise and fall times.
Assuming that these properties can be measured accu-
rately enough in the training set, we can simply reweight
objects in the training set to force the classifier to as-
sume the same arbitrarily chosen distribution over this
observable for each object type. This e↵ectively means
that the classifier cannot learn anything from the distri-
bution of this observable, or any indirect measurements
of the distribution of this observable to classify objects.
The observable only needs to be available for the train-
ing set, and does not necessarily need to be a feature
that is used for classification. For example, our redshift-
weighted classifier is reweighted using the spectroscopic
host redshifts of the objects in our training sample, but
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ABSTRACT

Upcoming astronomical surveys such as the Large Synoptic Survey Telescope (LSST) will rely on
photometric classification to identify the majority of the transients and variables that they discover.
We present a set of techniques for photometric classification that can be applied even when the training
set of spectroscopically-confirmed objects is heavily biased towards bright, low-redshift objects. Using
Gaussian process regression to model arbitrary light curves in all bands simultaneously, we “augment”
the training set by generating new versions of the original light curves covering a range of redshifts
and observing conditions. We train a boosted decision tree classifier on features extracted from the
augmented light curves, and we show how such a classifier can be designed to produce classifications
that are independent of the redshift distributions of objects in the training sample. Our classification
algorithm was the best-performing among the 1,094 models considered in the blinded phase of the
Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC), scoring 0.468 on
the organizers’ logarithmic-loss metric with flat weights for all object classes in the training set, and
achieving an AUC of 0.957 for classification of Type Ia supernovae. Our results suggest that spec-
troscopic campaigns used for training photometric classifiers should focus on typing large numbers of
well-observed, intermediate redshift transients instead of attempting to type a sample of transients
that is directly representative of the full dataset being classified. All of the algorithms described in
this paper are implemented in the avocado software packagea).

Keywords: photometric classification — LSST — transients — supernovae

1. INTRODUCTION

Upcoming large-scale optical astronomical surveys
will collect images for most of the visible sky on a
nightly to weekly basis, discovering large numbers of
astronomical transients and variables every night. Clas-
sifying these objects is essential to perform further sci-
entific analyses on them. Traditionally, transients and
variables are classified using spectroscopic followup.
However, spectroscopic resources are limited, so future
surveys will have to rely heavily on photometric classi-
fication methods.
One major application of photometric classification

is cosmological measurements with Type Ia supernovae
(SNe Ia). Distance measurements with SNe Ia led to
the initial discovery of the accelerating expansion of the

Corresponding author: Kyle Boone

kboone@berkeley.edu

a) https://www.github.com/kboone/avocado

universe (Riess et al. 1998; Perlmutter et al. 1999). Sub-
sequent studies have collected a sample of over 1,000
spectroscopically-confirmed SNe Ia, providing increas-
ingly strong constraints on the properties of dark en-
ergy (Knop et al. 2003; Riess et al. 2004; Astier et al.
2006; Kowalski et al. 2008; Suzuki et al. 2012; Betoule
et al. 2014; Scolnic et al. 2018). With modern surveys,
the discovery rate of SNe Ia is rapidly outpacing the
growth of resources to acquire spectroscopic classifica-
tions. The Dark Energy Survey (DES, The Dark En-
ergy Survey Collaboration 2005) was projected to ac-
quire spectroscopic classifications for only 20% of their
sample of up to 4,000 SN Ia light curves (Bernstein et al.
2012). Similarly, the Pan-STARRS Medium Deep Sur-
vey (PS1, Kaiser et al. 2010) discovered over 5,000 likely
supernovae, but only obtained spectroscopic classifica-
tions for 10% of this sample (Jones et al. 2017). Upcom-
ing large-scale surveys such as the Large Synoptic Sur-
vey Telescope (LSST, LSST Science Collaboration et al.
2009) are projected to obtain light curves for ⇠100,000
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• common algorithms perform great, e.g. BDTs 
• feature extraction is key (domain knowledge + irregular time series) 
• labeled set (for training) was crucial, not large nough, not representative of the test set

But feature extraction biases samples!
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Inputs:


- Flux in different band-passes

- Flux measurement errors

- Time-step between measurements

- Optional: other features (e.g. host-

redshift)

Part II: typing with photometry 

Allows using irregular time 
series without extrapolation!
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Deep learning for cosmology


• Recurrent Neural Networks (RNNs):

• LSTM

• GRU


• Bayesian RNNs

•  Variational (Gal+2016)

• Bayes by Backprop 

(Fortunato+2017)

• Convolutional NN

Part II: typing with photometry 

Other time-series applications with: 
RNNs: Charnock & Moss 2016, Muthukrishna+2019 

CNN: Kimura +2017
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|x,w) where in

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

our case, P is a categorical distribution, y is the classifica-
tion target, x is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
using a maximum likelihood criterion: given a set of labeled
training observations D = (xi, yi)i=1...N , we minimize the
negative log likelihood N LL = minw

ÕN
i=1 � logP(yi |xi,w) with
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|x,w) where in

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

our case, P is a categorical distribution, y is the classifica-
tion target, x is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
using a maximum likelihood criterion: given a set of labeled
training observations D = (xi, yi)i=1...N , we minimize the
negative log likelihood N LL = minw

ÕN
i=1 � logP(yi |xi,w) with
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|x,w) where in

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

our case, P is a categorical distribution, y is the classifica-
tion target, x is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
using a maximum likelihood criterion: given a set of labeled
training observations D = (xi, yi)i=1...N , we minimize the
negative log likelihood N LL = minw

ÕN
i=1 � logP(yi |xi,w) with
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|x,w) where in

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

our case, P is a categorical distribution, y is the classifica-
tion target, x is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
using a maximum likelihood criterion: given a set of labeled
training observations D = (xi, yi)i=1...N , we minimize the
negative log likelihood N LL = minw

ÕN
i=1 � logP(yi |xi,w) with
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|x,w) where in

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

our case, P is a categorical distribution, y is the classifica-
tion target, x is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
using a maximum likelihood criterion: given a set of labeled
training observations D = (xi, yi)i=1...N , we minimize the
negative log likelihood N LL = minw

ÕN
i=1 � logP(yi |xi,w) with
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96.8 ± 0.1. Although both methods were trained with di↵er-
ent samples, our accuracies are comparable. Our algorithm
seems to be more sensitive to redshift information providing
up to 4% accuracy increase for this sample size.

3.4 Redshift, contamination and e�ciency

The addition of photometric redshifts, which are available
for all our simulated supernovae, increases the accuracy of
our baseline RNN by 2% for photometric and 3% for spectro-
scopic redshifts. Since spectroscopic redshifts are available
for a subset of supernovae, we only evaluate performance on
light-curves for which this redshift is available. We will con-
tinue using this subsample performance throughout the rest
of this manuscript.

A photometrically classified type Ia supernova sample is
expected to have a small percentage of contamination from
other supernova types. As mentioned in Section 2.1, our sim-
ulations are realistic and therefore include known SN rates
and detection e�ciencies for a survey such as DES. There-
fore, our estimates are a good indicator of the expected con-
tamination by core-collapse SNe in a photometrically classi-
fied SN Ia sample.

We find that the contamination (or False Positive Rate)
is dominated by types Ib and Ic supernovae when classify-
ing without redshift information. This contamination peaks
at simulated redshift between 0.2 for Ic and 0.4 for Ib and
for our Baseline RNN is in the order of a couple percent for
Ib and Ic SNe and under 1% for other types. Contamina-
tion levels are found to be not correlated with the number
of light-curves for training. Within this 1% contamination
there are type IIL and IIP SNe which are more numerous
than type Ic in our simulations but are mostly correctly
classified by SuperNNova. Host-galaxy redshifts increase the
performance of our classifier reducing contamination. In par-
ticular simulated supernovae from Ib, and Ic templates are
better classified, reducing their contamination contribution
in our Baseline RNN from 2.5±0.2 and 1.3±0.1 respectively
to < 0.1% with host redshifts. Interestingly, classification of
other core-collapse SNe such as IIP, IIn and IIL1 is barely
a↵ected by this additional information.

