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Matrices are everywhere in physics, randomness is also
everywhere.

Random matrices first appeared in statistics, generalizing the
chi-squared law to multivariate random data (Wishart, 1928) and
are applicable to:

I the description of the energy spectra of heavy nuclei (Wigner,
1950s),

I the large Nc limit of QCD (’t Hooft, 1970s),

I random surfaces, 2d quantum gravity

I data analysis

I transport in disordered systems

I string theory

I number theory

I biology

I ....
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Principal component analysis (PCA)

In experiments scientists frequently face with the clouded, unclear
and even redundant data. This is not a trivial problem, but rather
a fundamental obstacle in empirical science. Consider, the
following toy example:



Principal component analysis (PCA)

I Clearly, in the example above the positions of cameras were
not chosen appropriately.

I To describe the system we need measurements just in one
dimension instead of 2× 3.

I In addition, the signal can be contaminated by noise.

To fight these problems PCA provides:

I a simple, non-parametric method of extracting relevant
information from confusing data sets

I computing the most meaningful basis to re-express a noisy
data set.



Principal component analysis (PCA)

I Consider a N ×M matrix X representing the initial data,
where N is the number of measurement types and M is the
number of samples.

I The corresponding covariance matrix

CX :=
1

N − 1
XXT

is a square symmetric N × N matrix and contains:
I the variance of particular measurement types in the diagonal

terms;
I the covariance between measurement types in the off-diagonal

terms.

I In the diagonal terms, by assumption, large (small) values
correspond to interesting dynamics (or noise).

I In the off-diagonal terms large (small) values correspond to
high (low) redundancy.



Principal component analysis (PCA)

I We transformation the initial data X by some orthonormal
matrix P

Y = PX

I In such a way that the covariance

CY :=
1

N − 1
YY T

is diagonalized.



Principal component analysis (PCA)

I The covariance matrix can be written as

CY :=
1

N − 1
P(XXT )PT

Consequently:
I the variance of particular measurement types in the diagonal

terms;
I the covariance between measurement types in the off-diagonal

terms.

I The principal components of X are the eigenvectors of XXT ,
or the rows of P.



PCA: singular value decomposition

I The eigenvalue decomposition of XXT reduces to the singular
value decomposition of matrix X .

I σ ≥ 0 is an singular value of matrix X , if there exist left and
right singular vectors aσ and bσ, such that

X aσ = σbTσ ; bσ X = σaTσ

I This means, we have to find the best low rank approximation
for the matrix X

Xij = ai ⊗ bj



Random matrix model for PCA

I The data can be contaminated by noise

Xij = ai ⊗ bj + ηHij

with Hij being noise and η being the noise to signal ratio.

I The term ηHij can be modeled by the RANDOM MATRIX

I Is it always possible to detect the signal?

I What is the critical ratio ηc



Ensembles of Random Matrices
The most studied random matrix ensembles are the Gaussian
ensembles:
I The Gaussian unitary ensemble GUE(N) is described by the

Gaussian measure
1

ZGUE(N)
e−

N
2
trH2

here H is Hermitian matrix N × N. The Gaussian measure is
invariant under the unitary transformations:

H → UHU†

I The Gaussian orthogonal ensemble GOE(N) is described by
the Gaussian measure invariant under orthogonal conjugation

1

ZGOE(N)
e−

N
4
trH2

, H → OHOT

I The Gaussian symplectic ensemble GSE(N) is defined by the
Gaussian measure on the space Hermitian quaternionic
matrices.



Eigenvalues

For many purposes it is highly important to know the statistics of
eigenvalues. The first step is to write probability density in terms
of eigenvalues.
The joint probability density for the eigenvalues λ1, λ2, ..., λN of
GUE/GOE/GSE is given by

1

Zβ,N

N∏
k=1

e−
βN
4
λ2k
∏
i<j

|λj − λi |β

where the Dyson index, β = 1 for GOE, β = 2 for GUE, and β = 4
for GSE, counts the number of real components per matrix
element.
The Vandermonde determinant |λj − λi |β comes from the
Jacobian of the change of variables like H → U†ΛU.



