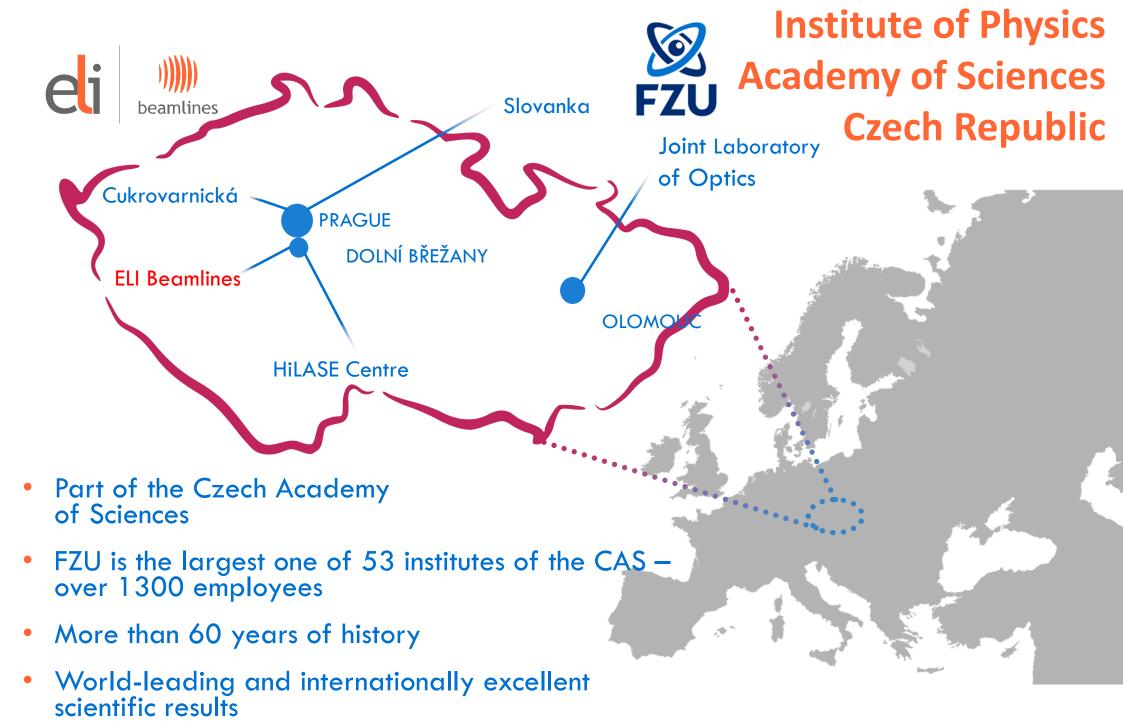


ELI Beamlines

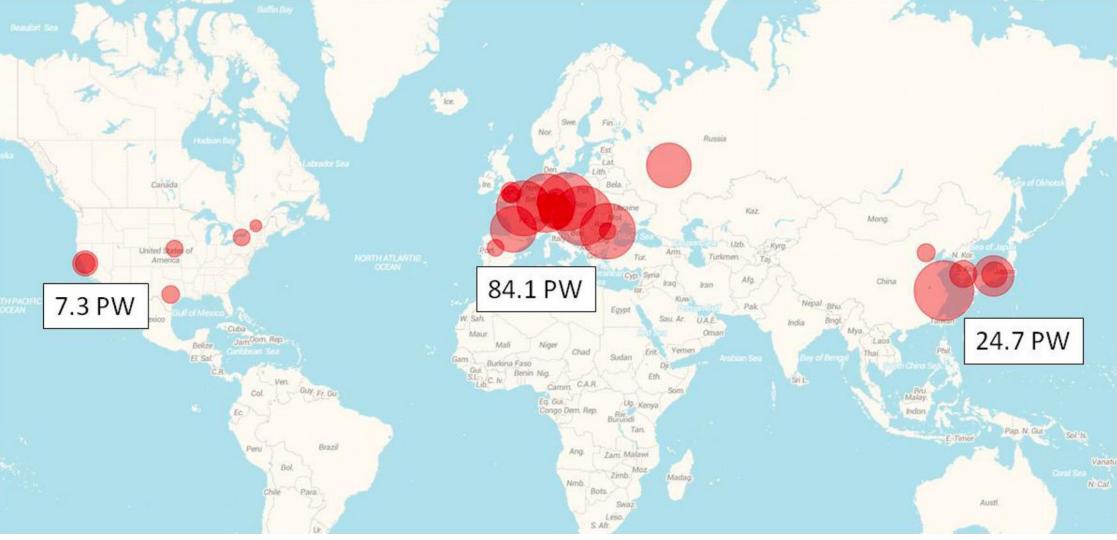
High-Energy Beam Pillar of the pan-European Research Infrastructure ELI