Selection e�ciency is an important metric when clas-
sifying type Ia supernovae. For spectroscopically selected
samples, selection e�ciencies drop quickly for faint events
(Kessler et al. 2018; D’Andrea et al. 2018). Our Baseline
RNN performs superbly, with almost constant e�ciency as
a function of simulated redshift with an average e�ciency of
97.3 ± 0.4 without and up to 99.61 ± 0.09 with host-galaxy
redshift information. Such high e�ciencies enable probing
new supernovae populations at high-redshift and can have
an important e↵ect on selection biases found currently in
cosmology as will be discussed in Section 5.

Furthermore, one of the biggest limitation of photomet-
rically classified samples is the expected contamination level
by other supernova types which may a↵ect statistical anal-
yses (Hlozek et al. 2012; Jones et al. 2018). It has also been
shown that for photometrically classified SNe Ia there is a
compromise between sample purity and the e�ciency of the
classifier (Möller et al. 2016; Dai et al. 2018). We find that
our highly e�cient algorithm does not compromises the pu-
rity of the sample. On the contrary, the purity of a SN Ia
sample classified without redshift is 95.4± 0.5, while the ad-

Figure 3. Ia vs. non-Ia classification accuracy with respect to
training set size using the SALT2 fitted dataset. Top axis indi-
cates the used data fraction and the bottom axis number of su-
pernovae. Accuracy of baseline RNN is shown in indigo squares,
CNN in grey diamonds and Random Forest in orange circles. Er-
ror bars are one standard deviation from the accuracy distribution
for five runs with di↵erent random seeds to initialize the networks
weights. Classification using: no host-galaxy redshifts are empty,
photometric host-galaxy redshifts bottom filled and spectroscopic
host redshifts fully filled. Our Baseline RNN achieves greater ac-
curacies than the other classifiers for the same dataset and explicit
redshift information.

dition of redshifts increases the sample purity to 99.49±0.05.
This level of contamination, less than 1%, is within the cur-
rent range of contamination of spectroscopically classified
samples currently used in cosmological and astrophysical
analyses (Rubin et al. 2015).

3.5 Early light-curve classification

Having demonstrated the high performance of our baseline
RNN in comparison to other classification methods, we now
turn to explore other capabilities of SuperNNova. To do
so, we use the complete dataset which contains light-curves
that are not successfully fitted with SALT2. This increases
the number and diversity of the training set for both core-
collapse and type Ia supernovae. The e↵ect of the SN di-
versity on the classifier performance is further studied in
Section 5.2.

While there are currently a wealth of algorithms that
can classify complete light-curves, only a handful are able to
classify partial light-curves. Our RNN architecture allows us
to accurately classify supernovae with a limited number of
photometric epochs. At each light-curve time step, as more
information is added, the RNN hidden state is updated, al-
lowing the network to adapt its predictions.

In Table 2 we present our baseline RNN accuracies for
partial light-curve classification for the whole SALT2 fitted

and complete datasets. The number of photometric epochs
(nights) available at di↵erent stages of the light-curves are
shown in Figure 4. In average, we require only ⇡ 5 observ-
ing nights to obtain classification accuracies > 80%. Since
simulated light-curves can contain photometric nights be-
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

ing a high-accuracy classification, > 84% right before the
maximum of a supernova light-curve. Further, we show that
the addition of host-galaxy redshifts produce a rise in accu-
racy as high as 12 points.

We note that for spectroscopic redshifts, the complete

sample has lower accuracy when compared with the use of
photometric redshifts. This was not observed in the SALT2

fitted sample and it may be explained by a selection bias
in the complete dataset for supernovae with spectroscopic
redshifts.

When classifying type Ia supernovae before or around
maximum light, we find that contamination is still domi-
nated by Ib supernovae with 9.17 ± 0.19% contribution and
Ib with 3.27± 0.07%. Interestingly, type IIP and IIL2 super-
novae can contribute around 2% of the contamination each,
while this is rarely the case for complete light curve classi-
fication. This may be due to characteristic features of these
light-curves only present after maximum light, such as the
plateau exhibited by type IIp SNe.

In summary, we have shown that SuperNNova is able to
accurately classify light-curves before and at maximum light.
With accuracies ranging from 84.02± 0.21 up to 96.92± 0.26
for the salt fitted dataset, without and with redshifts respec-
tively. SuperNNova opens a path towards e�cient use of
photometric and spectroscopic resources for follow-up. Can-
didates can then be prioritized for diverse science goals in-
cluding targeted samples (e.g. SNe Ia for cosmology) and
improving the SN sample for photometric classification as
recently proposed by Ishida et al. (2018). Such a functional-
ity will be crucial in the upcoming surveys where each night
thousands of transients may be discovered.

3.6 Classifying many supernovae types

There is more to supernovae classification than binary clas-
sification. Time-domain surveys are increasingly exploring
the diversity of supernovae and would benefit from classifi-
cation of multiple supernova classes. We explore ternary (Ia,
Ibc and IIs) and seven-way (Ia, IIP, IIn, IIL1, IIL2, Ib, Ic)
classification tasks. We train with the complete dataset to
obtain a large number of light-curves per target.

For ternary classification, we train with 318, 820 light-
curves per type and for the seven-way classification with
104, 158 per type. Accuracies for these classifications with
and without redshifts are shown in Table 3. For complete
light-curves our method yields unprecedented classification
accuracy, providing a useful tool for obtaining photometric
samples of a diversity of supernovae. Early classification be-
comes a much more challenging tasks and we consequently
observe a notable performance degradation. Nonetheless,
our algorithm provides a reasonable indication of the pos-
sible supernova type and performance is enhanced with the
incorporation of redshift information.

For an equivalent training sample per type, the ternary
or seven-way classification accuracy with or without redshift
and whole light-curves is much lower than for binary classi-
fication (Ia vs. non Ia) as shown in Figure 3. Splitting the
core-collapse supernovae in subclasses adds a new level of
complexity which accounts for the performance drop. Inter-
estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|X,w) where in
our case, P is a categorical distribution, y is the classifica-
tion target, X is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

ing a high-accuracy classification, > 84% right before the
maximum of a supernova light-curve. Further, we show that
the addition of host-galaxy redshifts produce a rise in accu-
racy as high as 12 points.

We note that for spectroscopic redshifts, the complete

sample has lower accuracy when compared with the use of
photometric redshifts. This was not observed in the SALT2

fitted sample and it may be explained by a selection bias
in the complete dataset for supernovae with spectroscopic
redshifts.

When classifying type Ia supernovae before or around
maximum light, we find that contamination is still domi-
nated by Ib supernovae with 9.17 ± 0.19% contribution and
Ib with 3.27± 0.07%. Interestingly, type IIP and IIL2 super-
novae can contribute around 2% of the contamination each,
while this is rarely the case for complete light curve classi-
fication. This may be due to characteristic features of these
light-curves only present after maximum light, such as the
plateau exhibited by type IIp SNe.

In summary, we have shown that SuperNNova is able to
accurately classify light-curves before and at maximum light.
With accuracies ranging from 84.02± 0.21 up to 96.92± 0.26
for the salt fitted dataset, without and with redshifts respec-
tively. SuperNNova opens a path towards e�cient use of
photometric and spectroscopic resources for follow-up. Can-
didates can then be prioritized for diverse science goals in-
cluding targeted samples (e.g. SNe Ia for cosmology) and
improving the SN sample for photometric classification as
recently proposed by Ishida et al. (2018). Such a functional-
ity will be crucial in the upcoming surveys where each night
thousands of transients may be discovered.

3.6 Classifying many supernovae types

There is more to supernovae classification than binary clas-
sification. Time-domain surveys are increasingly exploring
the diversity of supernovae and would benefit from classifi-
cation of multiple supernova classes. We explore ternary (Ia,
Ibc and IIs) and seven-way (Ia, IIP, IIn, IIL1, IIL2, Ib, Ic)
classification tasks. We train with the complete dataset to
obtain a large number of light-curves per target.

