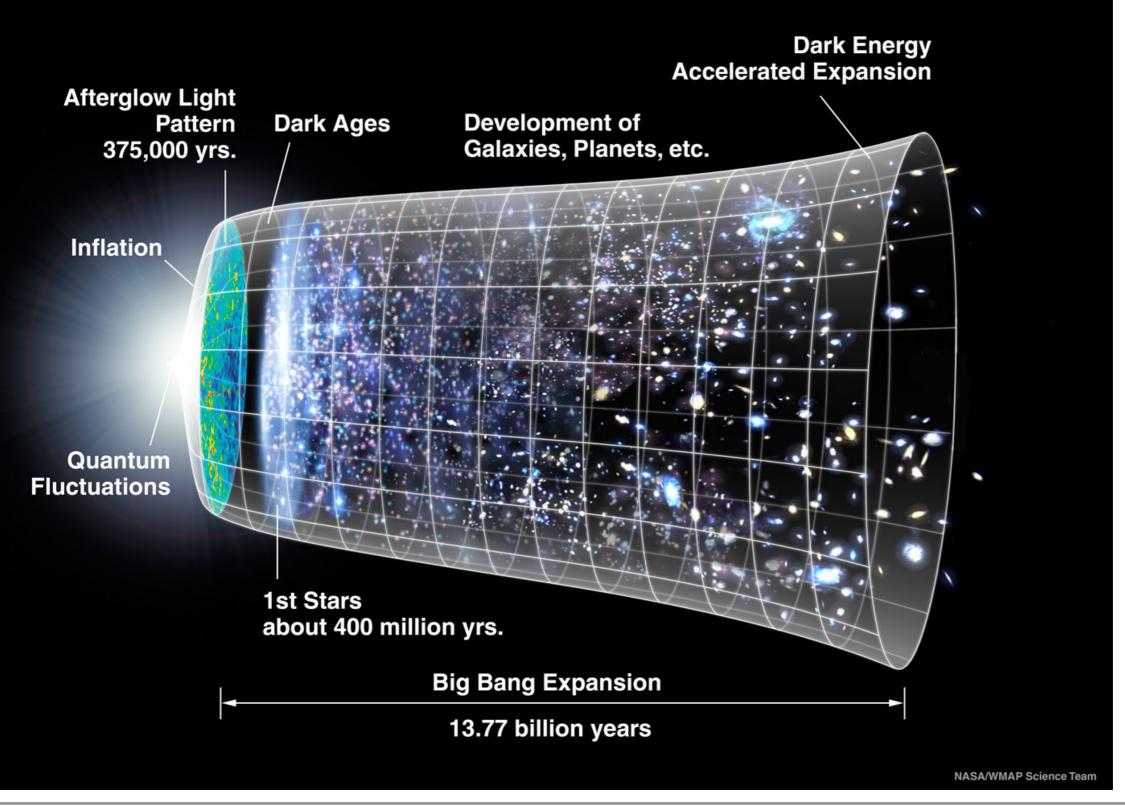
Machine learning classification and statistical analyses: challenges in supernova cosmology

> Anais Möller CNRS / LPC Clermont

Advanced Pattern Recognition workshop October 23rd, 2019

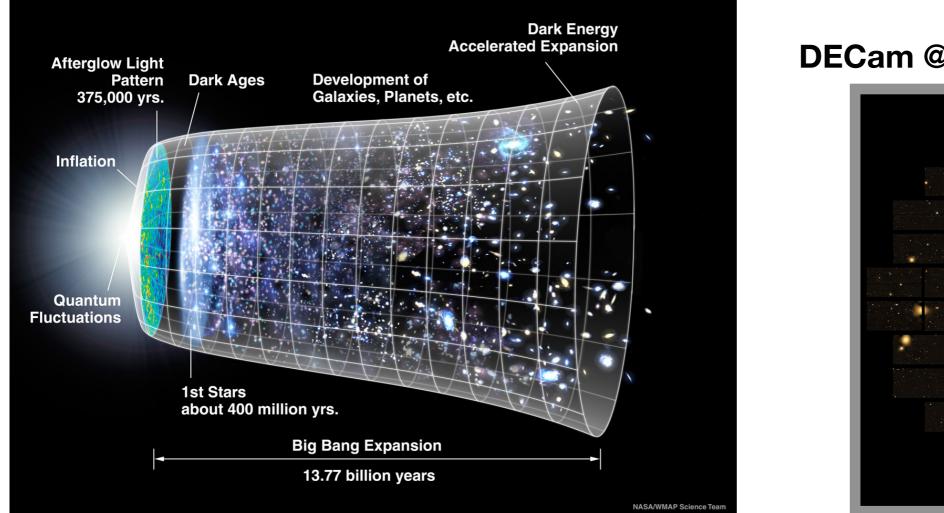
LambdaCDM universe



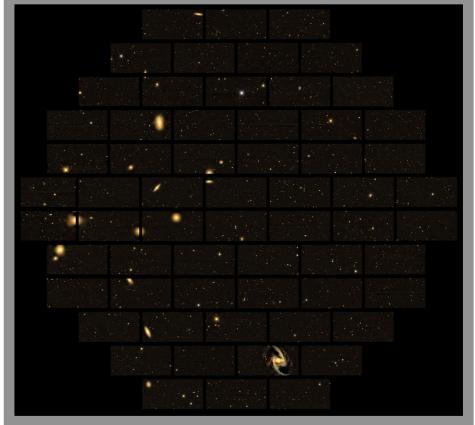
A. Möller CNRS/LPC Clermont

Advanced Pattern Recognition 2019

LambdaCDM universe



DECam @ Blanco telescope in Chile



galaxy clusters, weak lensing, large scale structure, type la SNe, gravitational waves (kilonovae), ...

Cosmic expansion

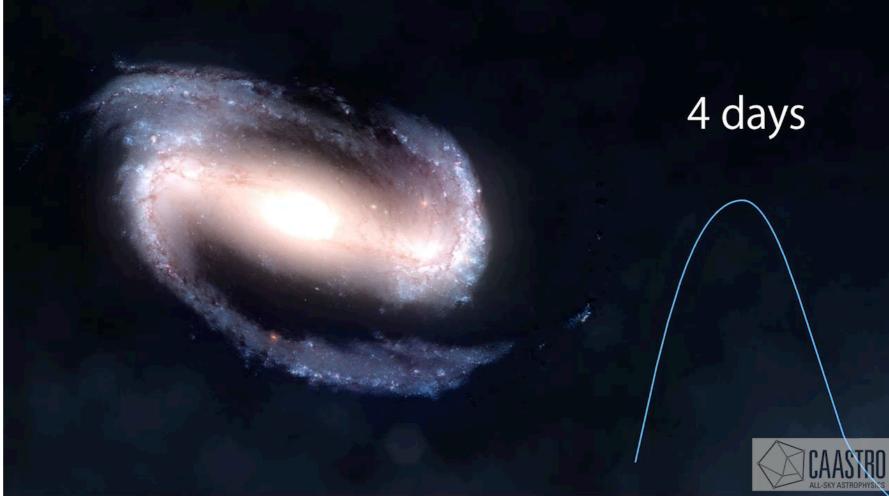


supernovae

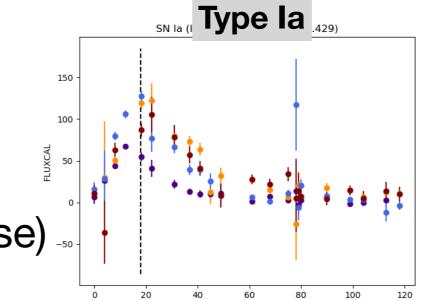
 stellar explosions (transient events)

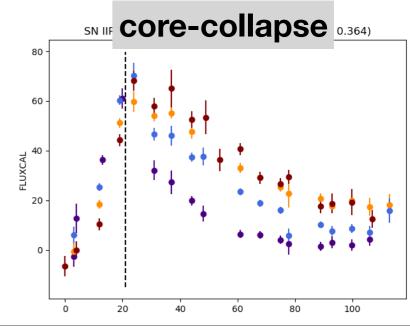
supernovae

 stellar explosions (transient events)



- types:
 - · la (thermonuclear)
 - II, Ib, Ic (core-collapse)



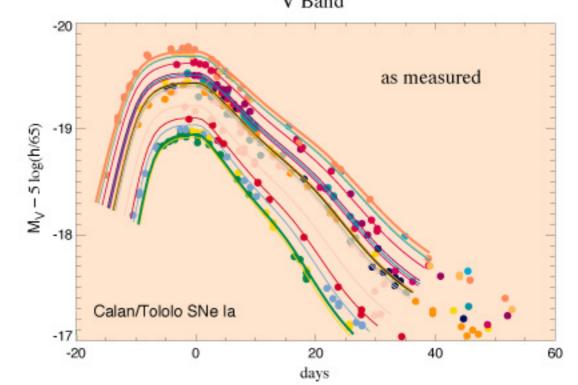


A. Möller CNRS/LPC Clermont

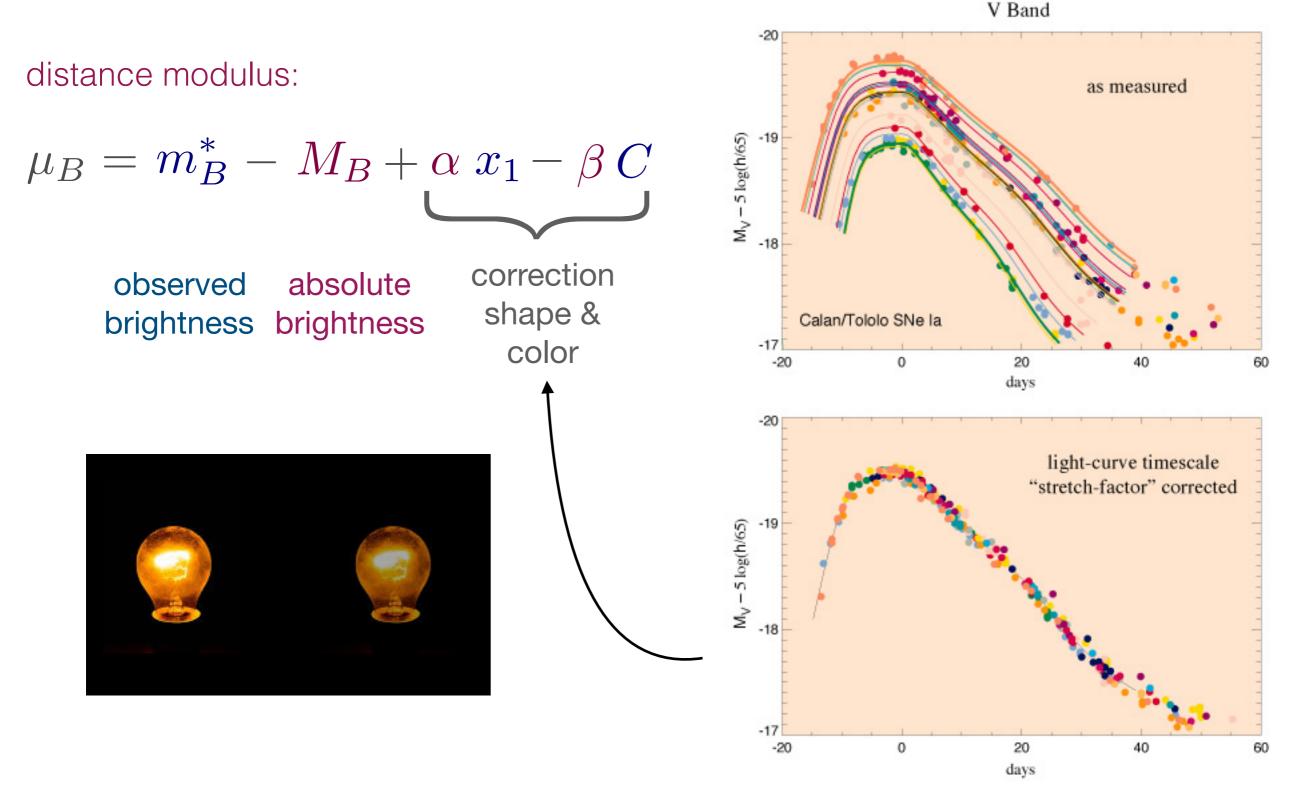
Advanced Pattern Recognition 2019

type la supernovae (SNe la)

- very luminous
- homogeneous spectral and photometric properties



type la supernovae (SNe la)

