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Matrices are everywhere in physics, randomness is also
everywhere.

Random matrices first appeared in statistics, generalizing the
chi-squared law to multivariate random data (Wishart, 1928) and
are applicable to:

» the description of the energy spectra of heavy nuclei (Wigner,
1950s),

the large N¢ limit of QCD ('t Hooft, 1970s),
random surfaces, 2d quantum gravity

data analysis

transport in disordered systems

string theory

number theory

biology
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Principal component analysis (PCA)

In experiments scientists frequently face with the clouded, unclear
and even redundant data. This is not a trivial problem, but rather
a fundamental obstacle in empirical science. Consider, the

following toy example:
camera B ‘

< [_\\ 'camera [

camera A




Principal component analysis (PCA)

» Clearly, in the example above the positions of cameras were
not chosen appropriately.

» To describe the system we need measurements just in one
dimension instead of 2 x 3.

» In addition, the signal can be contaminated by noise.
To fight these problems PCA provides:
P a simple, non-parametric method of extracting relevant
information from confusing data sets
» computing the most meaningful basis to re-express a noisy
data set.



Principal component analysis (PCA)

» Consider a N x M matrix X representing the initial data,
where N is the number of measurement types and M is the
number of samples.

P> The corresponding covariance matrix

1
Cx i= ——=XXT
N-1
is a square symmetric N x N matrix and contains:
P the variance of particular measurement types in the diagonal
terms;
» the covariance between measurement types in the off-diagonal
terms.
» In the diagonal terms, by assumption, large (small) values
correspond to interesting dynamics (or noise).

» In the off-diagonal terms large (small) values correspond to
high (low) redundancy.



Principal component analysis (PCA)

» We transformation the initial data X by some orthonormal
matrix P
Y = PX

» In such a way that the covariance

1
Cy = ——YvYy’
Y= N1

is diagonalized.



Principal component analysis (PCA)

» The covariance matrix can be written as

1
Cy = ——P(XXT)PT
y = 1 POXT)
Consequently:
> the variance of particular measurement types in the diagonal
terms;
» the covariance between measurement types in the off-diagonal
terms.

» The principal components of X are the eigenvectors of XX T,
or the rows of P.



PCA: singular value decomposition

» The eigenvalue decomposition of XX reduces to the singular
value decomposition of matrix X.

» o > 0is an singular value of matrix X, if there exist left and
right singular vectors a, and b,, such that

Xa, =obl; by X =0cal

» This means, we have to find the best low rank approximation

for the matrix X
Xij = a;i ®b;



Random matrix model for PCA

» The data can be contaminated by noise
X,'j :a,-®bj+nH,-J-

with Hj; being noise and 7 being the noise to signal ratio.
» The term nH;; can be modeled by the RANDOM MATRIX
> |s it always possible to detect the signal?
> What is the critical ratio 7).



Ensembles of Random Matrices
The most studied random matrix ensembles are the Gaussian
ensembles:
» The Gaussian unitary ensemble GUE(N) is described by the
Gaussian measure
1 e—%trH2
ZGUE(N)
here H is Hermitian matrix N x N. The Gaussian measure is
invariant under the unitary transformations:

» The Gaussian orthogonal ensemble GOE(N) is described by
the Gaussian measure invariant under orthogonal conjugation

1 e—%ter
ZGOE(N) ’
» The Gaussian symplectic ensemble GSE(N) is defined by the

Gaussian measure on the space Hermitian quaternionic
matrices.



Eigenvalues

For many purposes it is highly important to know the statistics of
eigenvalues. The first step is to write probability density in terms
of eigenvalues.

The joint probability density for the eigenvalues of
GUE/GOE/GSE is given by

N
N
Z;N kHleW IR

= 1<J
where the Dyson index, 8 =1 for GOE, § =2 for GUE, and g =4
for GSE, counts the number of real components per matrix
element.
The Vandermonde determinant |\; — Ai|? comes from the
Jacobian of the change of variables like



Meaning of the eigenvalue distribution

One can understand the ensembles of of Gaussian
matrices as a . Indeed, we can rewrite the joined
probability density as

N
1 [ Vv
ZBN

where the energy term in the exponent is

1, 1
V() -:M\,Z:Ai —W%;'ng\j_)\i\

The Gibbs-Boltzman weight e ANV corresponds to a
thermodynamical fluid of particles with positions {1, ...An} on a
line, at under the effect of
competing interactions: a quadratic single particle potential and
repulsive all-to-all logarithmic term.