For ternary classification, we train with 318, 820 light-
curves per type and for the seven-way classification with
104, 158 per type. Accuracies for these classifications with
and without redshifts are shown in Table 3. For complete
light-curves our method yields unprecedented classification
accuracy, providing a useful tool for obtaining photometric
samples of a diversity of supernovae. Early classification be-
comes a much more challenging tasks and we consequently
observe a notable performance degradation. Nonetheless,
our algorithm provides a reasonable indication of the pos-
sible supernova type and performance is enhanced with the
incorporation of redshift information.

For an equivalent training sample per type, the ternary
or seven-way classification accuracy with or without redshift
and whole light-curves is much lower than for binary classi-
fication (Ia vs. non Ia) as shown in Figure 3. Splitting the
core-collapse supernovae in subclasses adds a new level of
complexity which accounts for the performance drop. Inter-
estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|X,w) where in
our case, P is a categorical distribution, y is the classifica-
tion target, X is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
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Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

using a maximum likelihood criterion: given a set of la-
beled training observations D = (Xk, yk )k=1...K , we minimize
the negative log likelihood N LL = minw

ÕK
k=1 � logP(yk |Xk,w)

with gradient descent. Weights are determined during train-
ing and then used to obtain classifications ŷ of new, unla-
beled data.

Moving on to the Bayesian picture, instead of having
a fixed value for each weight in the neural network, we
now assign a distribution to each weight. We seek to find
the posterior distribution of the weights: P (w|D) which will
then allow us to make predictions for new, unlabeled data
points: P(ŷ|X) =

Ø
P(ŷ|X,w)P (w|D) dw. Typically, the pos-

terior distribution is intractable for deep neural networks.
To sidestep this di�culty, we can approximate the posterior
with a simple parametric distribution q(w|✓) called the vari-

ational distribution. In the gaussian case, ✓ = (µ,�), respec-
tively the mean and standard deviation of the distribution.
Neural networks are then trained to minimize a divergence
between the posterior distribution and its variational ap-

proximation:

✓̂ = min
✓

KL (q(w|✓)| |P(w|D)) (4)

= min
✓


KL (q(w|✓)| |P(w)) �

π
q(w|✓) logP(D|w)dw

�
(5)

= min
✓

⇥
KL (q(w|✓)| |P(w)) � Eq(w |✓)(logP(D|w))

⇤
(6)

where P(w) is a user-specified prior distribution over the
neural network’s weights. This new cost function is made up
of two terms. The first one, the KL term, is a regularization
term: it penalizes variational distributions which di↵er too
much from the prior. The second one is a likelihood term;
our model must be flexible enough to handle the complex-
ity of the data distribution. Bayesian optimization of neural
networks is a trade-o↵ between those two terms.

We will now review two ways in which the variational
distribution can be specified and investigate their applica-
tions to supernova cosmology. Results in the following sec-
tions use the complete dataset for training, validation and
testing.

4.2 Variational

Following (Gal & Ghahramani 2015b,a) we define our varia-
tional distribution to factorize over each row of the network’s
weight matrices: q(wk ) = pN(0,�2

I)+(1�d)N(µk,�2
I) where

d is the dropout probability, N the normal distribution, µk
is the variational parameter we optimize over with our gradi-
ent descent algorithm, �2 is a fixed, small constant and I the
identity. Using a normal prior on the weights, the KL term
can be approximated as L2 regularization on the network’s
weights. Evaluating this network then becomes equivalent to
performing dropout (i.e. masking with zeros) on the rows of
the weight matrices (or equivalently, on each layer’s input).
The network can then be trained as usual, as long as we use
the same dropout mask at every time step in the sequence
(Gal & Ghahramani 2015b,a).

We can now obtain a distribution of predictions, sim-
ply by sampling a di↵erent dropout mask for each predic-
tion. In this work we sample predictions fifty times for each
light-curve. The median of this array is used to report the
accuracy score. These uncertainties can provide valuable in-
formation on the classifier’s confidence on the prediction.

We use the same hyper-parameters as those of the base-
line RNN presented in Section 3. We probe di↵erent dropout
values, [0.01, 0.05, 0.1, 0.2] and weight decay [1e

�5, 1e
�7, 1e

�9]
to evaluate the performance of the network with a data frac-
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

ing a high-accuracy classification, > 84% right before the
maximum of a supernova light-curve. Further, we show that
the addition of host-galaxy redshifts produce a rise in accu-
racy as high as 12 points.

We note that for spectroscopic redshifts, the complete

sample has lower accuracy when compared with the use of
photometric redshifts. This was not observed in the SALT2

fitted sample and it may be explained by a selection bias
in the complete dataset for supernovae with spectroscopic
redshifts.

When classifying type Ia supernovae before or around
maximum light, we find that contamination is still domi-
nated by Ib supernovae with 9.17 ± 0.19% contribution and
Ib with 3.27± 0.07%. Interestingly, type IIP and IIL2 super-
novae can contribute around 2% of the contamination each,
while this is rarely the case for complete light curve classi-
fication. This may be due to characteristic features of these
light-curves only present after maximum light, such as the
plateau exhibited by type IIp SNe.

In summary, we have shown that SuperNNova is able to
accurately classify light-curves before and at maximum light.
With accuracies ranging from 84.02± 0.21 up to 96.92± 0.26
for the salt fitted dataset, without and with redshifts respec-
tively. SuperNNova opens a path towards e�cient use of
photometric and spectroscopic resources for follow-up. Can-
didates can then be prioritized for diverse science goals in-
cluding targeted samples (e.g. SNe Ia for cosmology) and
improving the SN sample for photometric classification as
recently proposed by Ishida et al. (2018). Such a functional-
ity will be crucial in the upcoming surveys where each night
thousands of transients may be discovered.

3.6 Classifying many supernovae types

There is more to supernovae classification than binary clas-
sification. Time-domain surveys are increasingly exploring
the diversity of supernovae and would benefit from classifi-
cation of multiple supernova classes. We explore ternary (Ia,
Ibc and IIs) and seven-way (Ia, IIP, IIn, IIL1, IIL2, Ib, Ic)
classification tasks. We train with the complete dataset to
obtain a large number of light-curves per target.

For ternary classification, we train with 318, 820 light-
curves per type and for the seven-way classification with
104, 158 per type. Accuracies for these classifications with
and without redshifts are shown in Table 3. For complete
light-curves our method yields unprecedented classification
accuracy, providing a useful tool for obtaining photometric
samples of a diversity of supernovae. Early classification be-
comes a much more challenging tasks and we consequently
observe a notable performance degradation. Nonetheless,
our algorithm provides a reasonable indication of the pos-
sible supernova type and performance is enhanced with the
incorporation of redshift information.

For an equivalent training sample per type, the ternary
or seven-way classification accuracy with or without redshift
and whole light-curves is much lower than for binary classi-
fication (Ia vs. non Ia) as shown in Figure 3. Splitting the
core-collapse supernovae in subclasses adds a new level of
complexity which accounts for the performance drop. Inter-
estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|X,w) where in
our case, P is a categorical distribution, y is the classifica-
tion target, X is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
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Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

using a maximum likelihood criterion: given a set of la-
beled training observations D = (Xk, yk )k=1...K , we minimize
the negative log likelihood N LL = minw

ÕK
k=1 � logP(yk |Xk,w)

with gradient descent. Weights are determined during train-
ing and then used to obtain classifications ŷ of new, unla-
beled data.

Moving on to the Bayesian picture, instead of having
a fixed value for each weight in the neural network, we
now assign a distribution to each weight. We seek to find
the posterior distribution of the weights: P (w|D) which will
then allow us to make predictions for new, unlabeled data
points: P(ŷ|X) =

Ø
P(ŷ|X,w)P (w|D) dw. Typically, the pos-

terior distribution is intractable for deep neural networks.
To sidestep this di�culty, we can approximate the posterior
with a simple parametric distribution q(w|✓) called the vari-

ational distribution. In the gaussian case, ✓ = (µ,�), respec-
tively the mean and standard deviation of the distribution.
Neural networks are then trained to minimize a divergence
between the posterior distribution and its variational ap-

proximation:

✓̂ = min
✓

KL (q(w|✓)| |P(w|D)) (4)

= min
✓


KL (q(w|✓)| |P(w)) �

π
q(w|✓) logP(D|w)dw

�
(5)

= min
✓

⇥
KL (q(w|✓)| |P(w)) � Eq(w |✓)(logP(D|w))

⇤
(6)

where P(w) is a user-specified prior distribution over the
neural network’s weights. This new cost function is made up
of two terms. The first one, the KL term, is a regularization
term: it penalizes variational distributions which di↵er too
much from the prior. The second one is a likelihood term;
our model must be flexible enough to handle the complex-
ity of the data distribution. Bayesian optimization of neural
networks is a trade-o↵ between those two terms.