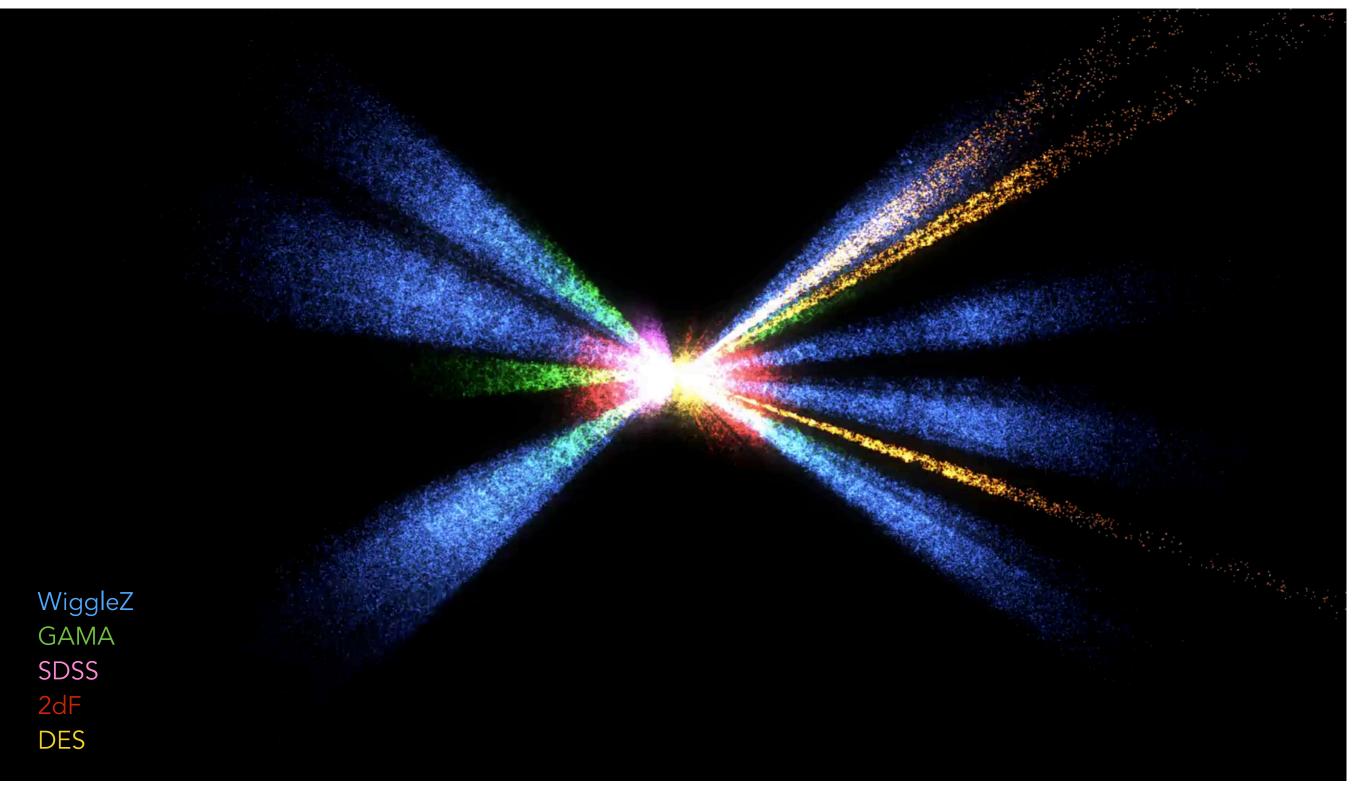


In numbers:

* 5-year survey, started 2013

* 4 primary probes: galaxy clusters, weak lensing, large scale structure, type la SNe

* <2,000 well measured SNe la



A. Möller CNRS/LPC Clermont

Advanced Pattern Recognition 2019

future surveys:



In numbers:

* 10-year survey, starting 2022

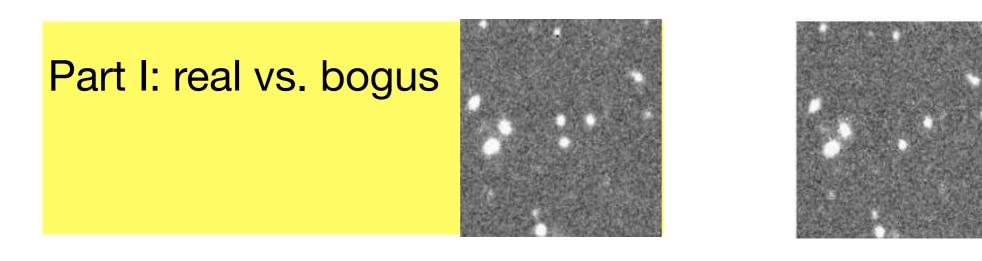
* 1,000 images/night = 15 TB/night

* 10,000 alerts/30 seconds = 1 GB / 30 s

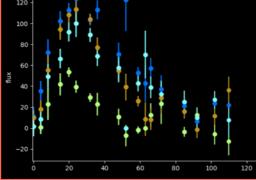
* >4,000 well measured SNe Ia

outline

Machine learning in supernova cosmology: classification tasks

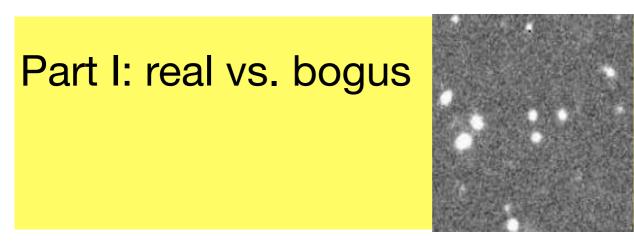


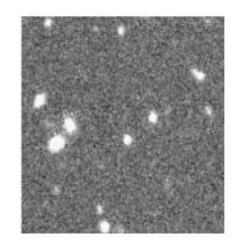
- 1. Datasets: PLAsTiCC
- 2. ML classification issues
 - 1. Representativity
 - 2. Incompleteness
 - 3. "probabilities" for cosmology
- 3. FINK broker



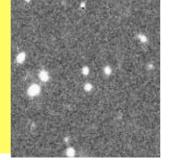
outline

Machine learning in supernova cosmology: classification tasks

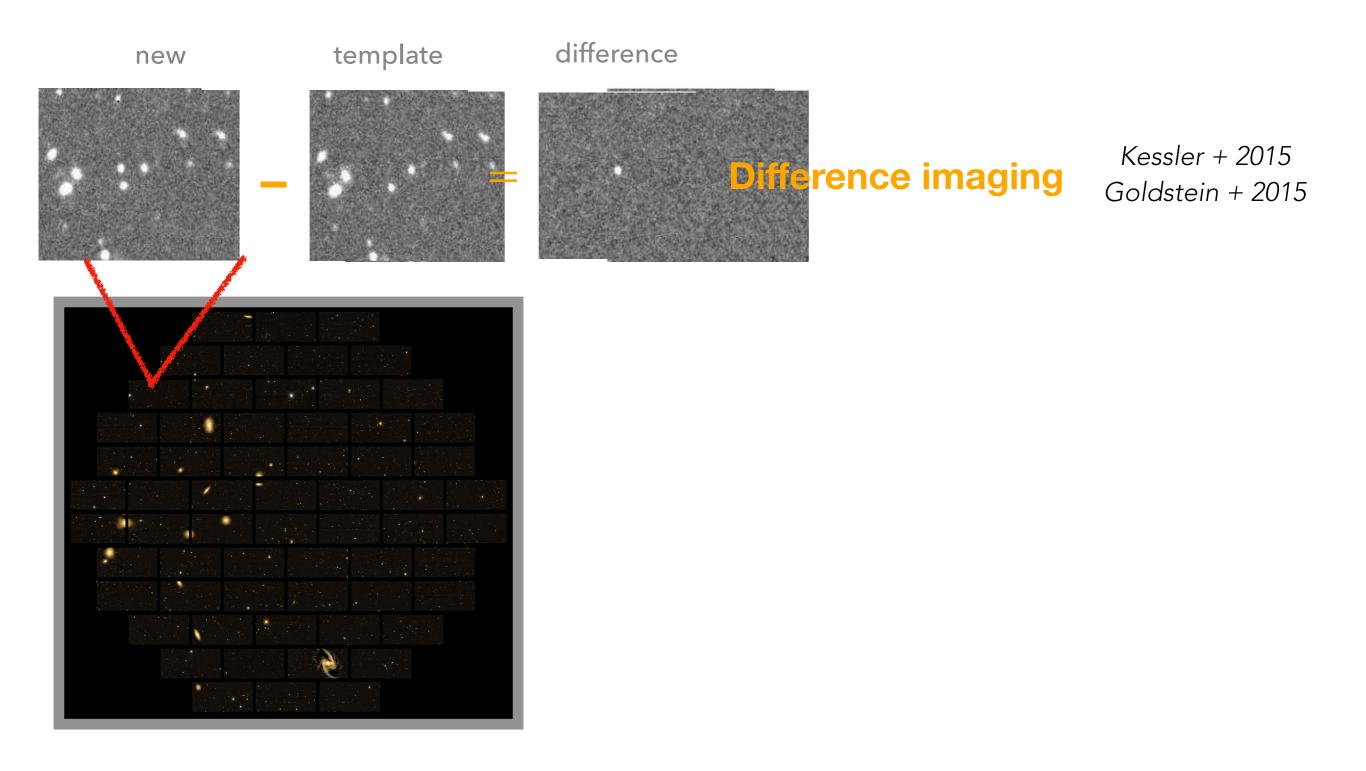


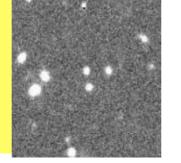




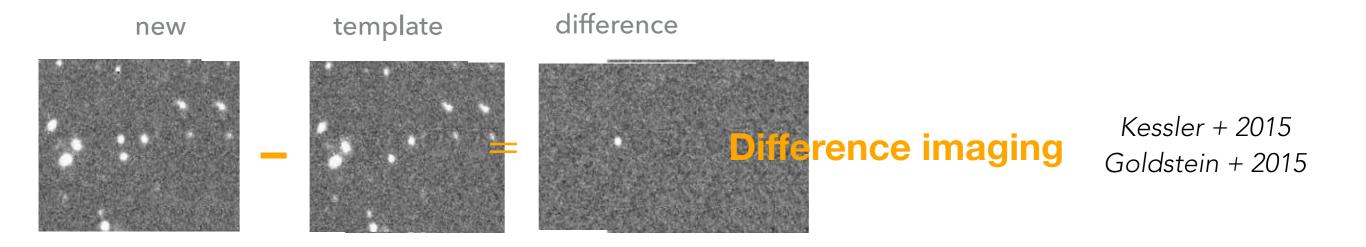


Finding transients

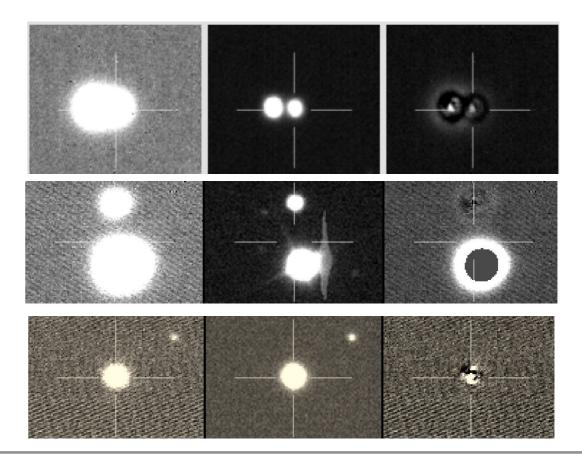




Finding transients

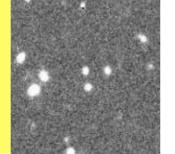


Bogus detections



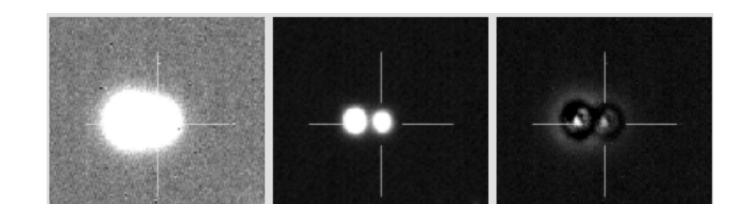
A. Möller CNRS/LPC Clermont

Advanced Pattern Recognition 2019



Eliminating bogus

1. Humans



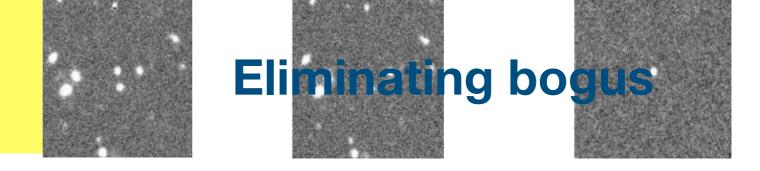
Your team

Citizen scientists

Supernova Sighting

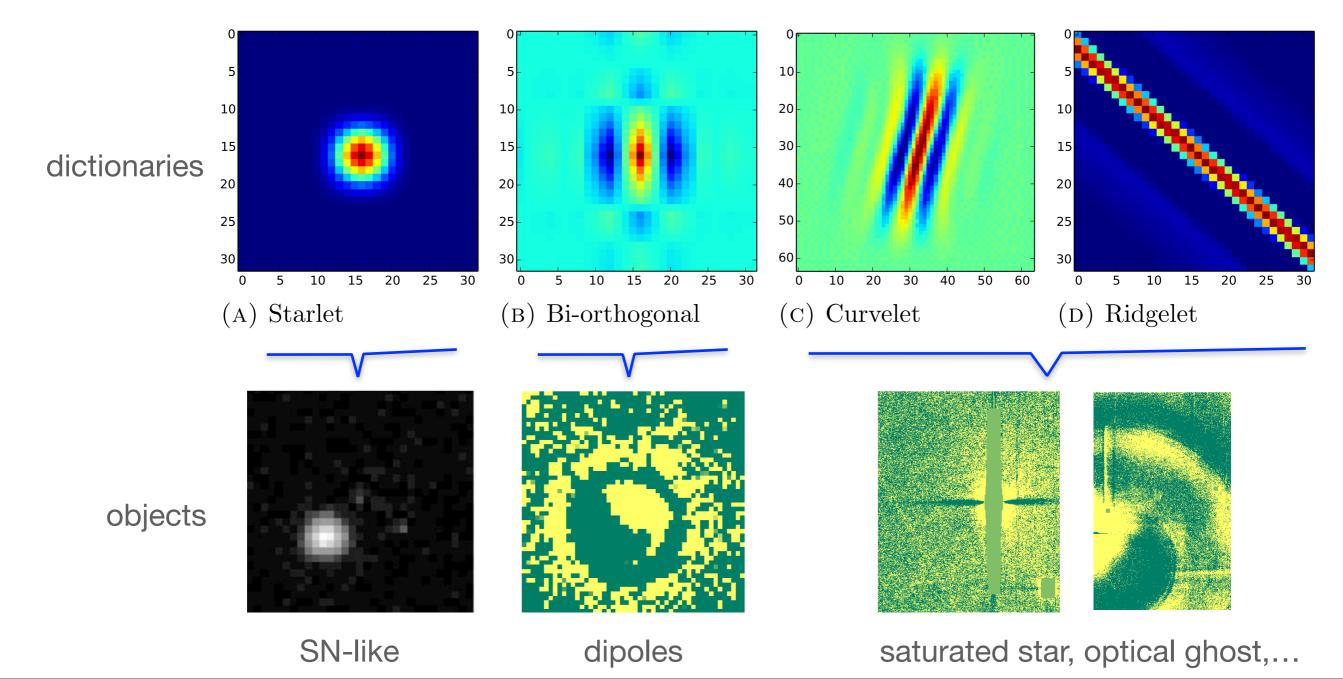
Discover Supernovae using SkyMapper telescope images!