Projects and challenges to the technology transfer & industry partnership



Date: 26-Nov-19

EUROPEAN UNION European Structural and Investing Fund Operational Programme Research, Development and Education



PW laser world

SOURCE: Courtesy of J.L. Collier

Date: 26-Nov-19

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

ELI facilities: unique research opportunities

Attosecond Laser Science, which will capitalize on new regimes of time resolution (*ELI-ALPS*, Szeged, HU)

High-Energy Beam Facility, responsible for development and application of ultra-short pulses of high-energy particles and radiation stemming from relativistic and later ultrarelativistc interaction (*ELI-Beamlines*, Prague, CZ)

Nuclear Physics Facility with ultra-intense lasers and brilliant gamma beams (up to 19 MeV) enabling also brilliant neutron beam generation with a largely controlled variety of energies (*ELI-NP*, Magurele, RO)

Ultra-High-Field Science centred on direct physics of the unprecedented laser field strength (*ELI 4*, to be decided)

ELI-ALPS Szeged, Hungary May 2017

5 Laser Sources: 2 PW, 5mJ 100kHz, 100mJ 1kHz, MIR 3.1µm100kHz, THz 5J

- 10 Secondary Sources: GHHG HR, MIR, THz, SHHG, e, ion accelerate
- 8 experimental stations: Atto, CMF, nano mat., Plasma Phys, Radiobio, HRI, THz SCR
- 24, 500 m²

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

ELI-Beamlines Dolní Břežany, Czech Republic December 2015

5 Laser Sources: 10 PW, 1 PW 10Hz, 100mJ 1kHz lasers fs synchronization
 7 Secondary Sources: X-rays 1-150 keV, e 3 GeV, p 50-200 MeV accelerators
 9 experimental stations: MAC, ELIps, TREX, SRS, Plasma Physics Platform
 31,000 m²

ELI Beamlines

Date: 26-Nov-19

EUROPEAN UNION European Structural and Investing Fun Operational Programme Research, Development and Education

ELI-NP Măgurele, Romania September 2016

Laser Sources: Gamma Beam System: 8 experimental areas: 33,000 m² + guest house 2x10 PW lasers synchronizable on the fs scale Tunable, narrow band, 0.2-20 MeV gamma beam Laser + Laser, Gamma, Laser + Gamma

ELI Beamlines

Date: 26-Nov-19

EUROPEAN UNION European Structural and Investing Fund Operational Programme Research, Development and Education

Research campus

Date: 26-Nov-19

EUROPEAN UNION European Structural and Investing Fund Operational Programme Research, Development and Education