We will now review two ways in which the variational
distribution can be specified and investigate their applica-
tions to supernova cosmology. Results in the following sec-
tions use the complete dataset for training, validation and
testing.

4.2 Variational

Following (Gal & Ghahramani 2015b,a) we define our varia-
tional distribution to factorize over each row of the network’s
weight matrices: q(wk ) = pN(0,�2

I)+(1�d)N(µk,�2
I) where

d is the dropout probability, N the normal distribution, µk
is the variational parameter we optimize over with our gradi-
ent descent algorithm, �2 is a fixed, small constant and I the
identity. Using a normal prior on the weights, the KL term
can be approximated as L2 regularization on the network’s
weights. Evaluating this network then becomes equivalent to
performing dropout (i.e. masking with zeros) on the rows of
the weight matrices (or equivalently, on each layer’s input).
The network can then be trained as usual, as long as we use
the same dropout mask at every time step in the sequence
(Gal & Ghahramani 2015b,a).

We can now obtain a distribution of predictions, sim-
ply by sampling a di↵erent dropout mask for each predic-
tion. In this work we sample predictions fifty times for each
light-curve. The median of this array is used to report the
accuracy score. These uncertainties can provide valuable in-
formation on the classifier’s confidence on the prediction.

We use the same hyper-parameters as those of the base-
line RNN presented in Section 3. We probe di↵erent dropout
values, [0.01, 0.05, 0.1, 0.2] and weight decay [1e

�5, 1e
�7, 1e

�9]
to evaluate the performance of the network with a data frac-
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Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

using a maximum likelihood criterion: given a set of la-
beled training observations D = (Xk, yk )k=1...K , we minimize
the negative log likelihood N LL = minw

ÕK
k=1 � logP(yk |Xk,w)

with gradient descent. Weights are determined during train-
ing and then used to obtain classifications ŷ of new, unla-
beled data.

Moving on to the Bayesian picture, instead of having
a fixed value for each weight in the neural network, we
now assign a distribution to each weight. We seek to find
the posterior distribution of the weights: P (w|D) which will
then allow us to make predictions for new, unlabeled data
points: P(ŷ|X) =

Ø
P(ŷ|X,w)P (w|D) dw. Typically, the pos-

terior distribution is intractable for deep neural networks.
To sidestep this di�culty, we can approximate the posterior
with a simple parametric distribution q(w|✓) called the vari-

ational distribution. In the gaussian case, ✓ = (µ,�), respec-
tively the mean and standard deviation of the distribution.
Neural networks are then trained to minimize a divergence
between the posterior distribution and its variational ap-

proximation:

✓̂ = min
✓

KL (q(w|✓)| |P(w|D)) (4)

= min
✓


KL (q(w|✓)| |P(w)) �

π
q(w|✓) logP(D|w)dw

�
(5)

= min
✓

⇥
KL (q(w|✓)| |P(w)) � Eq(w |✓)(logP(D|w))

⇤
(6)

where P(w) is a user-specified prior distribution over the
neural network’s weights. This new cost function is made up
of two terms. The first one, the KL term, is a regularization
term: it penalizes variational distributions which di↵er too
much from the prior. The second one is a likelihood term;
our model must be flexible enough to handle the complex-
ity of the data distribution. Bayesian optimization of neural
networks is a trade-o↵ between those two terms.

We will now review two ways in which the variational
distribution can be specified and investigate their applica-
tions to supernova cosmology. Results in the following sec-
tions use the complete dataset for training, validation and
testing.

4.2 Variational

Following (Gal & Ghahramani 2015b,a) we define our varia-
tional distribution to factorize over each row of the network’s
weight matrices: q(wk ) = pN(0,�2

I)+(1�d)N(µk,�2
I) where

d is the dropout probability, N the normal distribution, µk
is the variational parameter we optimize over with our gradi-
ent descent algorithm, �2 is a fixed, small constant and I the
identity. Using a normal prior on the weights, the KL term
can be approximated as L2 regularization on the network’s
weights. Evaluating this network then becomes equivalent to
performing dropout (i.e. masking with zeros) on the rows of
the weight matrices (or equivalently, on each layer’s input).
The network can then be trained as usual, as long as we use
the same dropout mask at every time step in the sequence
(Gal & Ghahramani 2015b,a).

We can now obtain a distribution of predictions, sim-
ply by sampling a di↵erent dropout mask for each predic-
tion. In this work we sample predictions fifty times for each
light-curve. The median of this array is used to report the
accuracy score. These uncertainties can provide valuable in-
formation on the classifier’s confidence on the prediction.

We use the same hyper-parameters as those of the base-
line RNN presented in Section 3. We probe di↵erent dropout
values, [0.01, 0.05, 0.1, 0.2] and weight decay [1e

�5, 1e
�7, 1e

�9]
to evaluate the performance of the network with a data frac-
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𝒫(w |𝒟) ≈ q(w |θ) variational distribution

𝒫(ŷ |x) = ∫ 𝒫(ŷ |x, w)𝒫 (w |𝒟) dw

̂θ = min
θ
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Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

using a maximum likelihood criterion: given a set of la-
beled training observations D = (Xk, yk )k=1...K , we minimize
the negative log likelihood N LL = minw

ÕK
k=1 � logP(yk |Xk,w)

with gradient descent. Weights are determined during train-
ing and then used to obtain classifications ŷ of new, unla-
beled data.

Moving on to the Bayesian picture, instead of having
a fixed value for each weight in the neural network, we
now assign a distribution to each weight. We seek to find
the posterior distribution of the weights: P (w|D) which will
then allow us to make predictions for new, unlabeled data
points: P(ŷ|X) =

Ø
P(ŷ|X,w)P (w|D) dw. Typically, the pos-

terior distribution is intractable for deep neural networks.
To sidestep this di�culty, we can approximate the posterior
with a simple parametric distribution q(w|✓) called the vari-

ational distribution. In the gaussian case, ✓ = (µ,�), respec-
tively the mean and standard deviation of the distribution.
Neural networks are then trained to minimize a divergence
between the posterior distribution and its variational ap-

proximation:

✓̂ = min
✓

KL (q(w|✓)| |P(w|D)) (4)

= min
✓


KL (q(w|✓)| |P(w)) �

π
q(w|✓) logP(D|w)dw

�
(5)

= min
✓

⇥
KL (q(w|✓)| |P(w)) � Eq(w |✓)(logP(D|w))

⇤
(6)

where P(w) is a user-specified prior distribution over the
neural network’s weights. This new cost function is made up
of two terms. The first one, the KL term, is a regularization
term: it penalizes variational distributions which di↵er too
much from the prior. The second one is a likelihood term;
our model must be flexible enough to handle the complex-
ity of the data distribution. Bayesian optimization of neural
networks is a trade-o↵ between those two terms.

We will now review two ways in which the variational
distribution can be specified and investigate their applica-
tions to supernova cosmology. Results in the following sec-
tions use the complete dataset for training, validation and
testing.

4.2 Variational

Following (Gal & Ghahramani 2015b,a) we define our varia-
tional distribution to factorize over each row of the network’s
weight matrices: q(wk ) = pN(0,�2

I)+(1�d)N(µk,�2
I) where

d is the dropout probability, N the normal distribution, µk
is the variational parameter we optimize over with our gradi-
ent descent algorithm, �2 is a fixed, small constant and I the
identity. Using a normal prior on the weights, the KL term
can be approximated as L2 regularization on the network’s
weights. Evaluating this network then becomes equivalent to
performing dropout (i.e. masking with zeros) on the rows of
the weight matrices (or equivalently, on each layer’s input).
The network can then be trained as usual, as long as we use
the same dropout mask at every time step in the sequence
(Gal & Ghahramani 2015b,a).