AM, Tucker, Armstrong & the SkyMapper Transient team 2017-2018



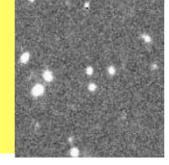
2. Signal Processing

Möller+2015 dictionaries where chosen based on SN-like and artifact studies:



A. Möller CNRS/LPC Clermont

Advanced Pattern Recognition 2019



eref

thref fwhmref

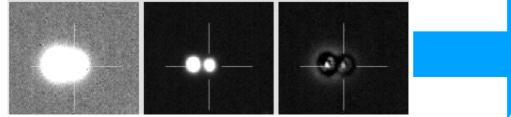
f4ref

flagref

Eliminating bogus

3. Machine learning

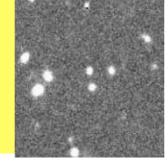
Scalzo...AM +2017



SkyMapper images

Features

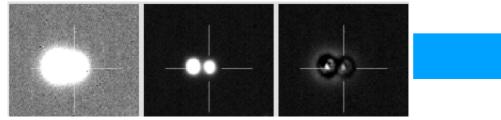
ellipticity of source on template image semi-major axis of source on template image full width at half maximum of all template image flux within 4-pixel aperture in template image SEXTRACTOR source flags in template image ML classifier Random Forest



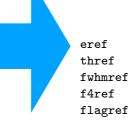
Eliminating bogus

3. Machine learning

Scalzo...AM +2017



SkyMapper images



Features

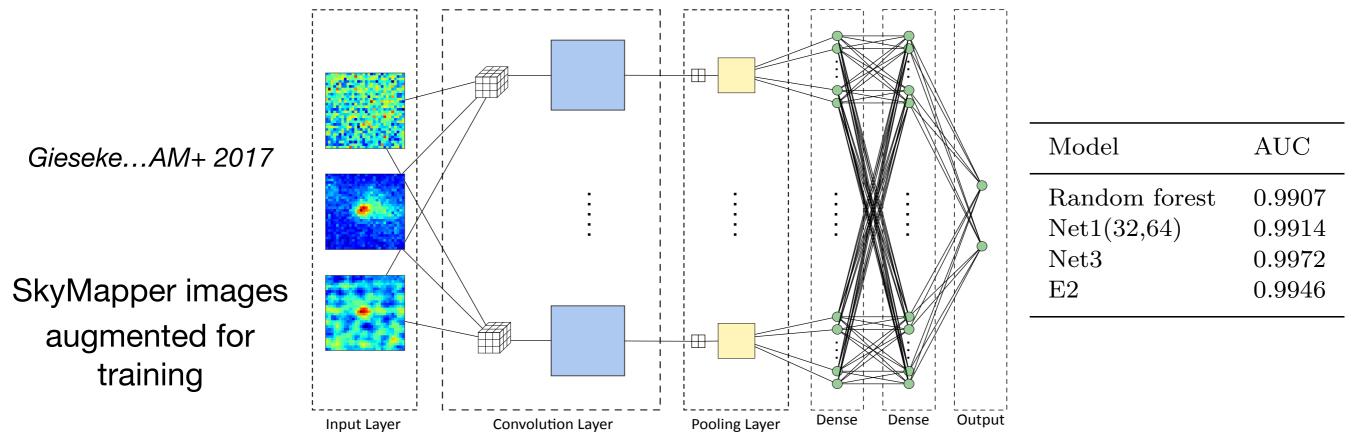
ellipticity of source on template image semi-major axis of source on template image full width at half maximum of all template image sources flux within 4-pixel aperture in template image SEXTRACTOR source flags in template image

Layer

Layer

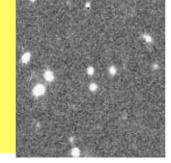
Layer

ML classifier Random Forest



A. Möller CNRS/LPC Clermont

Advanced Pattern Recognition 2019

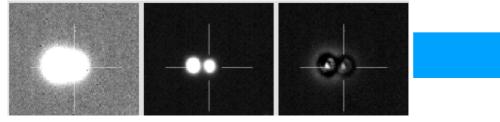


Eliminating bogus

limitations: training sets! feature extraction

3. Machine learning

Scalzo...AM +2017



.

Input Layer

SkyMapper images

Features

ellipticity of source on template image semi-major axis of source on template image full width at half maximum of all template image sources flux within 4-pixel aperture in template image SEXTRACTOR source flags in template image

Dense

Layer

Pooling Layer

Dense

Layer

ML classifier Random Forest

GiesekeAM+ 2017			Model	AUC
			Random forest Net1(32,64) Net3	0.9907 0.9914 0.9972
SkyMapper images			E2	0.9946
augmented for training				

Convolution Layer

A. Möller CNRS/LPC Clermont

Advanced Pattern Recognition 2019

Output

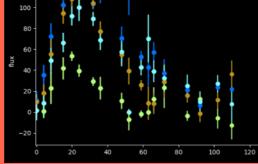
Layer

outline

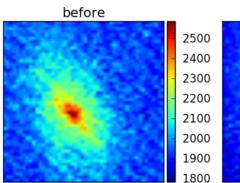
Machine learning in supernova cosmology

Part II: typing with photometry

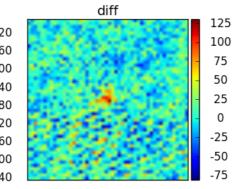
- 1. Datasets: PLAsTiCC
- 2. ML classification issues
 - 1. Representativity
 - 2. Incompleteness
 - 3. "probabilities" for cosmology
- 3. FINK broker



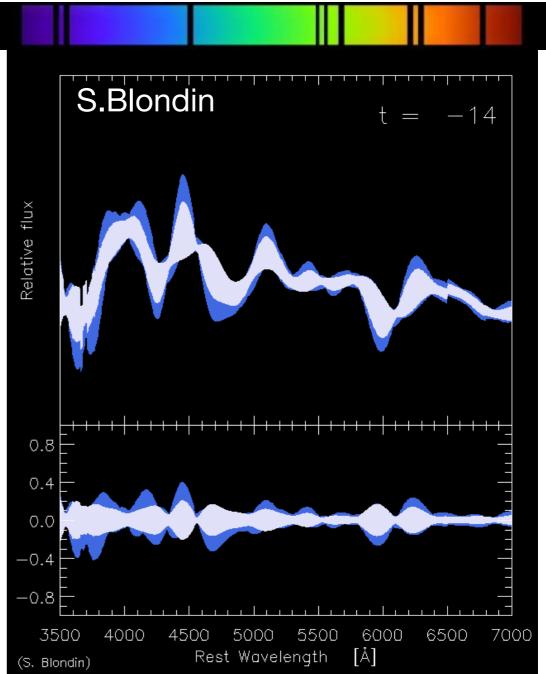
typing supernovae with spectroscopy



after		
Charles Starts		72
	-	66
	-	60
	-	54
	-	48
	H	42
	-	36
		30
		24

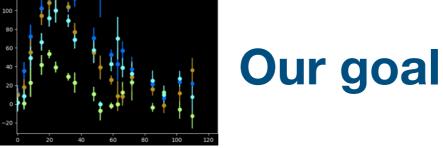


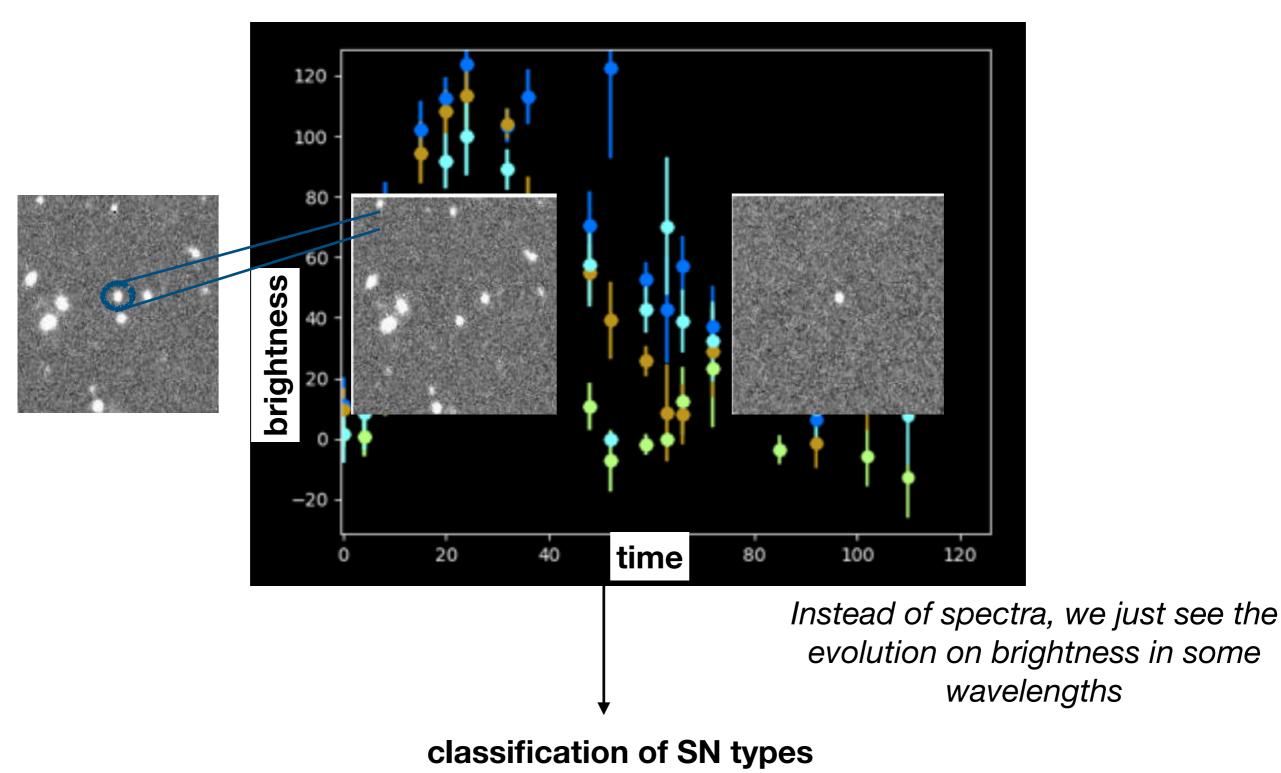
Is it a supernova? Which type?



A. Möller CNRS/LPC Clermont

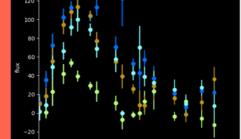
Advanced Pattern Recognition 2019





we need "simulated" datasets:

- to evaluate our methods
- to train ML classifiers



Datasets: PLAsTiCC

we need "simulated" datasets:

- to evaluate our methods
- to train ML classifiers

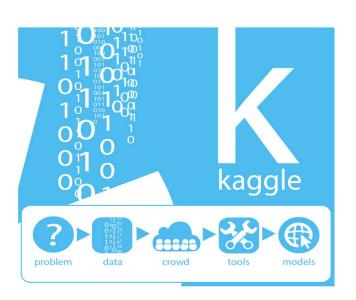
The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC): Data set

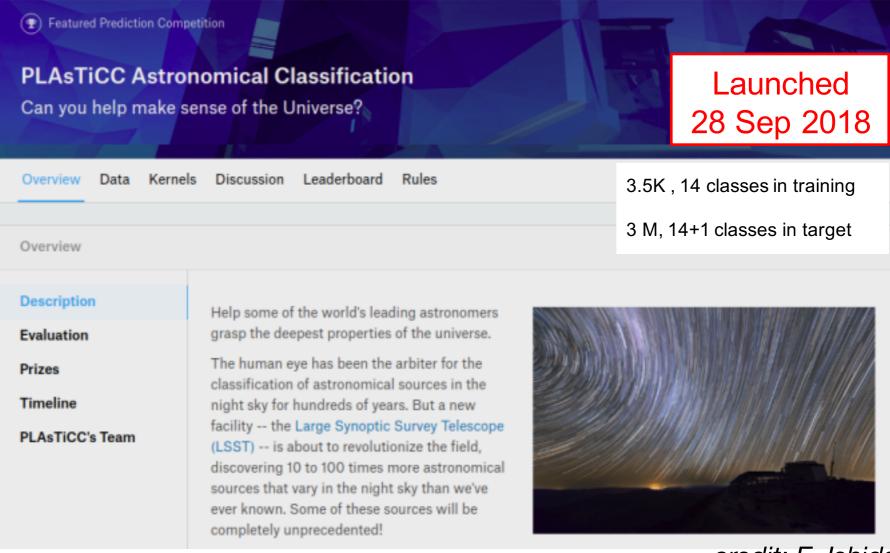
The PLAsTiCC team:,¹ Tarek Allam Jr.,² Anita Bahmanyar,³ Rahul Biswas,⁴ Mi Dai,⁵ Lluís Galbany,⁶ Renée Hložek,³ Emille E. O. Ishida,⁷ Saurabh W. Jha,⁵ David O. Jones,⁸ Richard Kessler,⁹ Michelle Lochner,^{10, 11} Ashish A. Mahabal,^{12, 13} Alex I. Malz,^{14, 15} Kaisey S. Mandel,^{16, 17} Juan Rafael Martínez-Galarza,¹⁸ Jason D. McEwen,² Daniel Muthukrishna,¹⁶ Gautham Narayan,¹⁹ Hiranya Peiris,^{4, 20} Christina M. Peters,³ Kara Ponder,²¹ and Christian N. Setzer⁴ (LSST Dark Energy Science Collaboration and the LSST Transients and Variable Stars Science Collaboration)