Meaning of the eigenvalue distribution

One can understand the ensembles of eigenvalues of Gaussian
matrices as a Coulomb gas. Indeed, we can rewrite the joined
probability density as

1

Zβ,N

N∏
k=1

e−βN
2V(λ) ,

where the energy term in the exponent is

V(λ) :=
1

4N

∑
i

λ2i −
1

2N2

∑
i<j

log |λj − λi |

The Gibbs-Boltzman weight e−βN
2V(λ) corresponds to a

thermodynamical fluid of particles with positions {λ1, ...λN} on a
line, in equilibrium at ”inverse temperature” β under the effect of
competing interactions: a quadratic single particle potential and
repulsive all-to-all logarithmic term.



Meaning of the eigenvalue distribution
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Distance between eigenvalues - Wigner’s surmise

Consider a 2× 2 GOE matrix Hs =

(
x1 x3
x3 x2

)
What is the pdf

p(s) of the spacing s = λ2 − λ1 between its two eigenvalues
(λ2 > λ1)? λ1, λ2 are the roots of the characteristic polynomial
and

λ1,2 =

(
x1 + x2 ±

√
(x1 − x2)2 + 4x23

)
/2 , s =

√
(x1 − x2)2 + 4x23

By definition, we have

p(s) =

∫ ∞
−∞

dx1dx2dx3
e−

1
2
x21

√
2π

e−
1
2
x22

√
2π

e−x
2
3

√
π
δ

(
s −

√
(x1 − x2)2 + 4x23

)
=

s

2
e−s

2/4
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Wigner’s semicircle law

Consider an ensemble of random matrices H, then the
average spectral density defined as

ρ(z) = 〈 1

N
Trδ(H − z)〉

in the large N limit is given by the semicircle (semi-ellipse)
distribution

ρSC =
1z∈[−2,2]

2π

√
4− z2
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We will see more details about it considering the Spiked Matrix
Model.



Marchenko–Pastur distribution
Marchenko–Pastur distribution is the limiting distribution of
eigenvalues of Wishart matrices

YN =
1

N
XX †

constructed from N ×M matrices X as both the matrix
dimensions tend to infinity with ratio N

M = λ. The probability
density function is well-defined for λ ≤ 1. When λ > 1, N −M
eigenvalues of Y a zero.
The plot is for λ = 0.2, 0.5, 0.8.
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The Spiked Matrix Model



Wigner-Dyson and Tracy-Widom laws for λ = 0

M



Rank-one perturbation



Computation of λc , I



Computation of λc , II

The normalized density of states is ρ(z) = 1
π limε→0=G (z + iε),

where

G (z) := 〈 1

N
Tr

1

z − H − H0
〉H

Representing G (z) as Fourier transform of the ’evolution’ operator
UH0(t) := 〈e itH0〉H like

G (z) =

∫ ∞
0

dt e−itzUH0(t) ,

employing Harish-Chandra-Itzykson-Zuber formula for integrating
out gauge degrees of freedom, rewriting the result as contour
integral,



Computation of λc , III
we arriwe at



Computation of λc , IV
For large z , the contour encloses all the roots of

u +
1

N

N∑
i

1

u − εi
= z

except û(z). When z decreases the contour should not be crossed
by any other root of the equation, therefore it is defined by the
requirement that only one root remains at its exterior. Then it is
easier to calculate the integral for ∂G

∂z by taking the residues of the
singularities outside of the contour, rather than the N poles
enclosed by this contour. There are two of them outside; one is
û(z) and the other one is at infinity (since for large u,G0(u)
vanishes). Taking these two singularities we obtain

∂G

∂z
= 1− 1

1 + dG0
dû(z)

= 1− dû(z)

dz

The integration gives

G (z) = z − û(z)



Computation of λc , V



Computation of λc , VI



Data recovery

)



Spiked tensor model

I The spiked tensor model was intensively studied in the recent
time by Richard E., Montanari A., Perry A., Wein A.,
Bandeira A., Lesieur T., Miolane L., Lelarge M., Krzakala F.,
Zdeborova L, Ben Arous G.,....

I It is build for estimating a rank-one deformation of a
symmetric random Gaussian tensor T = rx⊗p + J,

∑
x2i = N

with the Hamiltonian (cost function) defined as
H = −(T , φ⊗p),

∑
φ2i = N.

I The problem can be viewed as finding of the
spike on the multidimensional ’spiky’ sphere.

I When N →∞, infinitely many components of
φi are orthogonal to the spike xi .