We can now obtain a distribution of predictions, sim-
ply by sampling a di↵erent dropout mask for each predic-
tion. In this work we sample predictions fifty times for each
light-curve. The median of this array is used to report the
accuracy score. These uncertainties can provide valuable in-
formation on the classifier’s confidence on the prediction.

We use the same hyper-parameters as those of the base-
line RNN presented in Section 3. We probe di↵erent dropout
values, [0.01, 0.05, 0.1, 0.2] and weight decay [1e

�5, 1e
�7, 1e

�9]
to evaluate the performance of the network with a data frac-
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Figure 1: Depiction of the dropout technique following our Bayesian interpretation (right)
compared to the standard technique in the field (left). Each square represents an RNN unit, with
horizontal arrows representing time dependence (recurrent connections). Vertical arrows represent
the input and output to each RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. Dashed lines correspond to standard
connections with no dropout. Current techniques (naive dropout, left) use different masks at different
time steps, with no dropout on the recurrent layers. The proposed technique (Variational RNN, right)
uses the same dropout mask at each time step, including the recurrent layers.

suitably defined likelihood functions. We then perform approximate variational inference in these
probabilistic Bayesian models (which we will refer to as Variational RNNs). Approximating the
posterior distribution over the weights with a mixture of Gaussians (with one component fixed at
zero and small variances) will lead to a tractable optimisation objective. Optimising this objective is
identical to performing a new variant of dropout in the respective RNNs.

In the new dropout variant, we repeat the same dropout mask at each time step for both inputs, outputs,
and recurrent layers (drop the same network units at each time step). This is in contrast to the existing
ad hoc techniques where different dropout masks are sampled at each time step for the inputs and
outputs alone (no dropout is used with the recurrent connections since the use of different masks
with these connections leads to deteriorated performance). Our method and its relation to existing
techniques is depicted in figure 1. When used with discrete inputs (i.e. words) we place a distribution
over the word embeddings as well. Dropout in the word-based model corresponds then to randomly
dropping word types in the sentence, and might be interpreted as forcing the model not to rely on
single words for its task.

We next survey related literature and background material, and then formalise our approximate
inference for the Variational RNN, resulting in the dropout variant proposed above. Experimental
results are presented thereafter.

2 Related Research

In the past few years a considerable body of work has been collected demonstrating the negative
effects of a naive application of dropout in RNNs’ recurrent connections. Pachitariu and Sahani [7],
working with language models, reason that noise added in the recurrent connections of an RNN leads
to model instabilities. Instead, they add noise to the decoding part of the model alone. Bayer et al. [8]
apply a deterministic approximation of dropout (fast dropout) in RNNs. They reason that with dropout,
the RNN’s dynamics change dramatically, and that dropout should be applied to the “non-dynamic”
parts of the model – connections feeding from the hidden layer to the output layer. Pham et al. [9]
assess dropout with handwriting recognition tasks. They conclude that dropout in recurrent layers
disrupts the RNN’s ability to model sequences, and that dropout should be applied to feed-forward
connections and not to recurrent connections. The work by Zaremba, Sutskever, and Vinyals [4] was
developed in parallel to Pham et al. [9]. Zaremba et al. [4] assess the performance of dropout in RNNs
on a wide series of tasks. They show that applying dropout to the non-recurrent connections alone
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SuperNNova: SN Bayesian photometric classification 9

Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

using a maximum likelihood criterion: given a set of la-
beled training observations D = (Xk, yk )k=1...K , we minimize
the negative log likelihood N LL = minw

ÕK
k=1 � logP(yk |Xk,w)

with gradient descent. Weights are determined during train-
ing and then used to obtain classifications ŷ of new, unla-
beled data.

Moving on to the Bayesian picture, instead of having
a fixed value for each weight in the neural network, we
now assign a distribution to each weight. We seek to find
the posterior distribution of the weights: P (w|D) which will
then allow us to make predictions for new, unlabeled data
points: P(ŷ|X) =

Ø
P(ŷ|X,w)P (w|D) dw. Typically, the pos-

terior distribution is intractable for deep neural networks.
To sidestep this di�culty, we can approximate the posterior
with a simple parametric distribution q(w|✓) called the vari-

ational distribution. In the gaussian case, ✓ = (µ,�), respec-
tively the mean and standard deviation of the distribution.
Neural networks are then trained to minimize a divergence
between the posterior distribution and its variational ap-

proximation:

✓̂ = min
✓

KL (q(w|✓)| |P(w|D)) (4)

= min
✓


KL (q(w|✓)| |P(w)) �

π
q(w|✓) logP(D|w)dw

�
(5)

= min
✓

⇥
KL (q(w|✓)| |P(w)) � Eq(w |✓)(logP(D|w))

⇤
(6)

where P(w) is a user-specified prior distribution over the
neural network’s weights. This new cost function is made up
of two terms. The first one, the KL term, is a regularization
term: it penalizes variational distributions which di↵er too
much from the prior. The second one is a likelihood term;
our model must be flexible enough to handle the complex-
ity of the data distribution. Bayesian optimization of neural
networks is a trade-o↵ between those two terms.

We will now review two ways in which the variational
distribution can be specified and investigate their applica-
tions to supernova cosmology. Results in the following sec-
tions use the complete dataset for training, validation and
testing.

4.2 Variational

Following (Gal & Ghahramani 2015b,a) we define our varia-
tional distribution to factorize over each row of the network’s
weight matrices: q(wk ) = pN(0,�2

I)+(1�d)N(µk,�2
I) where

d is the dropout probability, N the normal distribution, µk
is the variational parameter we optimize over with our gradi-
ent descent algorithm, �2 is a fixed, small constant and I the
identity. Using a normal prior on the weights, the KL term
can be approximated as L2 regularization on the network’s
weights. Evaluating this network then becomes equivalent to
performing dropout (i.e. masking with zeros) on the rows of
the weight matrices (or equivalently, on each layer’s input).
The network can then be trained as usual, as long as we use
the same dropout mask at every time step in the sequence
(Gal & Ghahramani 2015b,a).

We can now obtain a distribution of predictions, sim-
ply by sampling a di↵erent dropout mask for each predic-
tion. In this work we sample predictions fifty times for each
light-curve. The median of this array is used to report the
accuracy score. These uncertainties can provide valuable in-
formation on the classifier’s confidence on the prediction.

We use the same hyper-parameters as those of the base-
line RNN presented in Section 3. We probe di↵erent dropout
values, [0.01, 0.05, 0.1, 0.2] and weight decay [1e

�5, 1e
�7, 1e

�9]
to evaluate the performance of the network with a data frac-

MNRAS 000, 1–18 (2018)

Approximating the variational distribution

1. MC dropout 
Gal & Ghahramani 2016

2. Bayes by Backprop 
Fortunato+ 2017
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(a) Naive dropout RNN
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xt+1
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(b) Variational RNN

Figure 1: Depiction of the dropout technique following our Bayesian interpretation (right)
compared to the standard technique in the field (left). Each square represents an RNN unit, with
horizontal arrows representing time dependence (recurrent connections). Vertical arrows represent
the input and output to each RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. Dashed lines correspond to standard
connections with no dropout. Current techniques (naive dropout, left) use different masks at different
time steps, with no dropout on the recurrent layers. The proposed technique (Variational RNN, right)
uses the same dropout mask at each time step, including the recurrent layers.

suitably defined likelihood functions. We then perform approximate variational inference in these
probabilistic Bayesian models (which we will refer to as Variational RNNs). Approximating the
posterior distribution over the weights with a mixture of Gaussians (with one component fixed at
zero and small variances) will lead to a tractable optimisation objective. Optimising this objective is
identical to performing a new variant of dropout in the respective RNNs.