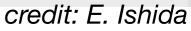
Datasets: PLAsTiCC

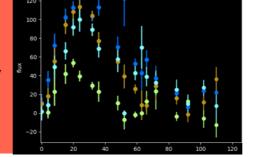
we need "simulated" datasets:

- to evaluate our methods
- to train ML classifiers

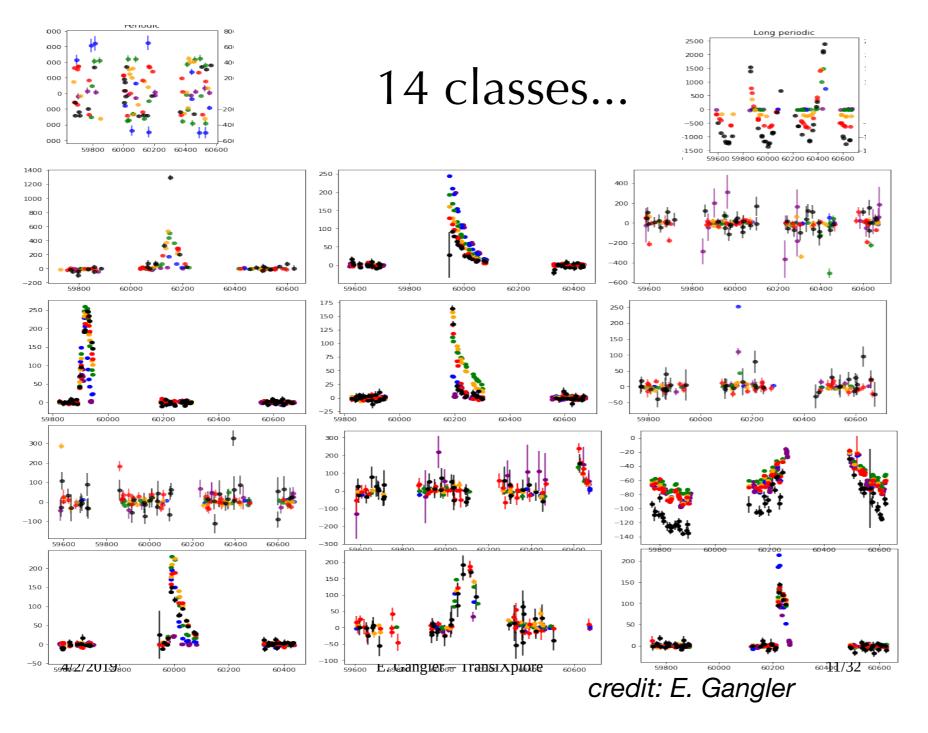








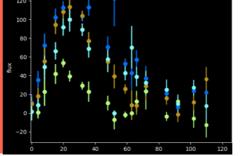
Datasets: PLAsTiCC



metric: each class is roughly equally important for the final score.

$$\operatorname{Log Loss} = -\left(\frac{\sum_{i=1}^{M} w_i \cdot \sum_{j=1}^{N_i} \frac{y_{ij}}{N_i} \cdot \ln p_{ij}}{\sum_{i=1}^{M} w_i}\right)$$

2	
model class	model
num ^a : name	description
90: SNIa	WD detonation, Type Ia SN
67: SNIa-91bg	Peculiar type Ia: 91bg
52: SNIax	Peculiar SNIax
42: SNII	Core Collapse, Type II SN
62: SNIbc	Core Collapse, Type Ibc SN
95: SLSN-I	Super-Lum. SN (magnetar)
15: TDE	Tidal Disruption Event
64: KN	Kilonova (NS-NS merger)
88: AGN	Active Galactic Nuclei
92: RRL	RR lyrae
65: M-dwarf	M-dwarf stellar flare
16: EB	Eclipsing Binary stars
53: Mira	Pulsating variable stars
6: μ Lens-Single	μ -lens from single lens
991: μ Lens-Binary	μ -lens from binary lens
992: ILOT	Intermed. Lum. Optical Trans.
993: CaRT	Calcium Rich Transient
994: PISN	Pair Instability SN
995: μ Lens-String	μ -lens from cosmic strings
TOTAL	Sum of all models



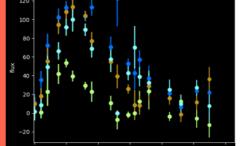
Datasets: PLAsTiCC

Can you help ma	Competition Stronomical Classification ake sense of the Universe? 1,094 teams · 17 days ago		\$25,000 Prize Money
	Kernels Discussion Leaderboard Rules Team	My Submission	s New Topic
18 topics Follow		Sort by Re	evance 👻
All Mine U	pvoted	solutio	n Q
जे 厳 🔕	Source code for a complete solution JohannesBuchner 2 months ago	last comment by Ivan Petrov 1mo ag	● 10
96 🎑 🔕	4th Place Solution with Github Repo AhmetErdem 17 days ago	last comment by Debashish Barua 10d ago	9 45
78 RAPIDS	Congrats and 8th place Rapids solution updated! Jiwei Liu 17 days ago	last comment by Blonde 14d ago	● 23
170 🕵 🭥	Overview of 1st place solution Kyle Boone 17 days ago	last comment by Rajesh D 3d ago	● 81
43 🥁 🔕	5th Place Partial Solution (RNN) Kun Hao Yeh 17 days ago	last comment by Aryan Pariani 13d a	go 🗩 11
72 🞑 🔕	Solution #5 tidbits (revised with code) CPMP 17 days ago	last comment by Blonde 4d ago	9 37
66 🚨 🧔	14th place solution Belinda Trotta 17 days ago	last comment by LongYin 2d ago	● 20
<u>6</u> 1	2nd-Place Solution Notes Silogram 17 days ago	last comment by S D 6d ago	9 27
51 👂 🎯	6th Place Solution Summary Stefan Stefanov 17 days ago	last comment by olivier 16d ago	● 10

Solutions posted on Kaggle

55		٥	#13 Solution, true story: tries and fails Blonde 16 days ago	last comment by SooperDoop 8d ago	9 19
15		٥	PostProcess Trick - 21st place Partial Solution fatihöztürk 16 days ago	last comment by Murat KORKMAZ 16d ago	9 3
22		Ø	21st Solution ~super tough road~ takuoko 16 days ago	last comment by takuoko 16d ago	9 11
24		Ø	19th Place Solution ONODERA 16 days ago	last comment by Vig Nam 15d ago	● 4
28		Ø	11th solution - very basic but may different methods SimonChen 16 days ago	last comment by SimonChen 13d ago	● 15
11		٢	A solution and some learnings Helgi 15 days ago	last comment by Avinash Tayade 14d ago	9 4
17	YOUTIL NEVER WALK ALONE	٢	12th Place Solution Daniel Bi 15 days ago	last comment by go5paopao 7d ago	9 4
32		Ø	20th Place Solution Giba 15 days ago	last comment by Giba 14d ago	9 7
20		\bigcirc	9th place solution Albert Garreta 14 days ago	last comment by Albert Garreta 11d ago	9 4

credit: M. Dai

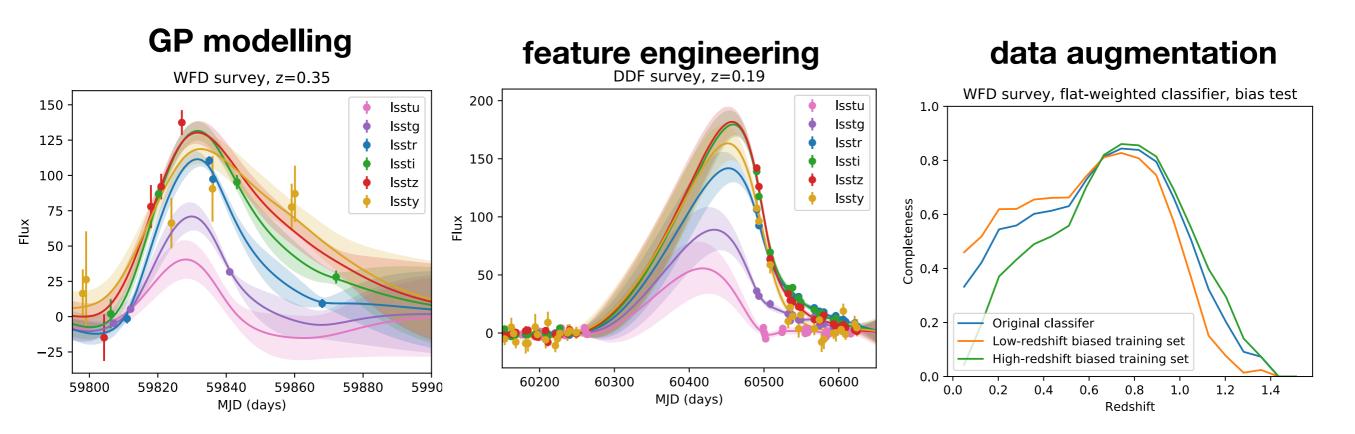


Datasets: PLAsTiCC

Avocado: Photometric Classification of Astronomical Transients with Gaussian Process Augmentation

Winning solution

Kyle $BOONE^{1,2}$



+ boosted decision tree

\$25,000

Prize Money

Datasets: PLAsTiCC

Featured Prediction Competition

PLASTICC Astronomical Classification Can you help make sense of the Universe?

LSST Project · 1,094 teams · 17 days ago

Solutions posted on Kaggle

Useful Features

- Light curve fitting -- Bazin, GP, template fitting (SALT2, SN templates)
- Flux ratio (color)
- Flux difference
- Host galaxy photo-z
- flux * distance ** 2

Popular Models among Kagglers				
	LightGBM			
Gradient Boosting	XGBoost			
	CatBoost			
	Convolutional Neural Networks (CNN)			
Neural Net	Recurrent Neural Networks (RNN)			
NeurarNet	Multi Layer Perceptron (MLP)			
	Autoencoders			
Binary Classification				

Credit M. Dai

Datasets: PLAsTiCC

Featured Prediction Competition

PLASTICC Astronomical Classification Can you help make sense of the Universe?

LSST Project · 1,094 teams · 17 days ago

Solutions posted on Kaggle

Useful Features

- Light curve fitting -- Bazin, GP, template fitting (SALT2, SN templates)
- Flux ratio (color)
- Flux difference
- Host galaxy photo-z
- flux * distance ** 2

opular Models am	ong Kagglers	
	LightGBM	
Gradient Boosting	XGBoost	
	CatBoost	
	Convolutional Neural Networks (CNN)	
Neural Net	Recurrent Neural Networks (RNN)	
Nouraritet	Multi Layer Perceptron (MLP)	
	Autoencoders	
Binary Classification		

Credit M. Dai

- common algorithms perform great, e.g. BDTs
- feature extraction is key (domain knowledge + irregular time series)

\$25.000

Prize Money

• labeled set (for training) was crucial, not large nough, not representative of the test set

Datasets: PLAsTiCC

(Featured Prediction Competitio

PLASTICC Astronomical Classification Can you help make sense of the Universe?