Meaning of the eigenvalue distribution
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Distance between eigenvalues - Wigner's surmise
X1 > What is the pdf

X3 X2

p(s) of the spacing s = A\ — A1 between its two eigenvalues

(A2 > A1)? A1, A2 are the roots of the characteristic polynomial

and

Consider a 2 x 2 matrix Hs =

)\1’2 = <X1—|—X2:i: \/(Xl —X2)2—{—4X§> /2, s = \/(Xl —X2)2—|-4X§

By definition, we have

1.2 1.2 2
o0 e 2% e 2% 7%
s) = dxydxpd. §ls— —x2)2 +4 2>
pls) /_oo AEeES Por Vam < Ve =)+ 45
— 56752/4
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Wigner's semicircle law

Consider an ensemble of random matrices H, then the
average spectral density defined as

(2) = (1 THo(H — 2))

in the large N limit is given by the semicircle (semi-ellipse)

distribution )
psc = 7262[;2’2] Va4 —2z2

We will see more details about it considering the



Marchenko—Pastur distribution

Marchenko—Pastur distribution is the limiting distribution of
eigenvalues of Wishart matrices

1
Yy = —XXT
N=N
constructed from matrices X as both the matrix
dimensions tend to with ratio % = A. The probability

density function is well-defined for A < 1. When A > 1, N— M
eigenvalues of Y a zero.
The plot is for A =0.2,0.5,0.8.

s




The Spiked Matrix Model

e Signal: a deterministic rank one matrix Ho = Au;ii; where u € CV is a
normalized vector |lu|| =1

@ Noise: a N by N GUE random matrix H

We observe M = Hy + H and the goal is to recover u. A allows to control the
noise: A large means small noise and vice-versa.

In practice in data analysis rectangular real matrices typically occur. So we
have to use GOE's instead of GUE's, singular values and Marcenko-Pastur
distribution instead of Wigner-Dyson etc... but this is detail.



Wigner-Dyson and Tracy-Widom laws for A =0

The spectral density of M is at leading order in 1/N the Wigner semi-circle law
p(z) = w.\M — 22 with edge spectrum at |z| = 2.

Almost surely the largest eigenvalue is Ac = 2 and the distribution of A. is the
Tracy-Widom law

lim P(N*3X. < x) = i (x).

N—oco



Rank-one perturbation

At X # 0 the N — oo limit of the spectral density of M always remains the
Wigner semi-circle law. However the statistics of the largest eigenvalue A,
undergoes a sharp phase transition:

o if A < 1 essentially nothing changes for the value Ac which stays a.s. at
the edge 2 of the Wigner semi-circle with a Tracy-Widom distribution.

o if A >1, we have )\.()\) = )\ -+ 2, and the statistics of Ac becomes that of
a Gaussian error function.



Computation of A, |

This type of results have a long history relying in particular on the

formula. Recently mathematical theorems by
Ben Arous, Guionnet, Maida, Péché and many others have established
rigorously and in great detail many variants.

Here | shall give only a short version, namely the computation which shows
that Ac(\) = A + 1 (and Ae = ).



Computation of A, Il

The normalized density of states is p(z) = L limc_o SG(z + ie),

where 1 1
T
NI = H0>H

Representing G(z) as Fourier transform of the 'evolution’ operator
UHO(T.') = (e’tH°>H like

G(z):=

G(z) = / dt e U (1),
0

employing formula for integrating
out gauge degrees of freedom, rewriting the result as contour
integral,



Computation of A, Il

we arriwe at

oG 1 du 1
9z~ J 2miu+ Golu) — 2
We have now to specify the contour of integration in the complex u-plane.
It surrounds all the eigenvalues of Hy and we have to determine the location

of the zeroes of the denominator with respect to this contour. Let us return
to the discrete form for the equation

u+ Go(u) = =

ie.