- Australia
- France
- Italy
- South Korea
- Moldavia
- Portugal
- USA
- Ukraine

- Bulgaria Croatia
 - Japan Costa Rica
 - Austria
- Spain

UK

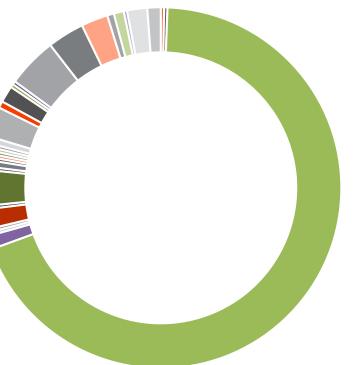
- Germany
 - Russia

Czech

India

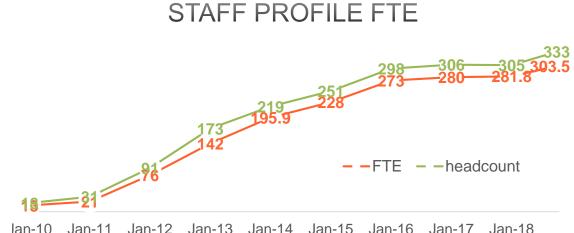
Nepal

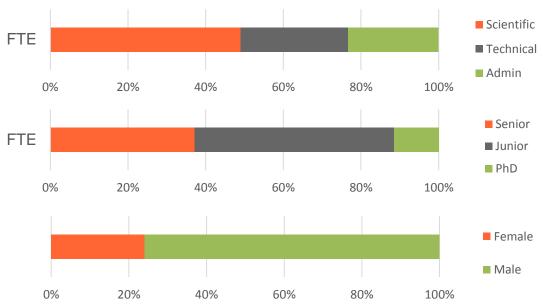
Sweden

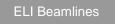


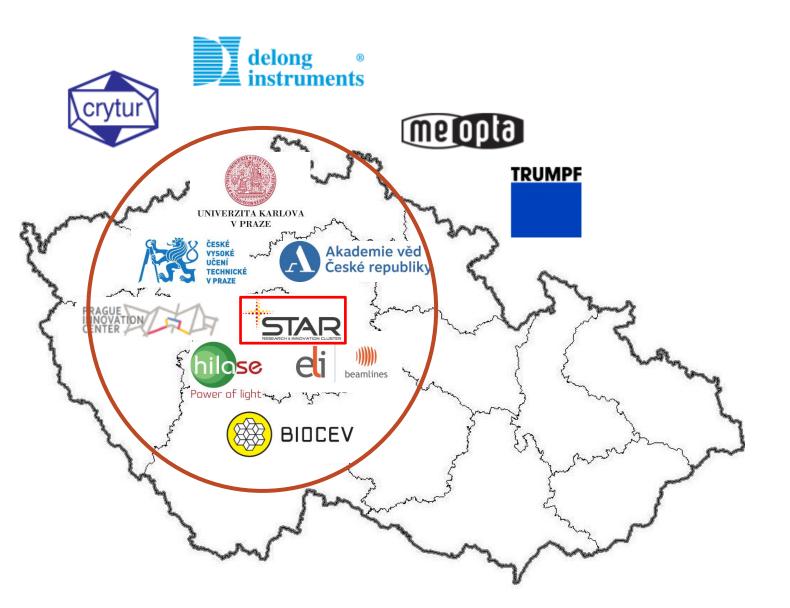
Poland

China


Ireland


- Slovakia
- Turkey

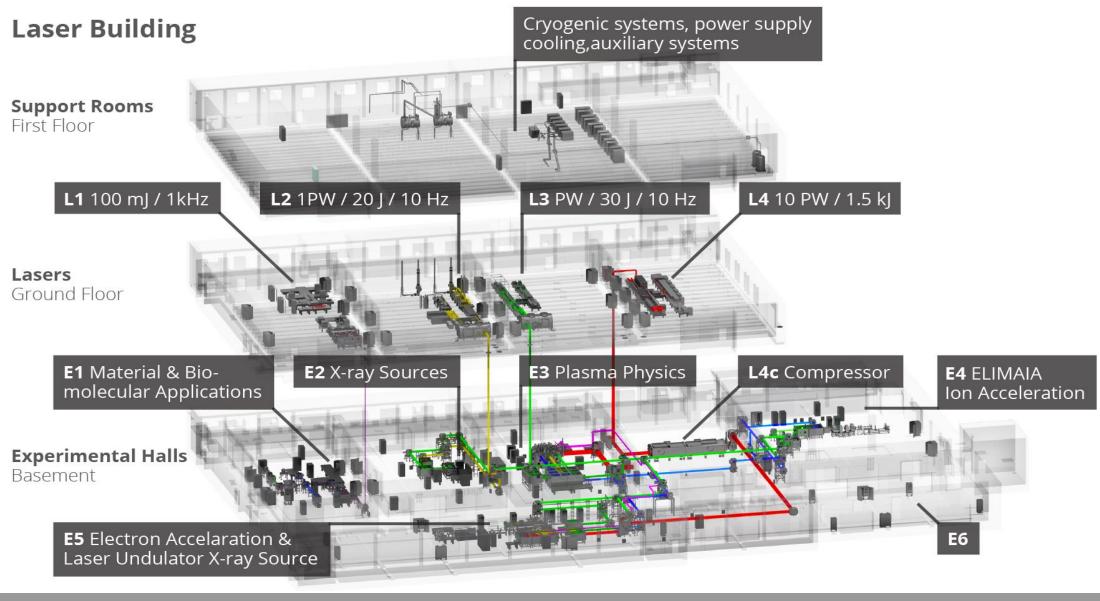

Human resources



FZŰ

Regional innovation cluster

- ELI Beamlines, HiLASE, Institute of Physics AS CR
- Prague Innovation Center
- Central Bohemian Innovation Centre
- Institutes of Academy of Sciences, Czech Technical University, Charles University, Biocev, ...)
- Industrial partners



