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Event Classification

Detecting signals which has some characteristic traits can be represented as a problem of event
classification of signal against background.

Some of these problems can be treated as an image classification problem by treating the data
from calorimeter as images where pixel values represent the intensity of energy in corresponding

regions of the calorimeter.



Data

Search for RPV SUSY gluino decays

e Multi-jet final state

e Analysis from ATLAS-CONF-2016-057 used as a
benchmark

e Classification problem: RPV Susy vs. QCD

Simulated samples

q q

Pythia - event gen. (matching ATLAS config)
Cascade m_= 1400, m, “0=850 default Sidnn cancade deoy
Delphes de(t;ector S|mulat|on (ATLAS card)
- Output calorimeter towers (and tracks) used in
analysis

Source: Wahid Bhimiji’s talk at ACAT: https://portal.nersc.gov/project/mpccc/wbhimii/Talks/ACAT-DeepNetworksForPhysicsAnalysis.pptx


https://portal.nersc.gov/project/mpccc/wbhimji/Talks/ACAT-DeepNetworksForPhysicsAnalysis.pptx

Representation of data as an Image
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Fig 2. (a) Background Fig 2. (b) Signal
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Fig 1. (c) Background averaged Fig 1. (d) Signal averaged

Fig. 1 Plots (a) and (b) shows the distribution of energy in the Calorimeter* in a
randomly selected event. (c) and (d) show the normalized average distribution
over the entire dataset as simulated in arXiv:1711.03573.

Weights yet to be added*

The readings from calorimeter expressed as a 2D
image are to be classified as signal or background.

The Signal represents SUSY - signals.

In this particular example, the simulated data is
binned into 64X64 image.

Each pixel value represents the energy in the
corresponding location of the calorimeter.


https://arxiv.org/pdf/1711.03573.pdf

Why Neural Networks?
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Fig 2. Results of implementing NN

Result from arXiv:1711.03573.


https://arxiv.org/pdf/1711.03573.pdf

Moving on to OPUs...



Quick Recap on OPU
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Quick Recap on OPU

Fig 3. OPU construction

Convert non-linearly separable data into
linearly separable. In the end train with a
linear model like ridge regression.

Speed up the process

Consume less power



Quick Recap on OPU

Ridge Regression

fridge — argmm Z —x] B)* + A Z ﬂ?
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BERP N

Loss Penalty

Fig 4. Ridge regression



Data Binarization on OPU

Landing tip

Fig 5. Micromirror on DMD

The construction of the OPU uses a Digital Micromirror Device
(DMD) to encode data into optical signals.

A DMD consists of an array of micromirrors that can be switched
between two possible states representing “on” and “off”. In the
“on” state, photons are directed towards the diffusive media.

The DMD thus requires the input data to be encoded in Binary
and the size of input is restricted by the DMD size - 912x1140
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Encoding Schemes

The data encoding scheme has a great impact on the final performance and a
number of different techniques can be applied for the purpose.

e Autoencoder
e Threshold encoder
e Binning
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Encoding Schemes

growing energy acquired with exposure at 400 us
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Thanks to the LightOn team for the graph!



Random Features

Light from the DMD is passed through a diffusive medium. The intensity of light
recorded by the high-resolution camera represents the entries of the Random

feature matrix.

The number of features needs to be optimized not just problem-to-problem it
also depends upon the input size.

Exceeding the optimal value leads to overtraining of the model.
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Random Features

since = time.time()

n_components = 5000 #32*32

opu_mapping = OPUMap(n_components=n_components)

train_random features = opu mapping.transform(X train bin[:50000])
test random features = opu mapping.transform(X test bin)
projection time = time.time() - since

print('Time taken by RP on OPU: {:.4f} s'.format(projection time))

Mapping 50,000 images (already converted into binary) such that each image now has 5000 random
features.
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Preparing our data

Encoding scheme AUC
Autoencoder .86

3 bits 8 bins .92
Binary Threshold 932
3 bits 4 bins 938

N\

000
001
011
111

:| Equal sized buckets

Autoencoder model is only
trained not tested!

More reason to binarize by
hand!
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Results

Arbitrary units
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Fig 7 (a) shows the plot for scores trained on 50000 images while (b) shows the corresponding ROC Curve
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Results

ROC Curve without OPU

6 ROC Curve using 50000 images

ROC Curve with only binary data
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Demonstrating performance of ridge on raw data, OPU random features and binary data respectively
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Subsampling of Feature

AUC vs Random Features
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Fig. 8 (a) Results of encoding with autoencoder



Random Features

The optimal number of random features increases as the
number of input images increases (almost linearly).

Ridge regression soon runs out of memory!

Beyond the optimal value of the number of random
features, the AUC decreases (overtraining)

Threshold encoding worked much better even when using
less number of features.

AUC vs Random Features

0.85
0.80 5000 images
10000 images
15000 images
v 075 20000 images
2 25000 images

30000 images
070 i 35000 images
40000 images
45000 images
0.65 50000 images
m— Maximum curve

0 2000 4000 6000 8000 10000
number of features

Fig. 8 (a) Results of encoding with autoencoder

AUC vs Random Features
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Fig. 5 (b) Results of encoding with Binary threshold encoder

Fig 8 (a) and (b) shows the variation of AUC as the number of input
features is varied for different encodings
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How do we scale?
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Linear Neural Networks

Number of random features

QO

Single node
Output layer

Scalability: train in mini-batches
Higher sensitivity to regularization
Performance comparable to sklearn’s ridge regression

However, the data required preprocessing such as taking
sqrt() and minmax scaling in our test case
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Linear Neural Networks

class Net(nn.Module):
def init (self):
super(Net, self). init ()
self.fcl = nn.Linear(train_random features.shape[1l], 1)

def forward(self, x):
x = self.fcl(x)
#x = torch.sigmoid(x)
return x

model = Net()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=5e-5, weight decay = .1,amsgrad=True)
model.train()
for num_epochs in range(10):
counter = 0
for inp, lbl in data loader train:
logits = model.forward(inp)
loss = criterion(logits, 1lbl)
optimizer.zero grad()
loss.backward()
optimizer.step()
if(counter%sl0 == 0):
print('epoch {}, loss {}'.format(num _epochs+1l, loss.item()))
counter = counter+1l
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Comparing Results

True Positive Rate

ROC Curve using 50000 images
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Fig 9 (a) shows the performance of Neural Networks on the images (b) shows Performance of the OPU

learned about them from berkeley team
yesterday)

0.0010
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Is it Fair to Compare?

While comparing our results with that of the paper we need to consider the following:
e \Weights yet to be added!
e We refrained from Transfer Learning!
e |[ttakes = 10 min to train model with 3,00,000 images by converting them to linearly
separable data!
e Training done on only 50000 images (1/8" of the total data)
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Particle Tracking!

Tracking by definition is clustering!
How to fit data into DMD?

DMD size is a bottleneck.
How to cluster?

Mapping back to the original points?
We lose information about the original points during the mapping!
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Thank you
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