LSST Project · 1,094 teams · 17 days ago

Solutions posted on Kaggle

Useful Features

- Light curve fitting -- Bazin, GP, template fitting (SALT2, SN templates)
- Flux ratio (color)
- Flux difference
- Host galaxy photo-z
- flux * distance ** 2

Popular Models among Kagglers

	LightGBM	
Gradient Boosting	XGBoost	
	CatBoost	
Neural Net	Convolutional Neural Networks (CNN)	
	Recurrent Neural Networks (RNN)	
Neural Net	Multi Layer Perceptron (MLP)	
	Autoencoders	
Binary Classification		

Credit M. Dai

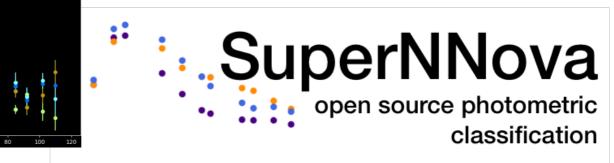
- common algorithms perform great, e.g. BDTs
- feature extraction is key (domain knowledge + irregular time series)

\$25.000

Prize Money

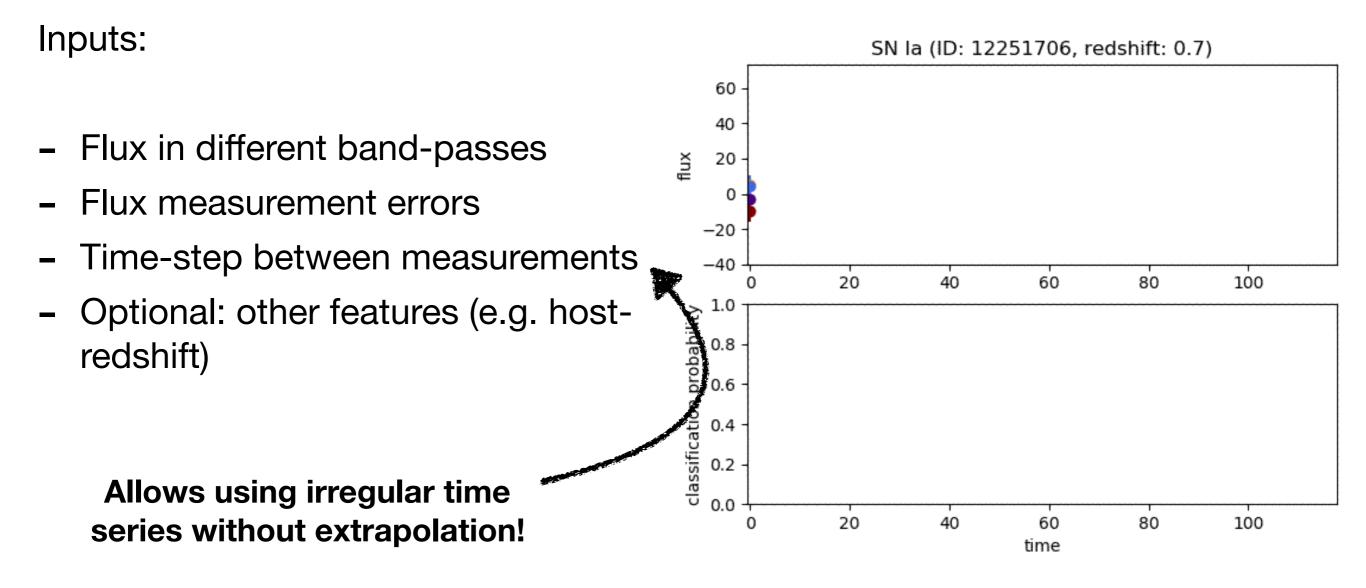
Iabeled set (for training) was crucial, not large nough, not representative of the test set

But feature extraction biases samples!



Möller & de Boissière 2019

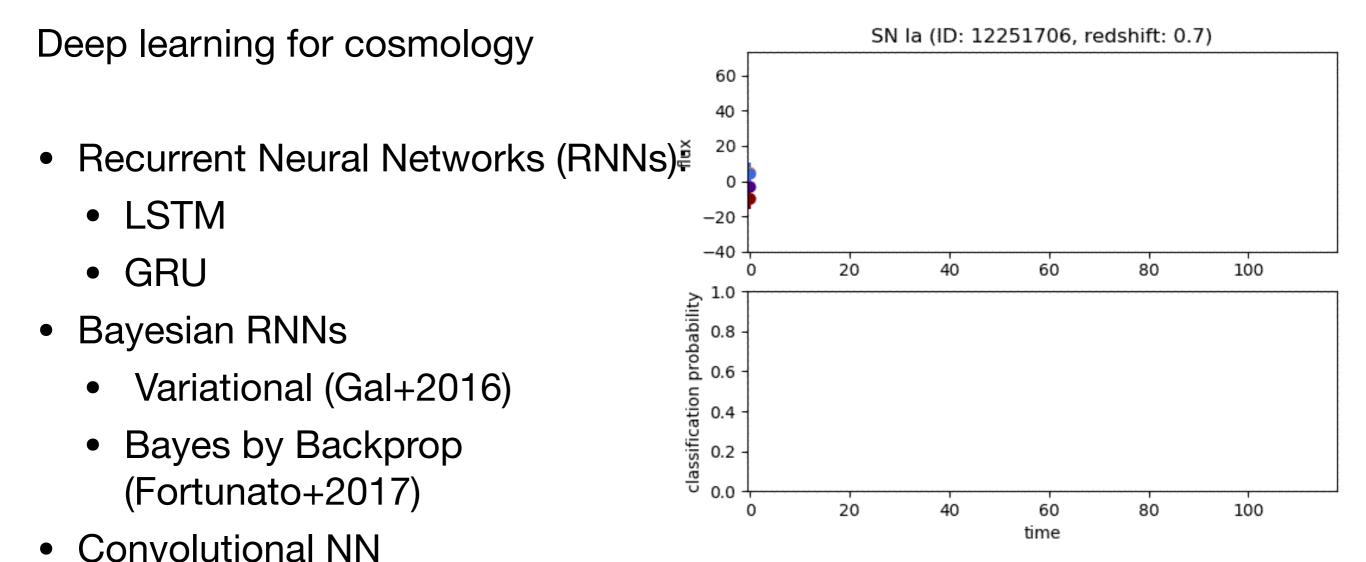
Möller & de Boissière 2019



A. Möller CNRS/LPC Clermont

Advanced Pattern Recognition 2019

Möller & de Boissière 2019



Other time-series applications with: RNNs: Charnock & Moss 2016, Muthukrishna+2019 CNN: Kimura +2017

Möller & de Boissière 2019

Accuracy

early classification

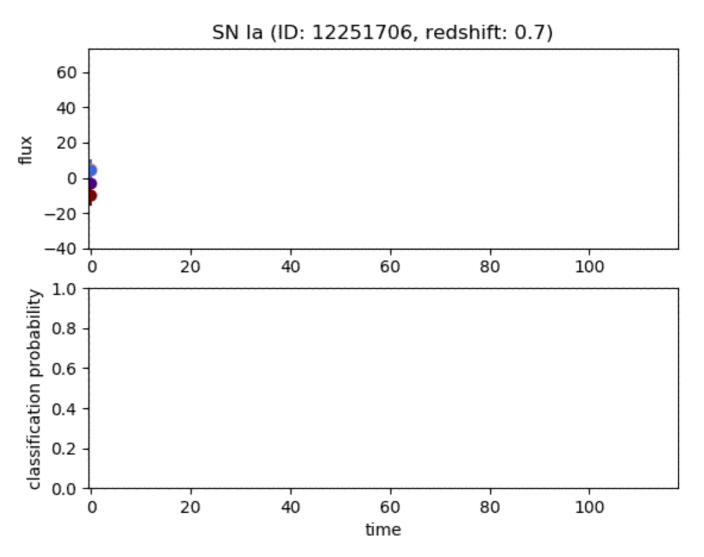
 87.59 ± 0.13

for:

- brokers

- follow-up for promising candidates

reproducible selection functions Improving trying samples e.g. Ishida + 2018



Möller & de Boissière 2019

Accuracy

 87.59 ± 0.13 early classification SN la (ID: 12251706, redshift: 0.7) 60 complete 96.97 ± 0.06 40 flux 20 0 -20 for: -40 20 60 40 80 100 larger & more reliable samples 0 1.0 classification probability probing new parameter space -0.8 -0.6 0.4 0.2 -0.0 20 40 60 80 100 0

time



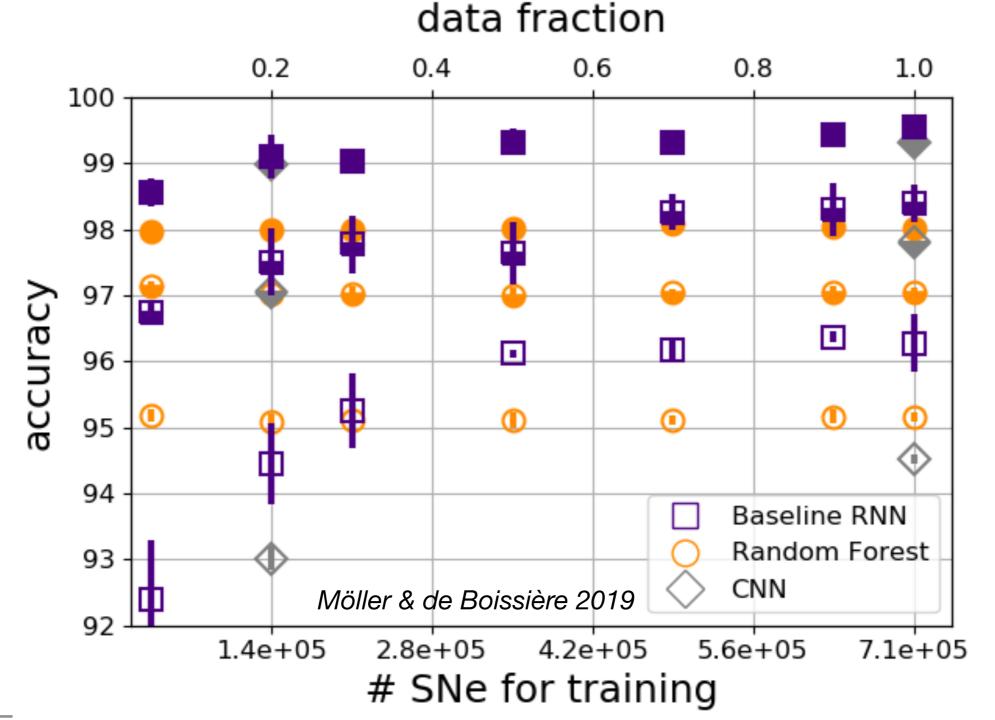
Möller & de Boissière 2019

Accuracy

early classification 87.59 ± 0.13 SN la (ID: 12251706, redshift: 0.7) 60 complete 96.97 ± 0.06 40 flux 20 0 -20 for: -4020 40 60 80 100 larger & more reliable samples 0 1.0 classification probability probing new parameter space 0.8 cosmology, systematic studies 0.6 e.g. Hlozek + 2012, Jones+2016 0.4 0.2 -**Cosmology limitation:** 0.0 80 20 40 60 100 0 Modelling core-collapse contamination time

Current efforts include Hinton + 2018, Vincenzi + 2019

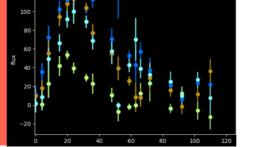
Accuracy



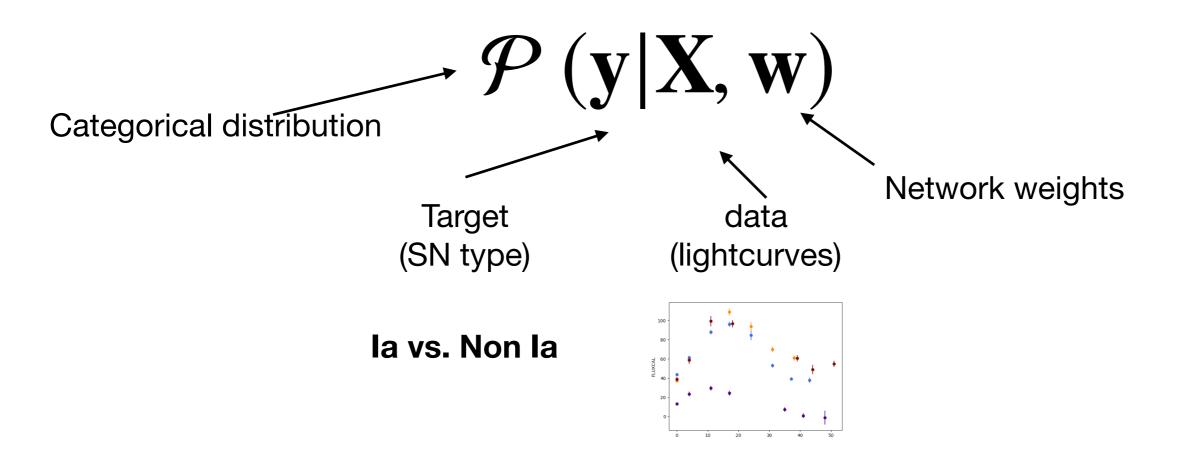
Beware, features in RF are very tuned for Its!