Facility overview

Date: 26-Nov-19

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Projects related to technology transfer at ELI Beamlines

H2020 projects

- ELI-TRANS
- EUCALL
- IMPULSE (from Jan 2020)

National funded

- Institute of Physics internal Commercialisation Fund
- GAMA 1, GAMA 2 (Technology Agency of the Czech Republic)
- Prague pole of excellence

ELI-TRANS deliverables

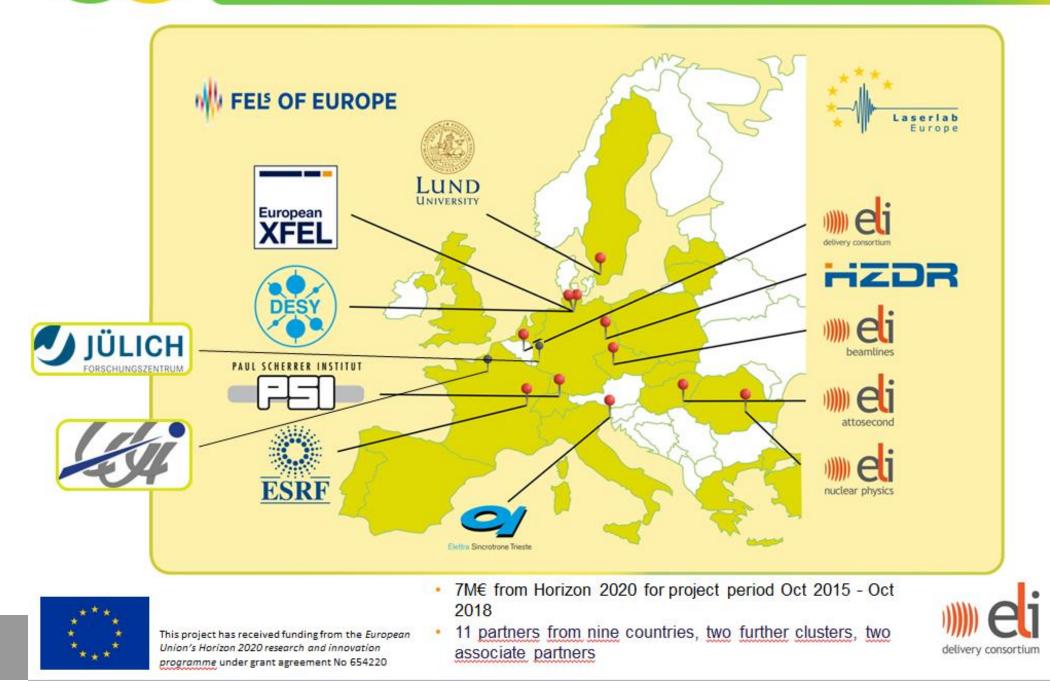
Knowledge and Technology Transfer for ELI-ERIC (WP 6)

- Report current key KTT activities within ELI pillars
- Develop a collaboration plan with selected international RIs
- Develop an IP policy for ELI-ERIC
- Investigate industrial users and develop an industrial user analysis
- Develop an access and collaboration strategy of ELI ERIC to

Project partners

Market survey, April 2018

Target group: companies with R&D in Europe in pharmacy, biotech, chemistry, nanotech



EUCALL

European Cluster of Advanced Laser Light Sources

Highlights from the "Innovation Potential of Advanced Light Sources" report from the EUCALL project:

- Industry's awareness of potential for collaboration with RIs
- Joint development of technology (Models of Joint Development)
- Protection and commercialization of intellectual property
- Commercial access policies
- Introduction to the panel discussion

EUCALL report "Innovation Potential of Advanced Light Sources" was prepared to analyze the combined innovation potential of the advanced laser light source research infrastructures (RIs).