In the new dropout variant, we repeat the same dropout mask at each time step for both inputs, outputs,
and recurrent layers (drop the same network units at each time step). This is in contrast to the existing
ad hoc techniques where different dropout masks are sampled at each time step for the inputs and
outputs alone (no dropout is used with the recurrent connections since the use of different masks
with these connections leads to deteriorated performance). Our method and its relation to existing
techniques is depicted in figure 1. When used with discrete inputs (i.e. words) we place a distribution
over the word embeddings as well. Dropout in the word-based model corresponds then to randomly
dropping word types in the sentence, and might be interpreted as forcing the model not to rely on
single words for its task.

We next survey related literature and background material, and then formalise our approximate
inference for the Variational RNN, resulting in the dropout variant proposed above. Experimental
results are presented thereafter.

2 Related Research

In the past few years a considerable body of work has been collected demonstrating the negative
effects of a naive application of dropout in RNNs’ recurrent connections. Pachitariu and Sahani [7],
working with language models, reason that noise added in the recurrent connections of an RNN leads
to model instabilities. Instead, they add noise to the decoding part of the model alone. Bayer et al. [8]
apply a deterministic approximation of dropout (fast dropout) in RNNs. They reason that with dropout,
the RNN’s dynamics change dramatically, and that dropout should be applied to the “non-dynamic”
parts of the model – connections feeding from the hidden layer to the output layer. Pham et al. [9]
assess dropout with handwriting recognition tasks. They conclude that dropout in recurrent layers
disrupts the RNN’s ability to model sequences, and that dropout should be applied to feed-forward
connections and not to recurrent connections. The work by Zaremba, Sutskever, and Vinyals [4] was
developed in parallel to Pham et al. [9]. Zaremba et al. [4] assess the performance of dropout in RNNs
on a wide series of tasks. They show that applying dropout to the non-recurrent connections alone
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Algorithm: Bayes by Backprop for RNNs

Sample ✏ ⇠ N (0, I), ✏ 2 Rd, and set network
parameters to ✓ = µ+ �✏.
Sample a minibatch of truncated sequences (x, y).
Do forward and backward propagation as normal,
and let g be the gradient w.r.t ✓.
Let g

KL
✓ , g

KL
µ , g

KL
� be the gradients of

logN (✓|µ,�2) � log p(✓) w.r.t. ✓, µ and �

respectively.
Update µ using the gradient g+ 1

C gKL
✓

B +
gKL
µ

BC .

Update � using the gradient
⇣

g+ 1
C gKL

✓

B

⌘
✏+ gKL

�
BC .

Figure 1: Illustration (left) and Algorithm (right) of Bayes by Backprop applied to an RNN.

to sample the parameters of the RNN, and how to weight the contribution of the KL regulariser of
(2). We shall briefly justify the adaptation of BBB to RNNs, given in Figure 1. The variational free
energy of (2) for an RNN on a sequence of length T is:

L(✓) = �Eq(✓) [log p(y1:T |✓, x1:T )] + KL [q(✓) || p(✓)] , (3)

where p(y1:T |✓, x1:T ) is the likelihood of a sequence produced when the states of an unrolled RNN
FT are fed into an appropriate probability distribution. The parameters of the entire network are
✓. Although the RNN is unrolled T times, each weight is penalised just once by the KL term,
rather than T times. Also clear from (3) is that when a Monte Carlo approximation is taken to the
expectation, the parameters ✓ should be held fixed throughout the entire sequence.

Two complications arise to the above naive derivation in practice: firstly, sequences are often long
enough and models sufficiently large, that unrolling the RNN for the whole sequence is prohibitive.
Secondly, to reduce variance in the gradients, more than one sequence is trained at a time. Thus the
typical regime for training RNNs involves training on mini-batches of truncated sequences.

Let B be the number of mini-batches and C the number of truncated sequences (“cuts”), then we
can write (3) as:

L(✓) = �Eq(✓)

"
log

BY

b=1

CY

c=1

p(y(b,c)|✓, x(b,c))

#
+ KL [q(✓) || p(✓)] , (4)

where the (b, c) superscript denotes elements of cth truncated sequence in the bth minibatch. Thus
the free energy of mini-batch b of a truncated sequence c can be written as:

L(b,c)(✓) = �Eq(✓)

h
log p(y(b,c)|✓, x(b,c)

, s
(b,c)
prev )

i
+ w

(b,c)
KL KL [q(✓) || p(✓)] , (5)

where w
(b,c)
KL distributes the responsibility of the KL cost among minibatches and truncated se-

quences (thus
PB

b=1

PC
c=1 w

(b,c)
KL = 1), and s

(b,c)
prev refers to the initial state of the RNN for the

minibatch x
(b,c). In practice, we pick w

(b,c)
KL = 1

CB so that the KL penalty is equally distributed
among all mini-batches and truncated sequences. The truncated sequences in each subsequent mini-
batches are picked in order, and so s

(b,c)
prev is set to the last state of the RNN for x(b,c�1).

Finally, the question of when to sample weights follows naturally from taking a Monte Carlo ap-
proximations to (5): for each minibatch, sample a fresh set of parameters.

4 POSTERIOR SHARPENING

The choice of variational posterior q(✓) as described in Section 3 can be enhanced by adding side
information that makes the posterior over the parameters more accurate, thus reducing variance of
the learning process.
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1. MC dropout 
Gal & Ghahramani 2016

2. Bayes by Backprop 
Fortunato+ 2017

Posterior that provides epistemic 
uncertainties

Epistemic uncertainties: 

express our ignorance about the model 
that generated the data. 
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Training sets are:


  ! not representative


  ! incomplete (we don’t know/can’t simulate)


? Can we use output from ML classifiers for cosmology or any 
   statistical analyses?
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b
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b
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ra
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p
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b
ra
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b
ra
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b
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b
ra
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b
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at
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b
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at
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p
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at
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ra
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b
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at
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at
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ra
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p
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L
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at
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b
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at
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a
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w
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b
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at
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p
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c
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at
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p
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at
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b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
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o
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m
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im
u
m

o
b
se
rv
ed

b
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l
D
E
S
fi
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o
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si
m
u
la
te
d
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if
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fo
r
S
A
L
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el
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w
)
a
n
d
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m
p
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te
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ig
h
t
b
lu
e)

d
a
ta
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a
x
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b
ri
g
h
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n
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r
ty
p
e
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a
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m
p
le
s
w
h
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e
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m
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te
d
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n
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p
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n
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b
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b
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m
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b
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t
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p
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o
f
n
o
n
-r
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n
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v
e
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p
le
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se
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fo
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-u
p

ca
n
d
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fo
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p
u
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os
e.

T
h
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is
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b
il
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h
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h
w
e
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r
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d
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u
ti
o
n

li
g
h
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In
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tr
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an
y
ot
h
er

cl
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si
fi
ca
ti
on
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p
li
ca
ti
on

,
th
e
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n
er
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at
io
n
p
ro
p
er
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a
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si
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d
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b
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r
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u
n
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b
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u
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p
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p
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✏
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h
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at
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ra
n
ge

as
n
or
m
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p
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ra
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b
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at
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p
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p
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p
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B
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F
ig
u
re
6
.
C
alib
ratio
n
o
f
classifi
catio
n
a
lg
orith
m
s.
T
o
p
:
relia
b
ility

d
iag
ra
m
sh
ow
in
g
th
e
ca
lib
ra
tion
fo
r
S
A
L
T
2
fi
tted
d
ata
set
cla
ssi-

fi
ca
tio
n
for
a
sin
g
le
seed
.
W
e
u
se
th
e
m
ost
a
ccu
ra
te
co
n
fi
gu
ra
-

tion
s
for
th
e
R
a
n
d
o
m

F
orest
(red
circles),
B
a
selin
e
R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s
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lu
e
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n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
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ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
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rith
m

h
a
s
a
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e

d
ev
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n
fro
m
p
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ca
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n
w
h
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e
R
N
N
s
a
re
b
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ra
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th
a
n
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a
lg
orith
m
w
ith
th
e
B
B
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p
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en
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n
a
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ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
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ca-

tion
p
erform
an
ce
for
th
e
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sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
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th
e
accu
racy
is
red
u
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b
y
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w
h
en
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w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
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th
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variation
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n
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w
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e
u
n
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r
m
o
d
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racies.