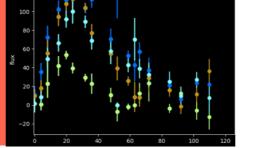
Advanced Pattern Recognition 2019

A. Möller CNRS/LPC Clermont

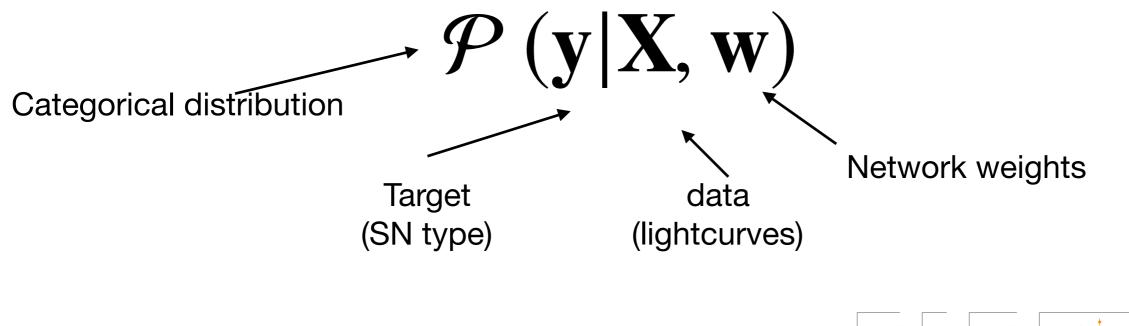


Bayesian NNs

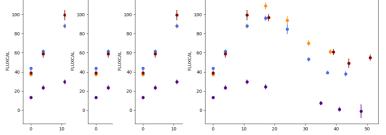


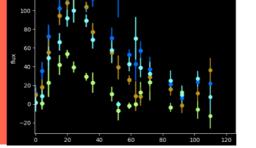


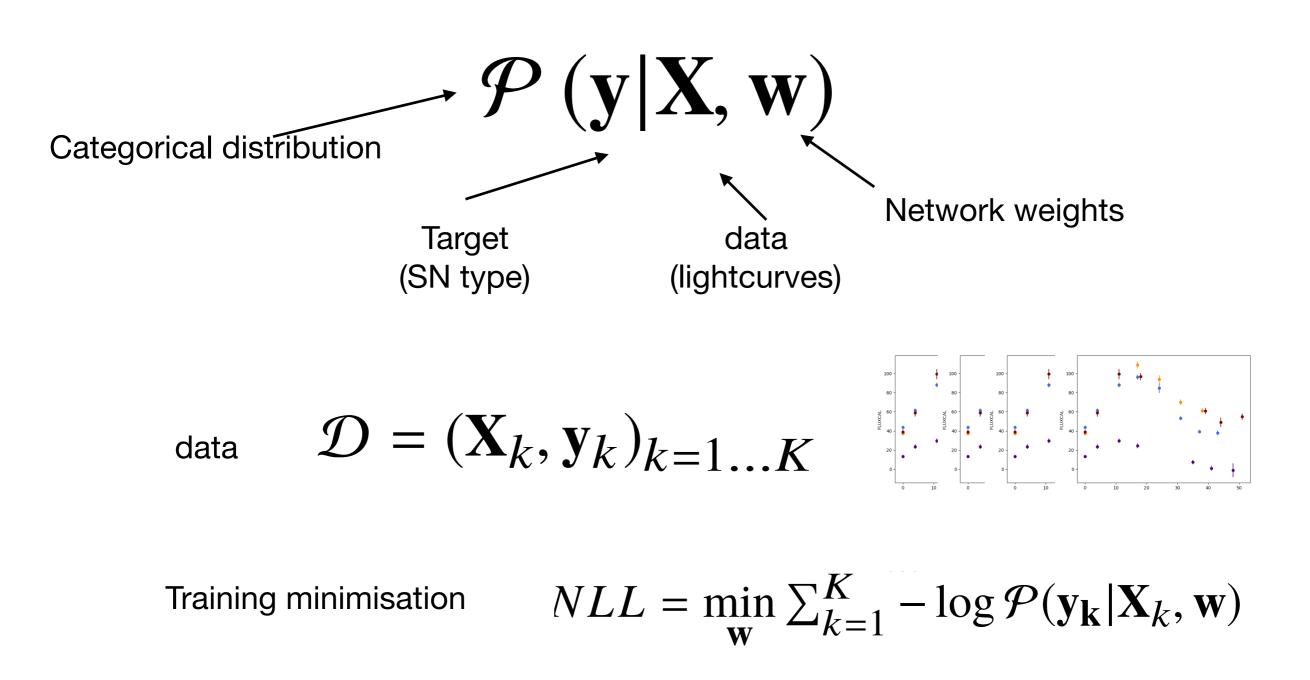
Bayesian NNs



data
$$\mathcal{D} = (\mathbf{X}_k, \mathbf{y}_k)_{k=1...K}$$

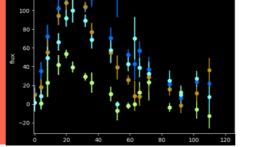






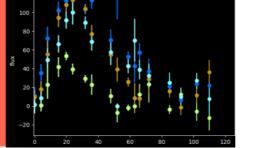
A. Möller CNRS/LPC Clermont

Advanced Pattern Recognition 2019



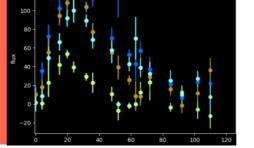
 $\mathscr{P}(\hat{\mathbf{y}} | \mathbf{x}) = \int \mathscr{P}(\hat{\mathbf{y}} | \mathbf{x}, \mathbf{w}) \mathscr{P}(\mathbf{w} | \mathscr{D}) d\mathbf{w}$

Bayesian: distribution of weights

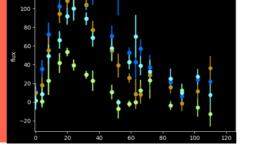


 $\mathscr{P}(\hat{\mathbf{y}} | \mathbf{x}) = \int \mathscr{P}(\hat{\mathbf{y}} | \mathbf{x}, \mathbf{w}) \mathscr{P}\left(\mathbf{w} | \mathscr{D}\right) d\mathbf{w}$

posterior is intractable for deep neural networks



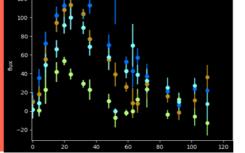
 $\mathscr{P}(\hat{\mathbf{y}} | \mathbf{x}) = \int \mathscr{P}(\hat{\mathbf{y}} | \mathbf{x}, \mathbf{w}) \mathscr{P}(\mathbf{w} | \mathscr{D}) d\mathbf{w}$ $\mathscr{P}(\mathbf{W} \mid \mathscr{D}) pprox q(\mathbf{W} \mid \theta)$ variational distribution



 $\mathscr{P}(\hat{\mathbf{y}} \mid \mathbf{x}) = \int \mathscr{P}(\hat{\mathbf{y}} \mid \mathbf{x}, \mathbf{w}) \mathscr{P}(\mathbf{w} \mid \mathscr{D}) d\mathbf{w}$ $\mathscr{P}(\mathbf{W} \mid \mathscr{D}) pprox q(\mathbf{W} \mid \theta)$ variational distribution

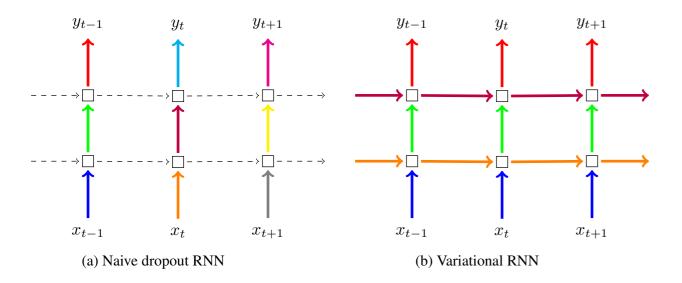
Training minimisation

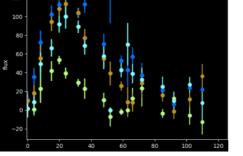
$$\hat{\theta} = \min_{\theta} \mathbf{KL} \left(q(\mathbf{w} | \theta) | | \mathscr{P}(\mathbf{w} | \mathscr{D}) \right)$$



Approximating the variational distribution $[q(\mathbf{w}|\theta)]$

1.MC dropoutGal & Ghahramani 2016

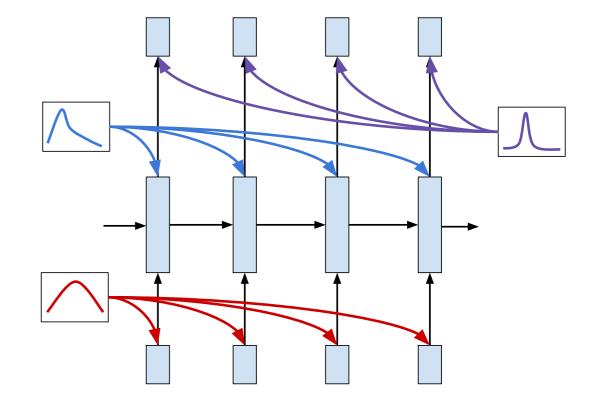




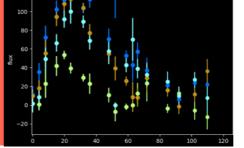
- Approximating the variational distribution $[q(\mathbf{w}|\theta)]$
 - **1.MC dropout**Gal & Ghahramani 2016