- An extensive survey has been performed among the TTOs of light source RIs
- A further survey was performed at the Hannover Messe 2018

Technology transfer at ELI Beamlines

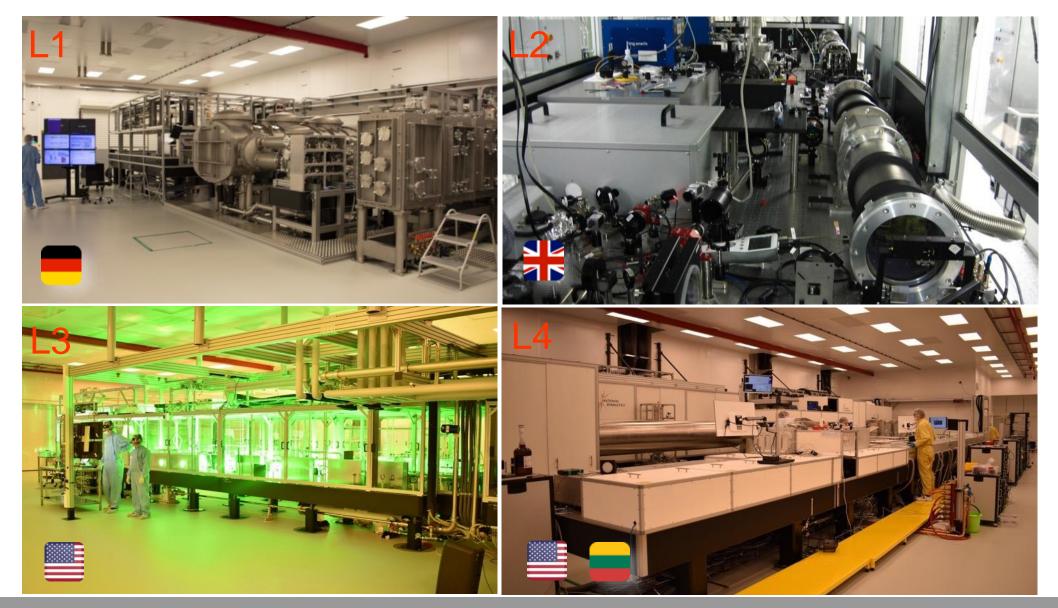
In-house R&D (high-tech instrumentation,

technologies, software)

User time (available soon...)

Instrumentation

Date: 26-Nov-19



EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

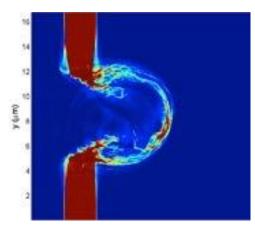
Date: 26-Nov-19

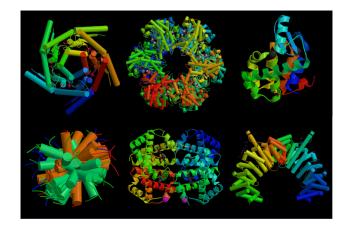
EUROPEAN UNION European Structural and Investing Funds Operational Programme Resea Development and Education

Date: 26-Nov-19

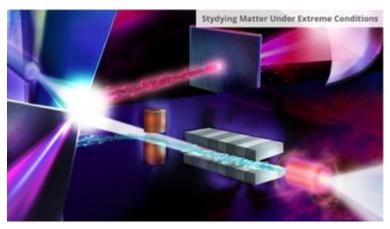
EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Laser systems parameters

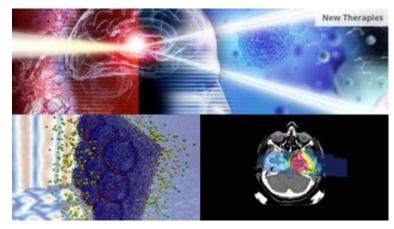

Beamline	Laser 1 Allegra	Laser 2 Amos	Laser 3 HAPLS	Laser 4 Aton
Peak power	15 TW	> 0.1 PW	≥ 1 PW	10 PW
Energy in pulse	200 mJ	> 3 J	≥ 30 J	≥ 1.5 kJ
Pulse duration	< 12 fs	25 fs	≤ 30 fs	≤ 150 fs
Rep rate	kHz	20 Hz	10 Hz	1 per min
Pump laser technology	Diode Pumped Solid State Lasers (DPSSL)	Diode Pumped Solid State Lasers (DPSSL)	Flashlamp-pumped Nd:glass amplifiers	Flashlamp-pumped Nd:glass amplifiers
Designed, developed & tested by	ELI Beamlines (CZ) Trumpf (Germany)	Science and Technology Facilities Council (UK) ELI Beamlines (CZ)	Lawrence Livemore National Laboratory (USA) ELI Beamlines (CZ)	National Energetics (USA) EKSPLA (Lithuania) ELI Beamlines (CZ)
Investment (mil. EUR)	7.5	12.5	39	37
ELI Beamlines involvement	 Optical parametric chirped-pulse amplification (OPCPA) pulse chain Pulse compressors Control & timing systems 	 Pump laser sub- sytems Optical parametric chirped-pulse amplification (OPCPA) Control & timing systems 	 Pulse compressor Short pulse diagnostics Control & timing systems 	 Pulse compressor Optical parametric chirped-pulse amplification (OPCPA) design Short pulse diagnostics Timing system