I Increasing p, we get ∂H,..,∂(p−1)H= 0.



Spiked Tensor Model

I Two possible goals:
I to detect the existence of the spike;
I to estimate it.

I The current knowledge can be roughly summarized as:
I An ideal estimator achieves strictly positive correlation with

the unknown vector starting from a critical signal-to-noise ratio
r1 = O(1).

I At the same time no polynomial-time algorithm is known
providing the unknown vector unless r2 ≥ CN(p−2)/4.

I The Langevin dynamics and gradient descent belong to the
most popular algorithms for recovering unknown vector.

I Here we study the dynamics with random initial conditions.



Dynamics with random initial conditions
Consider the equation

∂tφi (t) = − δH
δφi

(t) , φi (t0) = ϕi ,

The statistics of initial conditions is given by

Cij = 〈ϕiϕj〉ϕ = δijχN(j),

N∑
j=1

χN(j) = N ,

from where follows the spherical constraint (in average) for the
initial conditions:

N∑
j=1

〈ϕ2
j 〉 = N .

We would like to use the standard Martin-Sigga-Rose procedure to
study the correlation functions of the process, but there is no
explicit dependence on the initial conditions ϕi .



Random initial conditions
We equivalently rewrite the differential equation in the integral
form as

φi (t) = ϕi −
∫ t

t0

dτ
δH

δφi
(τ) .

If φ0(t) is a solution, we can formally write the average of some
operator O[φ0] as

〈O(φ0)〉ϕ = 〈
∫

DφO[φ] δ(φ− φ0)〉ϕ

= 〈
∫

Dφ

∫
Dφ̂

∫
D ξ̄

∫
DξO[φ] e−S1〉ϕ ,

where

S1 :=

∫ te

t0

dt
(
i φ̂i (t)

[
φi (t)−

∫ t

t0

dτ
δH

δφi
(τ)− ϕi

])
−

∫ te

t0

dt

∫ t

t0

dt ′ ξ̄i (t)
[ δ2H

δφiδφj
(t ′)
]
ξj(t

′)



Random initial conditions

Averaging over initial conditions gives

〈O〉ϕ =

∫
Dφ

∫
Dφ̂

∫
D ξ̄

∫
DξO e−S2

with

S2 :=
N∑
i=1

χN(i)

2

(∫ te

t0

dt φ̂i (t)
)2
− i

∫ te

t0

dt φ̂i (t)φi (t)

− i

∫ te

t0

dt

∫ t

t0

dt ′ φ̂i
δH

δφi
(t ′)

−
∫ te

t0

dt

∫ t

t0

dt ′ ξ̄i (t)
[ δ2H

δφiδφj
(t ′)
]
ξj(t

′) .



Super-field notations

Let us define a superfield, bi-local in time

Φi (θ̄, θ, t, t
′) := φi (t

′) + θ̄ξi (t
′) + ξ̄i (t)θ + i φ̂i (t)θ̄θ

and the integration in the superspace as∫
d1 :=

∫ te

t0

dt1

∫ t1

t0

dt ′1

∫
dθ1

∫
d θ̄1 ,

θ̄θ = −θθ̄ ,
∫

dθ =

∫
d θ̄ = 0 ,

∫
dθθ =

∫
d θ̄θ̄ = 1 .



Super-field notations

Then, everything what is not a part of the gradient term, can be
schematically grouped into the term

N∑
i ,j=1

∫
d1

∫
d2 Φi (1)Kij(1, 2)Φj(2) ,

The sum of other terms in the action S2 is equal to∫
d1H(Φ(1)) .

The translation in the variable θ̄ → θ̄ + ε generates a BRST-type
of SUSY.



Spiked tensor model

The spiked tensor model is defined by the Hamiltonian

H := −
∑

i1<..<ip

Ji1..ip · φi1φi2 · ... · φip

− r

2Np−1

∑
i1,..,ip

xi1 · ... · xip · φi1 · ... · φip +
µ

2

( N∑
i=1

φ2i − N
)
,

where xi is a signal and r
2Np−1 is its strength,

∑N
i=1 x

2
i = N, µ is a

Lagrange multiplier implementing the spherical constraint∑N
i=1 φ

2
i = N, Ji1..ip is a symmetric tensor noise with Gaussian

statistics

J2i1..ip =
J2p!