U+ = Z

which posseses (N + 1) real or complex roots in the u-plane. For z real and
large, N of these roots are close to the ¢; and one, which will be denoted (z),

goes to infinity with z as
1 1
: - Tz O (_)
i(z) =z . + 2

u—(l



Computation of A, IV

For large z, the contour encloses all the roots of

N
1 1
U+NZU—€,'_Z

except d(z). When z decreases the contour should not be crossed
by any other root of the equation, therefore it is defined by the
requirement that only one root remains at its exterior. Then it is
easier to calculate the integral for %—f by taking the residues of the
singularities outside of the contour, rather than the N poles
enclosed by this contour. There are two of them outside; one is
((z) and the other one is at infinity (since for large u, Go(u)
vanishes). Taking these two singularities we obtain

G 1 1 _1q di(z)

oz _1+d%%2)_ dz

The integration gives



Computation of A\., V

o For A =0 we have % N E 1 hence the N-independent equation

llue_u

N 1 " A~
uo+T=z<=>u§—zuo+1=0.
Uo

It solves to the Catalan function do = 3(z + vz2 — 4) so that
G(z) =z—do = 3(z— V22 — 4), from which Wigner's law easily follows.

o For \#0we have xSV -1 =14 L1111 hence the equation

i+ 1 + T S z
o Na(ag—x) 7
Expanding 0 = 0o + & u1, and defining F(x) = x%2 — zx + 1, we have to
solve for N 5
Floo+ )+ —2 =0

N N(ﬁo-f—ﬂ—)\)



Computation of A\, VI

At first order in 1/N it gives

A

AN rayi_
F(Uo) = O7 F (Uo N 7N(ﬁ0 — /\)

and since F'(x) = 2x — z and {o = 3(z + V22 — 4) we get

P S 2\
TR —N) T V2 —a(z+ V2 —4-2)\)

Remark that the denominator can have only a single zero Ac > 2, and only for

A>1, at A\c = A+ %, since then vVzZ —4[,_x, = A — ; > 0.

2\

22 —4+z

is +1. It proves that A > 1 is the threshold at which a single eigenvalue
Ae= A+ % pops out of Wigner's semi-circle law.

Moreover the residue is — |z=x. = —1, so that the residue of G =z — i




Data recovery

Data recovery uses the random flow governed by the Hamiltonian or
cost-function f =< v, Mv >.

M

The corresponding flow v = Mv is linear with exact solution v = " vy.

Following the previous analysis, this flow also undergoes a sharp transition
between two regimes:

e if A > 1 iterative methods (raising M to a high power) detects quickly the
highest eigenvalue Ac and its eigenvector uc. The latter has O(1) overlap
with the true signal initial u, allowing easily its recovery.

e if A < 1 recovery is essentially impossible in practice. Indeed the random
eigenvalues of H essentially translate into uninformative critical points of
f, and for N large the flow remains for a hopelessly long time trapped
around the equator Ey of the Sy sphere orthogonal to u (unless further
constraints on u are known)



Spiked tensor model

» The spiked tensor model was intensively studied in the recent
time by Richard E., Montanari A., Perry A., Wein A,
Bandeira A., Lesieur T., Miolane L., Lelarge M., Krzakala F.,
Zdeborova L, Ben Arous G.,....

» It is build for estimating a rank-one deformation of a
symmetric random Gaussian tensor T = rx®P + J, 3" x> = N
with the Hamiltonian (cost function) defined as
H=—(T,¢%), 3 ¢7 = N.

» The problem can be viewed as finding of the
spike on the multidimensional 'spiky’ sphere.

» When N — oo, infinitely many components of
¢; are orthogonal to the spike x;.

> Increasing p, we get OH,..,0(P~ D H= 0.




Spiked Tensor Model

> Two possible goals:
P to detect the existence of the spike;
P> to estimate it.
» The current knowledge can be roughly summarized as:

» An ideal estimator achieves strictly positive correlation with
the unknown vector starting from a critical signal-to-noise ratio
n = O(l)
» At the same time no polynomial-time algorithm is known
providing the unknown vector unless r, > CN(P—2)/4,
» The Langevin dynamics and gradient descent belong to the
most popular algorithms for recovering unknown vector.

» Here we study the dynamics with random initial conditions.



Dynamics with random initial conditions
Consider the equation

oH

0

The statistics of initial conditions is given by

at<15i(t) - -

(t), oi(to) = ¢i,

= (@ivj)e = diixn();

N
2 xnli) =
j=1
from where follows the spherical constraint (in average) for the

initial conditions:
N

2
D () =N.
Jj=1
We would like to use the standard Martin-Sigga-Rose procedure to
study the correlation functions of the process, but there is no
explicit dependence on the initial conditions ;.