2. Bayes by Backprop *Fortunato*+ 2017



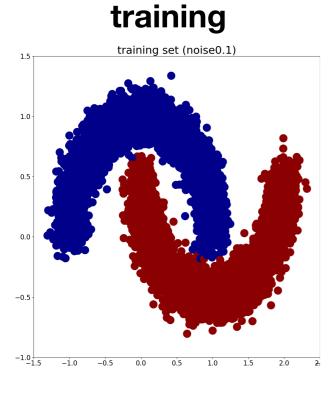


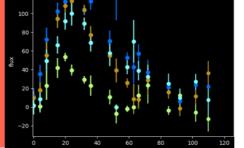
C



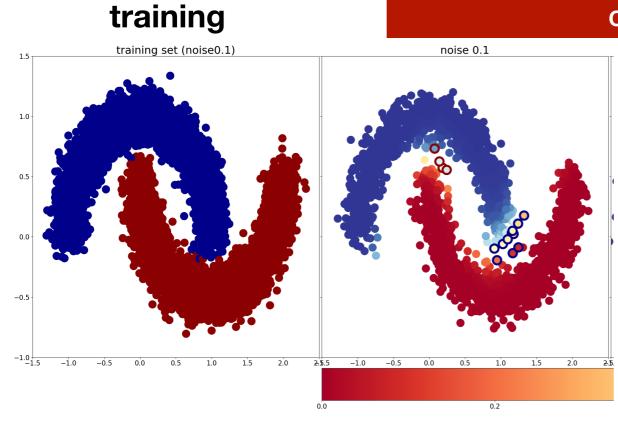
Bayesian NNs

classification probability





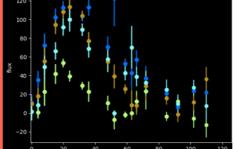
Bayesian NNs



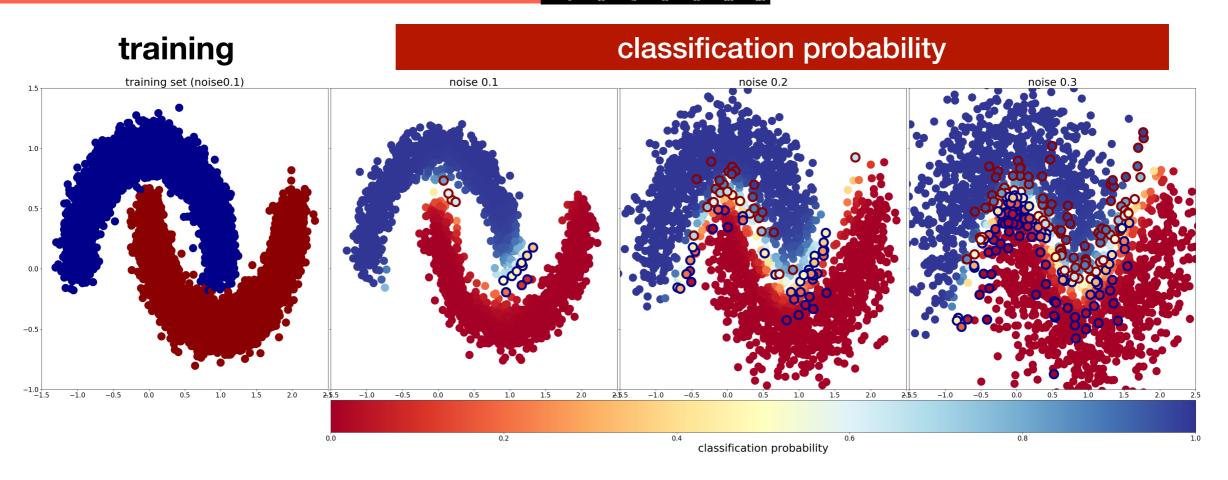
classification probability

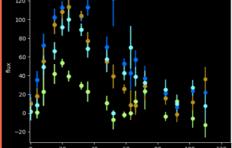
A. Möller CNRS/LPC Clermont

Advanced Pattern Recognition 2019

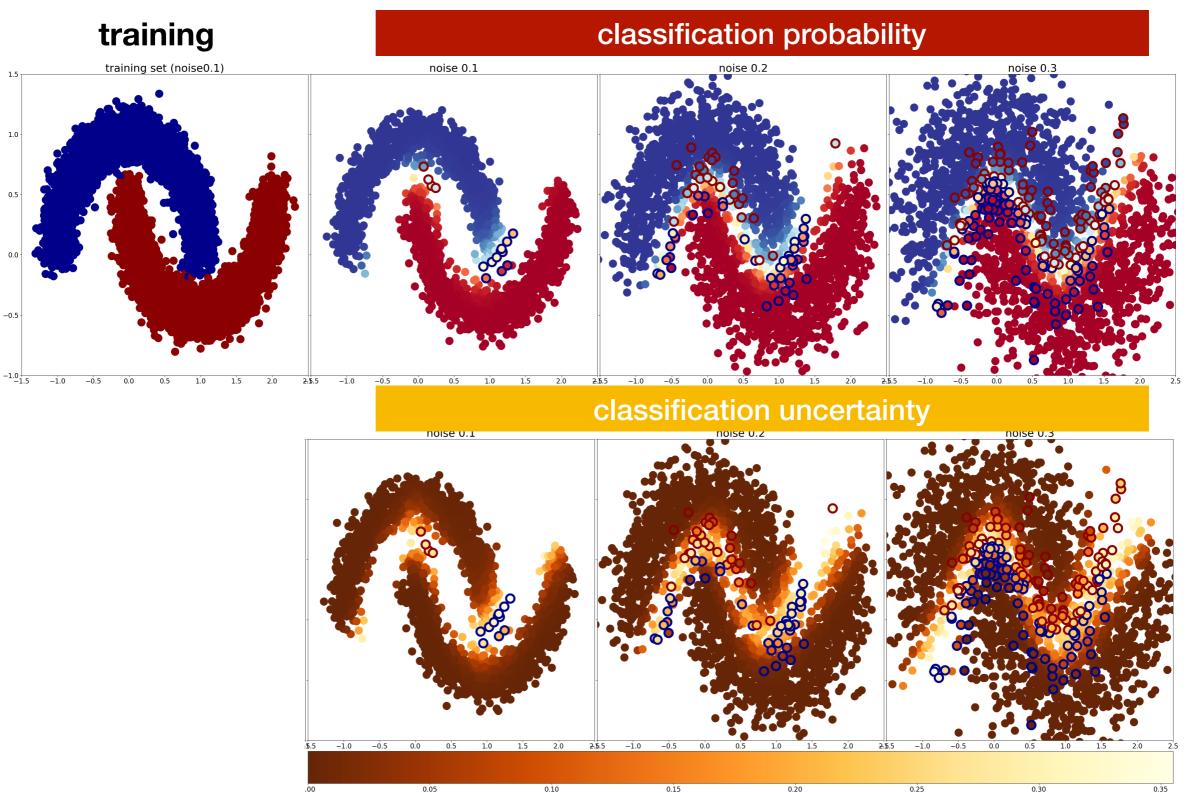


Bayesian NNs





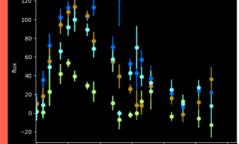
Bayesian NNs



0.15 0.20 classification uncertainty

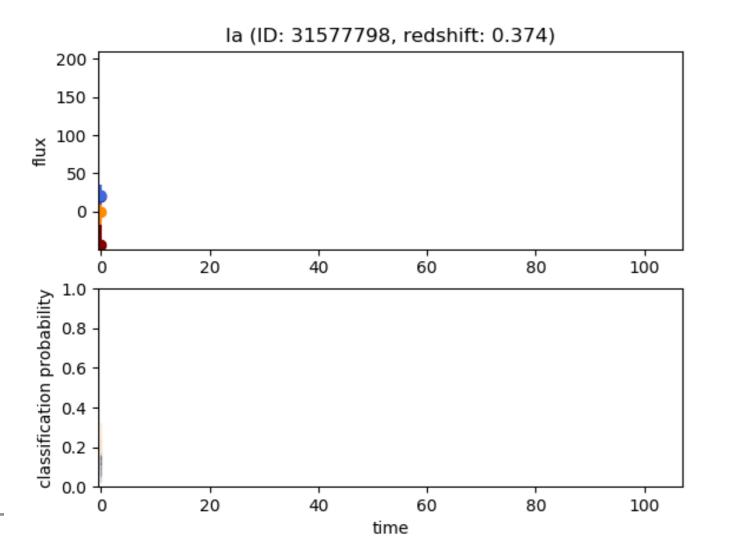
A. Möller CNRS/LPC Clermont

Advanced Fallern Recognition 2019



Bayesian NNs

MC dropoutGal & Ghahramani 2016



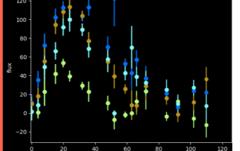
2. Bayes by Backprop *Fortunato*+ 2017

Posterior that provides epistemic uncertainties

Epistemic uncertainties:

express our ignorance about the model that generated the data.

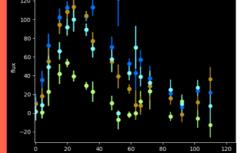
Advanced Pattern Recognition 2019



Training sets are:

- ! not representative
- ! incomplete (we don't know/can't simulate)

? Can we use output from ML classifiers for cosmology or any statistical analyses?



ML limitations representativity

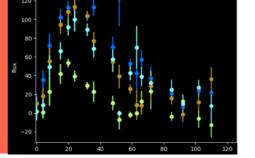
peak brightness i

data

simulation

peak brightness i

Distribution of properties of SNe



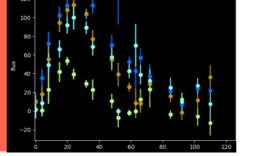
ML limitations representativity

peak brightness i

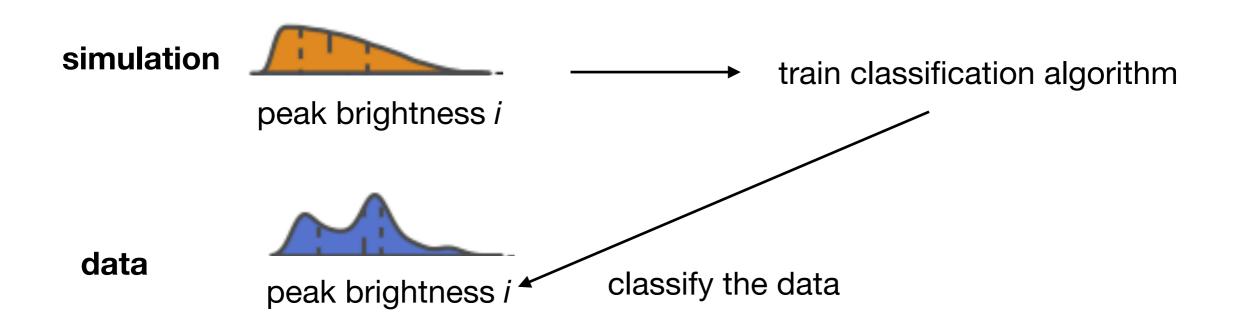
train classification algorithm

data

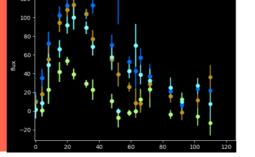
peak brightness i



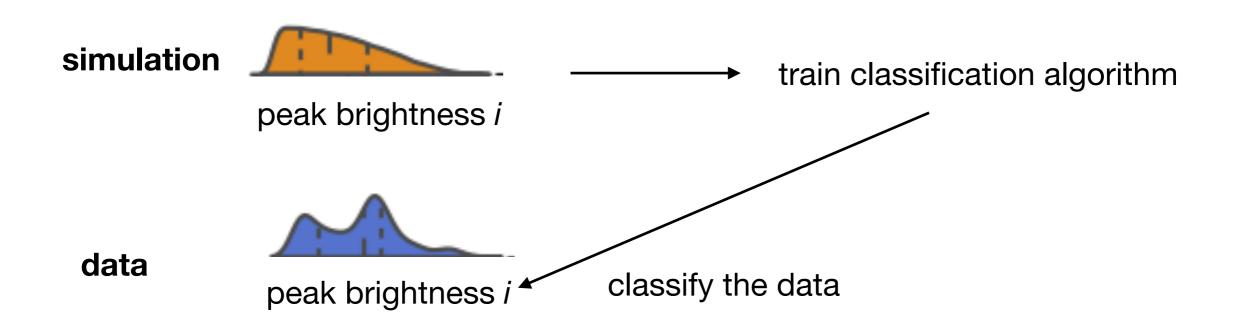
ML limitations representativity



accuracy decreases (Lochner+ 2015, Charnock+2017)

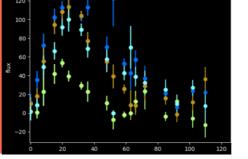


ML limitations representativity

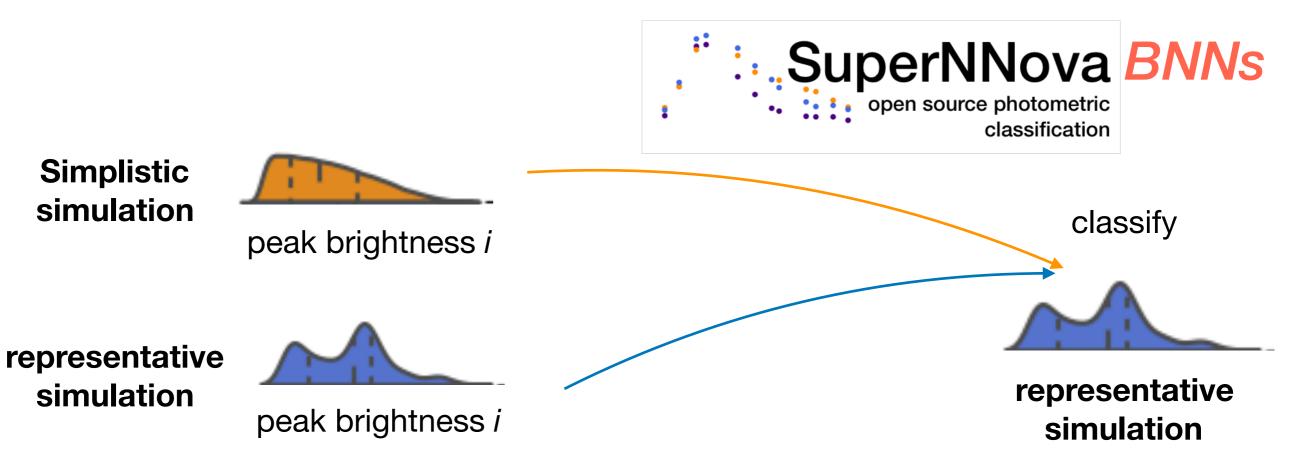


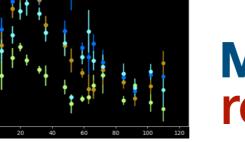
Either we improve our training sets or search for robust methods!

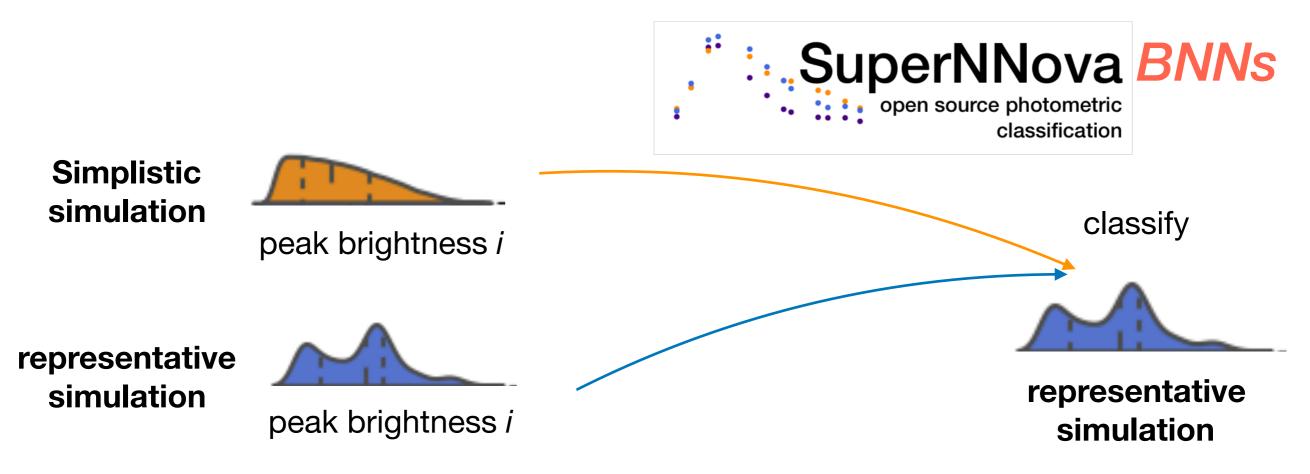
Pasquet+ 2019, Möller+ 2019



ML limitations representativity

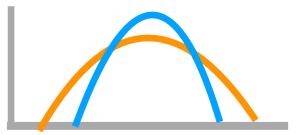




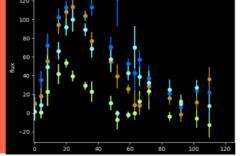


accuracy changes slightly (<prob> are not the most indicative)

non-representative models give larger uncertainties!