A
s
d
iscu
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S
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B
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R
N
N
s
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e
p
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m
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u
n
c
e
r
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w
h
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d
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resen
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b
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resen
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w
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b
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N
p
h
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cation
.
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ecen
tly,
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et
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u
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a
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e-
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for
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p
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N
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p
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b
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b
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p
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d
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b
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b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
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p
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w
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.
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p
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ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)

peak brightness i

data

simulation train classification algorithm

12
M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
1.

M
N
R
A
S
0
0
0
,
1
–1

7
(2
0
18

)

peak brightness i
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M
¨oller
&
de
B
oissi`ere

F
ig
u
re
6
.
C
alib
ratio
n
o
f
classifi
catio
n
a
lg
orith
m
s.
T
o
p
:
relia
b
ility

d
iag
ra
m
sh
ow
in
g
th
e
ca
lib
ra
tion
fo
r
S
A
L
T
2
fi
tted
d
ata
set
cla
ssi-

fi
ca
tio
n
for
a
sin
g
le
seed
.
W
e
u
se
th
e
m
ost
a
ccu
ra
te
co
n
fi
gu
ra
-

tion
s
for
th
e
R
a
n
d
o
m

F
orest
(red
circles),
B
a
selin
e
R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s

(b
lu
e
tria
n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
erfectly
ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
lgo
rith
m

h
a
s
a
larg
e

d
ev
iatio
n
fro
m
p
erfect
ca
lib
ratio
n
w
h
ile
th
e
R
N
N
s
a
re
b
etter
cal-

ib
ra
ted
th
a
n
th
is
a
lg
orith
m
w
ith
th
e
B
B
im
p
lem
en
tatio
n
a
lm
ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
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p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
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T
h
is
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sim
ilar

to
w
h
at
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p
ected
o
f
n
o
n
-rep
resen
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p
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p
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id
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h
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.
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u
t
o
f
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u
tio
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rv
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O
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)
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om
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p
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t-of-d
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u
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an
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erN
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u
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O
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ligh
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✏
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ligh
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u
x
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d
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latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese
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✏
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b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
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d
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N
e
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p
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d
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B
B
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p
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h
e
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p
e
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p
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d
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O
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seven
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p
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O
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p
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7
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0
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peak brightness i

data

simulation train classification algorithm

classify the data

accuracy decreases  (Lochner+ 2015, Charnock+2017)
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n
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h
m
s.
T
o
p
:
re
li
a
b
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g
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sh
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e
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b
ra
ti
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r
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L
T
2
fi
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ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
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m
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t
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ed
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s)
,
B
a
se
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e
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N
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p
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R
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N
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n
d
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B
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n
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ot
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:
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o
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o
m
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fe
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b
ra
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d
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it
h
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o
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a
lg
o
ri
th

m
h
a
s
a
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b
ra
ti
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b
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ra
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B
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t
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ca
li
b
ra
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is
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it
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sh
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b
ot
h
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at
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et
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sh
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T
o
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st
ig
at
e
th
e
d
is
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ep

an
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b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
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si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
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el
in
e

an
d
V
ar
ia
ti
on
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R
N
N
s
w
e
fi
n
d
th
at

th
e
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cu

ra
cy

is
re
d
u
ce
d

b
y

0.
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w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep
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se
n
ta
ti
ve

d
at
as
et
.
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l-

th
ou
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th
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at
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n
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n
ot

w
it
h
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e
u
n
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n
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ou

r
m
o
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el
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ra
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4.
4,

B
ay
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n
R
N
N
s
ca
n
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p
tu
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e
p
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te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
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u
d
es

th
e
la
ck

of
d
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er
si
ty
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e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
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th
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in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.
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O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
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r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en
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g
ou

t-
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-d
is
tr
ib
u
ti
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li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a
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ri
th
m
s
ra
re
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th
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e
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cu
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S
N
e
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F
or

b
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ti
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,
th
e
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e

an
d

sh
u
✏
e

li
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e
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t
n
u
m
b
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cl
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N
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,

6.
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an
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at
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n
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p
le
m
en
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b
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ra
n
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e
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N
e
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at
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p
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%
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r
B
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p
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h
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p
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b
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p
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Part II: typing with photometry 
representativity
ML limitations
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th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
.3

O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)

peak brightness i

data

simulation train classification algorithm

classify the data

Either we improve our training sets or search for robust methods!

12
M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
1.

M
N
R
A
S
0
0
0
,
1
–1

7
(2
0
18

)

peak brightness i

Part II: typing with photometry 
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ML limitations
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M
¨oller
&
de
B
oissi`ere

F
ig
u
re
6
.
C
alib
ratio
n
o
f
classifi
catio
n
a
lg
orith
m
s.
T
o
p
:
relia
b
ility

d
iag
ra
m
sh
ow
in
g
th
e
ca
lib
ra
tion
fo
r
S
A
L
T
2
fi
tted
d
ata
set
cla
ssi-

fi
ca
tio
n
for
a
sin
g
le
seed
.
W
e
u
se
th
e
m
ost
a
ccu
ra
te
co
n
fi
gu
ra
-

tion
s
for
th
e
R
a
n
d
o
m

F
orest
(red
circles),
B
a
selin
e
R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s

(b
lu
e
tria
n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
erfectly
ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
lgo
rith
m

h
a
s
a
larg
e

d
ev
iatio
n
fro
m
p
erfect
ca
lib
ratio
n
w
h
ile
th
e
R
N
N
s
a
re
b
etter
cal-

ib
ra
ted
th
a
n
th
is
a
lg
orith
m
w
ith
th
e
B
B
im
p
lem
en
tatio
n
a
lm
ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
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O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)

peak brightness i
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simulation

Simplistic 
simulation
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M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.
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O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
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se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
.3

O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)

peak brightness i

representative 
simulation

Simplistic 
simulation

12
M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
1.

M
N
R
A
S
0
0
0
,
1
–1

7
(2
0
18

)

peak brightness i

12
M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
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SuperNNova: SN Bayesian photometric classification 13

Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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high probability for “less-known” class

18 Möller & de Boissière

Figure 4. A recurrent network on MNIST. This RNN is able to
obtain similar prediction behaviour as Figure 1 which is what is
expected for OOD events.

Figure 5. A Variational Dropout recurrent network on MNIST.
This network collapses and outputs high-certainty predictions for
OOD images.

with high probability while the bayesian network exhibits
large variance for multiple classes.

While we have verified that tuning the various hyper-
parameters improves the uncertainty performance on this
qualitative examination, it is clear that the behaviour of
Bayesian recurrent networks should be critically analyzed:
the network remains at risk to collapse its predictions when
fed with unrelated data. This sheds light on the negative �H

found in Section 5.3: for OOD data, which looks nothing like
the training data, the network likely collapses and outputs
a prediction with very high certainty, giving a very low en-
tropy score to the out of sample data. We note that this is
possibly exacerbated by the type of data used to train the
network: supernova fluxes indeed exhibit variations span-
ning multiple orders of magnitude which leads to persisting
artifacts even after normalization. Future work will focus on
characterizing this phenomenon and developing methods to
improve robustness on out-of-distribution data.

This paper has been typeset from a TEX/LATEX file prepared by
the author.

Figure 6. A Bayesian By Backprop recurrent network on
MNIST. This network collapses and outputs high-certainty pre-
dictions for OOD images.
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 6. Calibration of classification algorithms. Top: reliability
diagram showing the calibration for SALT2 fitted dataset classi-
fication for a single seed. We use the most accurate configura-
tions for the Random Forest (red circles), Baseline RNN (pur-
ple triangles), Variational RNN (yellow circles) and BBB RNNs
(blue triangles). Bottom: dispersion from perfectly calibrated al-
gorithms. Note that the Random Forest algorithm has a large
deviation from perfect calibration while the RNNs are better cal-
ibrated than this algorithm with the BB implementation almost
perfectly calibrated.

distribution of magnitudes and redshifts for both datasets
is shown in Figure 7. To investigate the discrepancy be-
tween spectroscopic and photometric samples, we train with
the non-representative dataset and evaluate the classifica-
tion performance for the test sample in the representative
dataset.