Random initial conditions
We equivalently rewrite the differential equation in the integral

form as . SH
mozw—/‘m&u>

If °(t) is a solution, we can formally write the average of some
operator O[¢Y] as

(0(6%), = | / Do 0[6]8(6 — %)),

~([ps [ 06 [DE [Deopple s,




Random initial conditions

Averaging over initial conditions gives

<O>¢>:/D¢/D$/D5—/Dgoe—52

with
N H te ~ te ~
s = 3D [Taean) - [ aedo
i=1 fo f
te t , A5H ,
— //to dt tod ¢I(5¢i(t)




Super-field notations

Let us define a superfield, bi-local in time
®;(0,0,t,t') = ¢i(t') + 0&i(t") + E(t)0 + idi(t)0

and the integration in the superspace as

te t1 _
/dl ::/ dtl/ dti/dal/del,
to to
60 = —60, /d@:/dézo, /d@&:/d@é:l.



Super-field notations

Then, everything what is not a part of the gradient term, can be
schematically grouped into the term

N
> /dl /d2q>,-(1)K,-j(1,2)d>j(2),

ij=1

The sum of other terms in the action 5, is equal to

/dl H(®(1)).

The translation in the variable § — § + € generates a BRST-type
of SUSY.



Spiked tensor model

The spiked tensor model is defined by the Hamiltonian

H = — Z Jfl--ip'¢i1¢i2"“'¢fp

i<..<ip

N
r 7
— WZ le'...‘Xip‘¢i1'...'¢ip+2(;¢%—N),
=

i1yeesip

where x; is a signal and 55— is its strength, Z,N:l x?=N, pis a
Lagrange multiplier implementing the spherical constraint

Z,I'V:1 gb,? = N, J;,.j, is a symmetric tensor noise with Gaussian
statistics

5 J2p!

i1..fp - 2Np—1 :




Spiked tensor model: super-field notations

The average of an operator O in superspace notations reads as

(0) = /cho exp [—/dl /d2 ﬁ;q(l)go—l(l,z)@(z)
~ Hilo] - H[o]],

where

[ 1 xn(i)
(t]_ — to)(tg — to) 2

/
81— 2)8(t — £)010, + 6(1 — 2)“(51) ,

Gy 1(1,2) =




Spiked tensor model: super-field notations
H; is the disordered Hamiltonian

H, _/dl Z Jll ip 11 lz() ""q)ip(]')’

i1<..<ip

the term H, contains the signal part

He = g 1/dl S ik - 3,05 (105 (1) - 0y (1)

ityensip
_ ;N/dl(Nzi:x;cb,-(l))p

Integrating out the disorder leads to the substitution of the term
H, by

Hpy = 2/\/p 1/d1/d2 > 0 (1)P;(2) . 0 (1)D;,(2)

i<..<ip



Large N limit

Now we introduce two collective fields

Q(1,2) = — ZCD (1)®;(2

:NZXi i

by making use of

1 = /DQ/Déexp [% d1/d2(NQ(1,2)©(1,2)



Large N limit
The expectation value an operator O can be written as
(0) = /D(DDQDQDRDROeXp /dl/d2

{ZCD 1(1,2) + - Q(l 2)]9:(2)

_ §[J2Q°P(1,2)+Q(1,2)Q(1»2)]}

- N/dl [%RP(1)+/%(1)R( /le Zx, ;

where the sign e indicates ordinary multiplication (not a
convolution).

).



Large N limit

Integrating out initial degrees of freedom ®;, making a shift
Q1,2)/2:= [65(1,2) + 5 Q(l 2)].

and integrating over R, we obtain

(0) ~ /DQDQDROexp[ /;I/dl/d2
[(Go1(1,2) — Q(1,2))Q(1,2) — /2 Q*(1,2)]

- gl/le”(l—/ 1d2R(1)Q(1,2)R(2)

N
- (5—1 TrIogQ 1, )]



Saddle-point equations

Then, the saddle-point equations are given by

0(1,2):(0(1 2) - R()R(2)™
pQ(1,2) = K71(1,2) + R(1)R(2)

/d3d4K (1,4)(Q(3,4) — R(3)R(4) 1 @*(P1(3,2),
rpRPY( +/d2 YR(2))1R(2) = 0.



Saddle-point equations

Then, the saddle-point equations are given by

s 2wt (3 e
@ :@:pJ2Q°(p-1)
.:..-

:pr RPY  ==R




Saddle-point equations

For all r, there exist a solution of Saddle-point equations such that
R =0 and @ obeys melonic equation of the p-spin model.

When ||R(1)R(2)|| > ||Q(1,2)||, the initial approximation for the
R function might be found from

Jar@ =
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