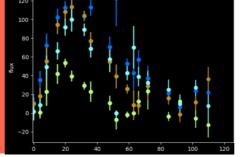
Probability



ML limitations incompleteness

training set

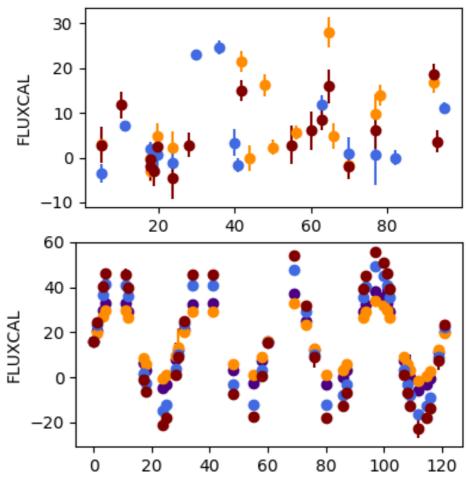
to classify

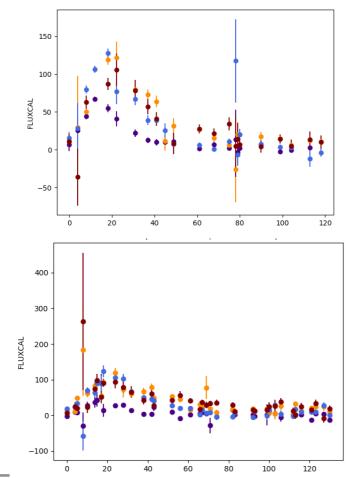


ML limitations incompleteness

training set

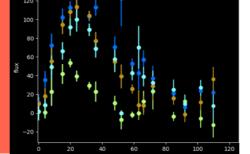
to classify



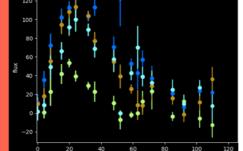


A. Möller CNRS/LPC Clermont

Advanced Pattern Recognition 2019

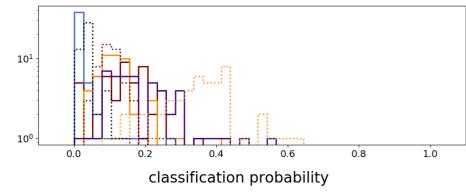


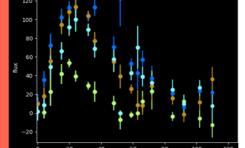
ML limitations incompleteness



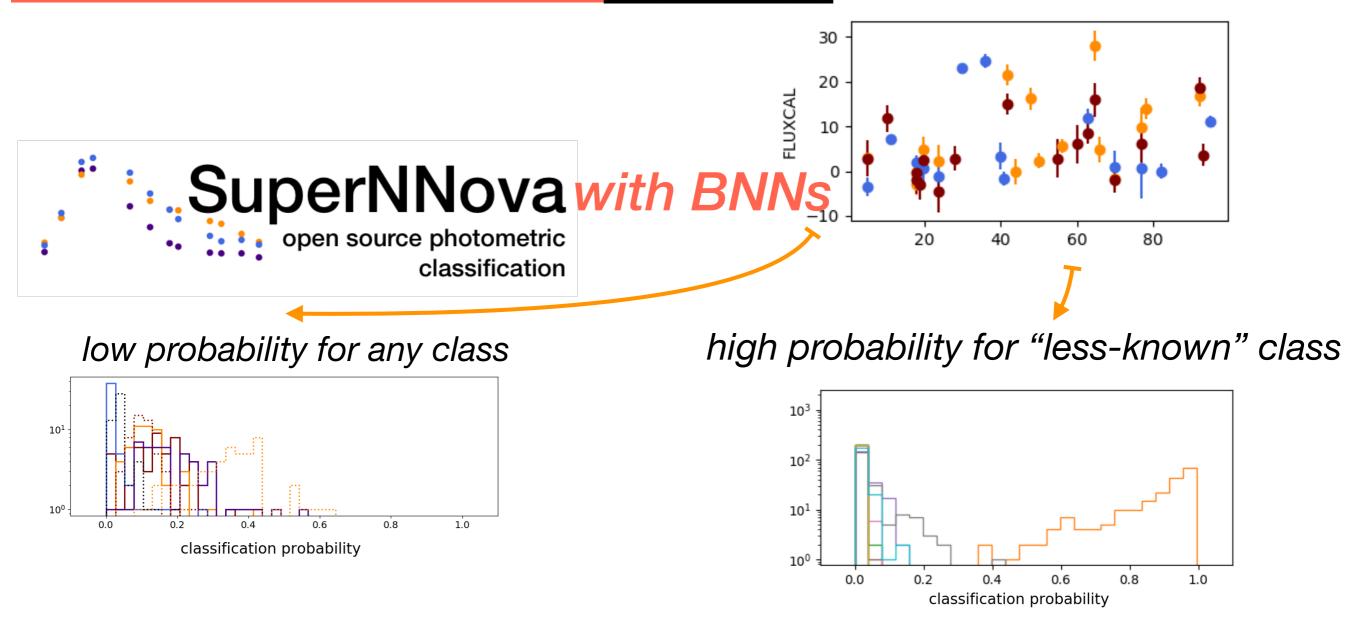
ML limitations incompleteness

low probability for any class



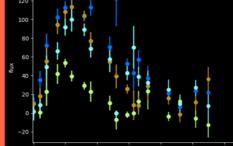


ML limitations incompleteness



but... BNNs can give us highprobability but large uncertainty

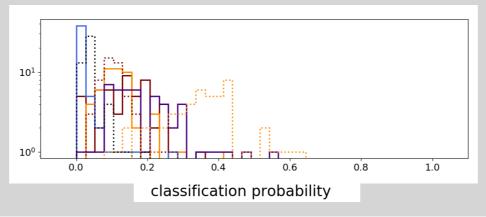
"an increase in average classification uncertainties for these anomalies" Möller + 2019 A. Möller CNRS/LPC Clermont Advanced Pattern Recognition 2019



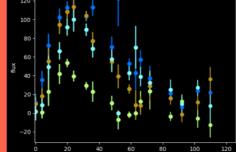
ML probabilities for statistical analyses?

Selecting a SN Ia sample:

cutting on "classification probabilities" for selection

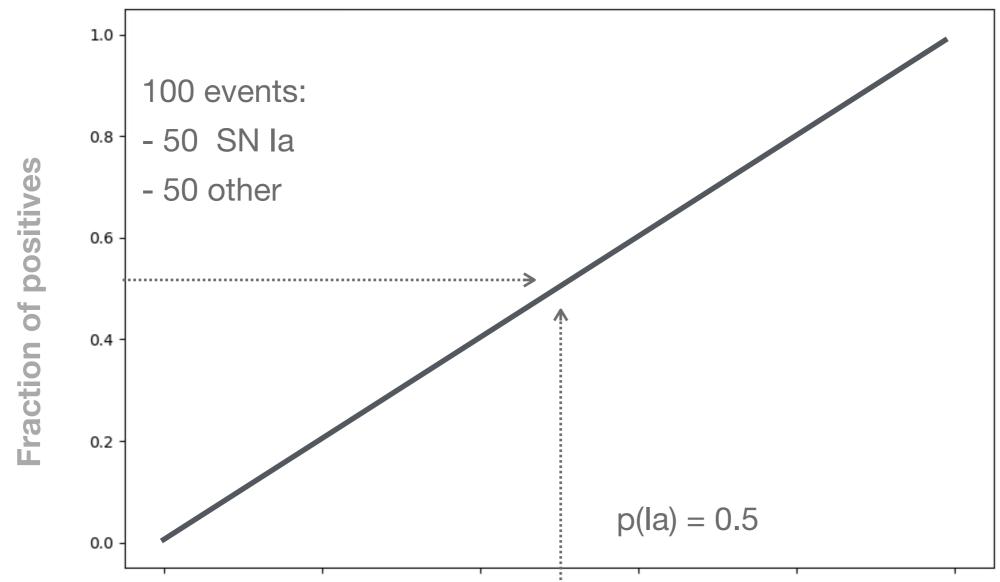


Can use a "weight" in the analysis using these "classification probabilities" *Jones*+2018, *Hinton*+2018

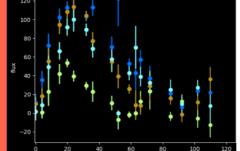


ML probabilities for statistical analyses?

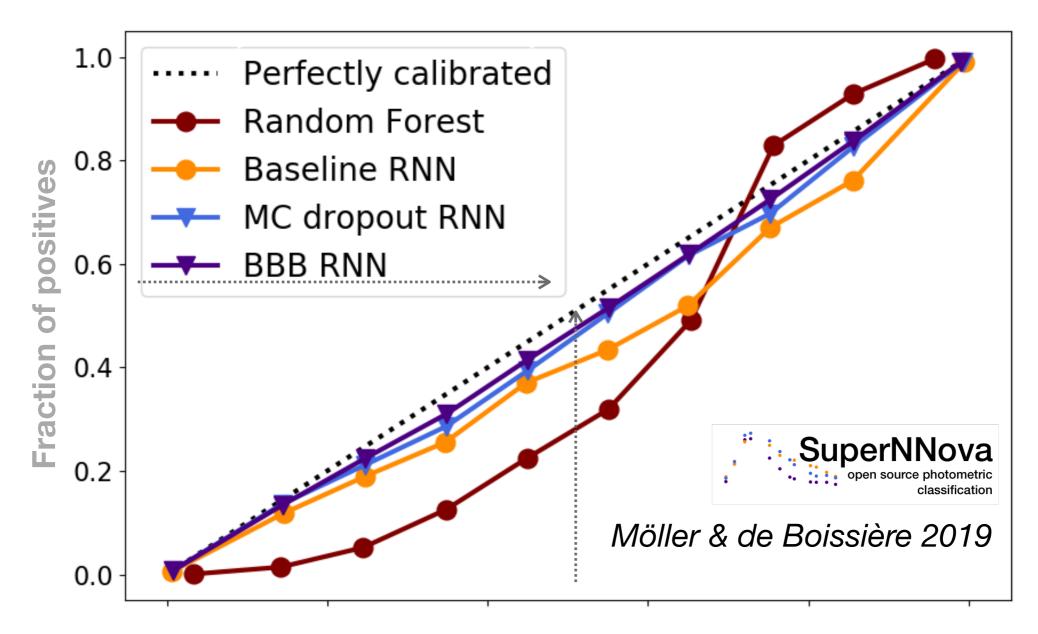
De Groot+ 1983, Niculezcu-Mizil+ 2005, Guo+ 2017



Mean predicted probability

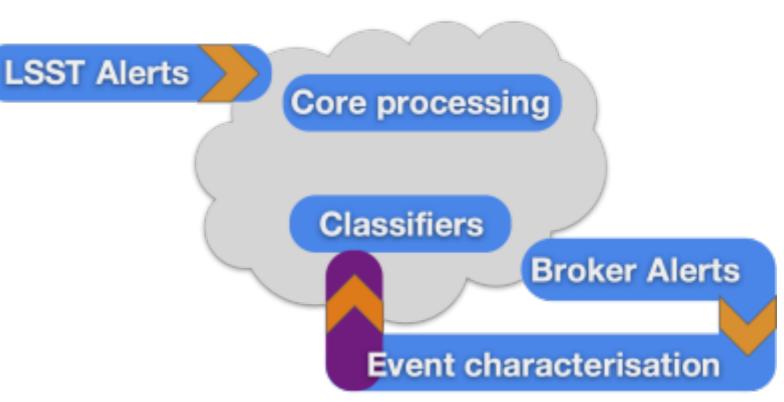


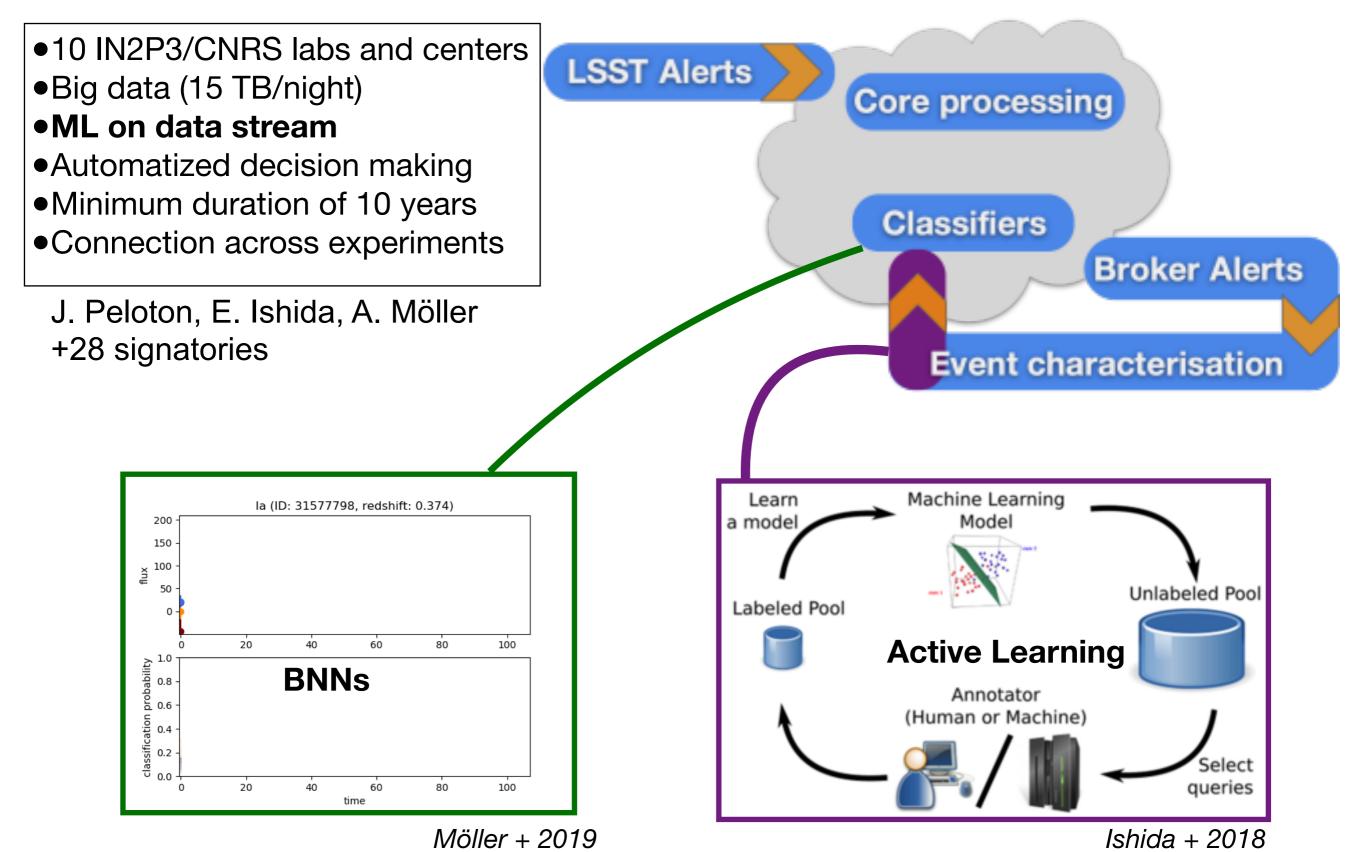
ML probabilities for statistical analyses?



Mean predicted probability

- 10 IN2P3/CNRS labs and centers
 Big data (15 TB/night)
 ML on data stream
 Automatized decision making
 Minimum duration of 10 years
 Connection across experiments
- J. Peloton, E. Ishida, A. Möller +28 signatories





take away

- The big astronomical data era requires the use of ML methods
- Machine learning is key for supernova cosmology. \bullet
- The last decade we have seen large advancements on problems like real vs. bogus & photometric classification.
- To exploit our large SN samples we need to start evaluating the robustness as one of the key components of our classifiers.

FAQ

Bayesian Neural Networks are promising for statistical analyses. SuperNNova

github: supernnova/SuperNNova

A. Möller CNRS/LPC Clermont