For classification with no redshifts using the Baseline
and Variational RNNs we find that the accuracy is reduced
by 0.3% when trained with a non-representative dataset. Al-
though small, this variation is not within the uncertainties
of our model accuracies.

As discussed in Section 4.4, Bayesian RNNs can capture
epistemic uncertainty which includes the lack of diversity in
the model’s training set. Therefore, we expect a Bayesian
RNN trained on non-representative set (in our case, the full
SALT2 fitted dataset) to be more uncertain than one trained
on a representative set (in our case, a subset of the com-

plete dataset) when evaluating on said representative set.
To quantify this in a rigorous way, we use the two metrics
introduced in Section 4.4.1. We find both metrics to be pos-
itive for all BRNNs, �µ > 0.005 and �H > 0.01.

The lack of representativity and the limitations of su-
pernova templates are major issues in SN photometric clas-
sification. Recently, Ishida et al. (2018) introduced a frame-
work for the optimization of spectroscopic follow-up re-
sources to improve SN photometric classification datasets.
Bayesian RNN uncertainties may be a promising indicator

Figure 7. Distributions of maximum observed brightness (mag),
in all DES filters (g, i, r, z), and of simulated redshift for SALT2
fitted (left yellow) and complete (right blue) datasets. Maximum
observed brightness is shown for type Ia and non-Ia samples while
simulated redshift is shown for each of the available templates.
Dashed lines show the median and first quartile of the distri-
bution. The complete and SALT2 fitted datasets probe similar
parameter space but have di↵erent distributions. This is similar
to what is expected of non-representative samples.

to select follow-up candidates for this purpose. This is an
interesting possibility which we leave for future work.

5.3 Out of distribution light-curves (OOD)

In astronomy, as in any other classification application, the
generalization properties of a classifier and its behavior on
unseen, possibly out-of-distribution samples represents a
challenge. In this section we study the performance of Su-
perNNova when classifying out-of-distribution light-curves.
We test four di↵erent types of OODs: time reversed light-
curves, randomly shu✏ed light-curves, random fluxes and a
sinusoidal signal. The latter two were generated using the
same cadence and flux range as normal supernovae. These
light-curves are only used for testing and were not used for
training at any time.

When classifying out-of-distribution light-curves, all Su-
perNNova algorithms rarely classify these light-curves as
SNe Ia. For binary classification, the reverse and shu✏e
light-curves obtain the largest number of classifications as
SNe Ia, 6.2% and 3.9% respectively with the variational
implementation and less than 3% for the BBB. Many of
these light-curves resemble supernovae, specially with light-
curves with low signal-to-noise. For the sinusoidal and ran-
dom light-curves less than 3% are classified as SNe Ia in
the variational implementation and < 3.94% for Baseline
and BBB implementations. The network seems to charac-
terize type Ia supernovae well and therefore classifies most
OOD events as core-collapse supernovae as can be seen in
Figure 8. In ternary and seven-way classification the most
common predictions for OOD events are types II: IIn, IIp,
IIL1.
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abilities and capture the epistemic uncertainties related to
the classification model. In the following, we will quantify
the performance of our algorithms with respect to these re-
quirements focusing on the Ia vs. non Ia classification task.

5.1 Calibration

Classification probabilities should reflect the real likelihood
of events being correctly assigned to a target. Classifica-
tion algorithms where this is true are said to be calibrated.
Niculescu-Mizil & Caruana (2005) show that common ma-
chine learning algorithms such as SVMs and boosted trees do
not predict well calibrated probabilities, pushing predicted
probabilities away from 0 and 1. For other algorithms such
as Random Forest, the calibration is heavily data depen-
dent. Recently, Guo et al. (2017) showed that modern, deep
neural networks also su↵er from poor calibration and that
there is a trade-o↵ between classification performance and
calibration.

To analyze our algorithms’ calibration, we use reliability
diagrams (DeGroot & Fienberg 1983). These diagrams are
constructed by discretizing the predicted probability into ten
evenly spaced bins. A predicted probability between 0.0 and
0.1 falls into the first bin, and so on. For each bin, we plot
the fraction of true positive cases against the mean predicted
probability in that bin. The fraction of true positive cases in
the binary classification is defined by the number of type Ia
supernovae in that probability bin with respect to all super-
novae in that bin. If the model is well calibrated, the points
will fall near the diagonal line. This is equivalent to saying
that in a sample with a hundred events classified as type
Ia with probability 0.7, we expect 70% of events to be true
SNe Ia and 30% to be missclassified SNe from other types.
Furthermore, we construct a metric to study the calibra-
tion deviation: the di↵erence between the two calibrations
squared.

For the Random Forest algorithm, we find a large cali-
bration deviation when classifying the SALT2 fitted dataset,
as can be seen in Figure 7. Over five randomized runs the
level of dispersion is found to be 0.025 ± 0.002. In this clas-
sification task, RNNs are found to have better calibration
than the Random Forest algorithm with a dispersion an or-
der of magnitude lower. For BBB and MC dropout RNNs
we construct reliability diagrams using multiple predictions
per sample, rather than the median prediction. We find that
diagrams built this way exhibit better calibration than those
built with a single prediction per sample. This is evidence
that the model has learned meaningful uncertainties.

Bayesian RNNs are found to be better calibrated than
the Baseline RNN for both salt fitted and complete datasets.
For the classification of the complete dataset without any
redshift information, we find a calibration dispersion from
the Baseline RNN of 0.006±0.001 which is reduced to 0.004±
0.002 for the MC dropout and to 0.0005±0.0004 for the BBB
implementations.

Calibration depends on the nature and size of the train-
ing set. We verify this, by measuring the dispersion for the
Baseline RNN when classifying the SALT2 fitted dataset

without redshift information with data fractions between
{0.2 � 1.0}. For the nature of the training set, we compare
using the whole SALT2 fitted dataset and 0.43 of the com-

Figure 7. Calibration of classification algorithms. Top: reliability
diagram showing the calibration for SALT2 fitted dataset classi-
fication for a single seed. We use the most accurate configura-
tions for the Random Forest (red circles), Baseline RNN (yel-
low circles), MC dropout RNN (blue triangles) and BBB RNNs
(purple triangles). Bottom: dispersion from perfectly calibrated
algorithms. Note that the Random Forest algorithm has a large
deviation from perfect calibration while the RNNs are better cali-
brated than this algorithm with the BBB implementation almost
perfectly calibrated.

plete dataset. We find that the data fraction or nature of the
dataset can change the dispersion up to 50%.

Photometrically classified samples are usually selected
from those events that have a probability larger than a given
threshold. These thresholds are chosen as a compromise be-
tween purity and size of the selected sample. However, mis-
calibration a↵ects the positive fraction of events in each bin,
providing misleading probabilities. To account for large cal-
ibration deviation, two approaches may be taken: either to
perform a post-processing recalibration (e.g. Niculescu-Mizil
& Caruana (2005); Guo et al. (2017)) or the di↵erence be-
tween the obtained and true probability for each bin can
be used to re-weight obtained probabilities. This will be of
importance for classifier and datasets where large calibra-
tion dispersion is observed. We consider our BBB and MC
dropout RNNs to be well calibrated due to deviations less
than one percent.

5.2 Representativeness

To improve generalization, classification algorithms typically
require large and representative training sets. A training
set is called representative if its properties, such as maxi-
mum observed brightness, have distributions that resemble
the distributions of the dataset to classify. Training sets are
usually simulated using templates from spectroscopically fol-
lowed up supernovae. Current and past surveys have spec-
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take away
• The big astronomical data era requires the use of ML methods


• Machine learning is key for supernova cosmology.


• The last decade we have seen large advancements on 
problems like real vs. bogus & photometric classification.


• To exploit our large SN samples we need to start evaluating the 
robustness as one of the key components of our classifiers.


• Bayesian Neural Networks are promising for statistical 
analyses.

github: supernnova/SuperNNova

https://github.com/supernnova/SuperNNova