2Np−1 .



Spiked tensor model: super-field notations

The average of an operator O in superspace notations reads as

〈O〉 =

∫
DΦO exp

[
−
∫

d1

∫
d2

N∑
i=1

Φi (1)G−10 (1, 2)Φi (2)

− HJ [Φ]− Hx [Φ]
]
,

where

G−10 (1, 2) :=
[ 1

(t1 − t0)(t2 − t0)

χN(i)

2

+ δ(1− 2)δ(t1 − t ′1)θ1∂θ2 + δ(1− 2)
µ(t ′1)

2

]
,



Spiked tensor model: super-field notations
HJ is the disordered Hamiltonian

HJ :=

∫
d1

∑
i1<..<ip

Ji1..ipΦi1(1)Φi2(1) · ... · Φip(1) ,

the term Hx contains the signal part

Hx :=
r

2Np−1

∫
d1
∑
i1,..,ip

xi1xi2 · ... · xipΦi1(1)Φi2(1) · ... · Φip(1)

=
r

2
N

∫
d1
( 1

N

∑
i

xiΦi (1)
)p
.

Integrating out the disorder leads to the substitution of the term
HJ by

H∫
J :=

J2p!

2Np−1

∫
d1

∫
d2

∑
i1<..<ip

Φi1(1)Φi1(2) · ... · Φip(1)Φip(2) .



Large N limit

Now we introduce two collective fields

Q(1, 2) =
1

N

∑
i

Φi (1)Φi (2) ,

R(1) =
1

N

∑
i

xiΦi (1) ,

by making use of

1 =

∫
DQ

∫
DQ̂ exp

[1

2

∫
d1

∫
d2
(
NQ(1, 2)Q̂(1, 2)

− Q̂(1, 2)
∑
i

Φi (1)Φi (2)
)]
,

1 =

∫
DR

∫
DR̂ exp

[ ∫
d1
(
NR(1)R̂(1)− R̂(1)

∑
i

xiΦi (1)
)]
.



Large N limit

The expectation value an operator O can be written as

〈O〉 =

∫
DΦDQ DQ̂ DR DR̂ O exp

[
−
∫

d1

∫
d2

{ N∑
i=1

Φi (1)
[
G−10 (1, 2) +

1

2
Q̂(1, 2)

]
Φi (2)

− N

2

[
J2Q•p(1, 2) + Q̂(1, 2)Q(1, 2)

]}
− N

∫
d1
[ r

2
Rp(1) + R̂(1)R(1)

]
+

∫
d1 R̂(1)

∑
i

xiΦi (1)
]
,

where the sign • indicates ordinary multiplication (not a
convolution).



Large N limit

Integrating out initial degrees of freedom Φi , making a shift

Q̄(1, 2)/2 :=
[
G−10 (1, 2) +

1

2
Q̂(1, 2)

]
,

and integrating over R̂, we obtain

〈O〉 ∼
∫

DQ DQ̄ DR Õ exp
[
− N

2

∫
d1

∫
d2[

(G−10 (1, 2)− Q̄(1, 2))Q(1, 2)− J2Q•p(1, 2)
]

− N

2
r

∫
d1Rp(1)− N

2

∫
d1 d2R(1)Q̄(1, 2)R(2)

− (
N

2
− 1)Tr log Q̄(1, 2)

]
.



Saddle-point equations

Then, the saddle-point equations are given by

Q̄(1, 2) = (Q(1, 2)− R(1)R(2))−1

pQ(1, 2) = K−1(1, 2) + R(1)R(2)

+

∫
d3 d4K−1(1, 4)(Q(3, 4)− R(3)R(4))−1Q•(p−1)(3, 2) ,

r p Rp−1(1) +

∫
d2 (Q(1, 2)− R(1)R(2))−1R(2) = 0 .



Saddle-point equations

Then, the saddle-point equations are given by

= + + Σ + Σ

Σ =

= R-R

= pJ Q  2      (p-1)

R = pr Rp-1 = R

Q G0



Saddle-point equations

For all r , there exist a solution of Saddle-point equations such that
R = 0 and Q obeys melonic equation of the p-spin model.

When ‖R(1)R(2)‖ � ‖Q(1, 2)‖, the initial approximation for the
R function might be found from∫

d1Rp(1) =
1

rp
.
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