X-ray and gamma sources, laboratory astrophysics



Particle acceleration


Research applications

Biology and biochemistry

Advanced materials and nanotechnology

Medical diagnostics and treatment technology

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Date: 26-Nov-19

PBCT for medical imaging & treatment

Proton

beam

0/0

0/0

000

0

Proton therapy

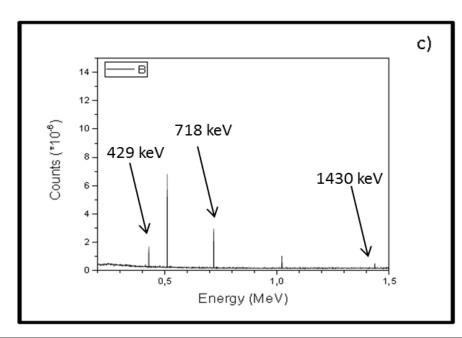
0 0

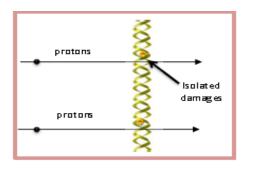
00000

n

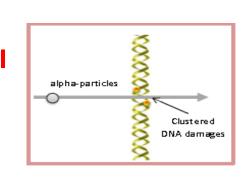
010

0


0


 \odot

00


Device and method for **enhanced proton therapy** and simultaneous **prompt gamma-ray imaging** irradiating an object (e.g. cancer) that contains a **mixture of 11B and 10B**:

- EPO Application (E16002)
- Institute of Physics (80%), INFN (20%)

Biological effect

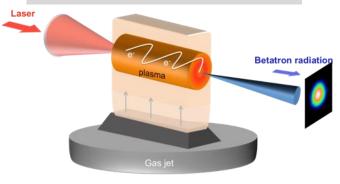
0

DPEAN UNION bean Structural and Investing Funds ational Programme Research, lopment and Education

pB therapy

Proto n

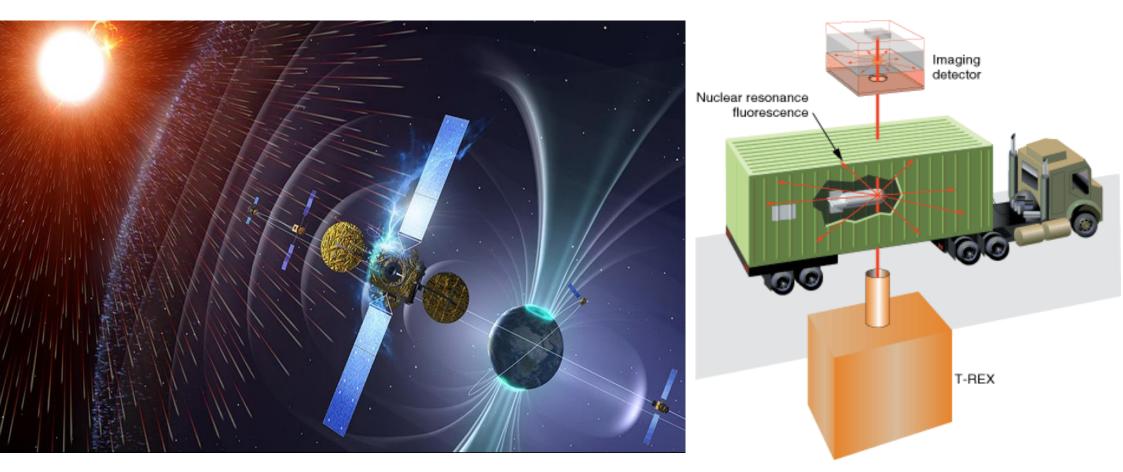
beam


3D imaging applications

µCT of mouse embryo taken with a laser driven x-ray beam

X-rays from relativistic ebeams, Betatron and Compton

EUROPEAN UNION European Structural and Investing Fund Operational Programme Research, Development and Education



Date: 26-Nov-19

Space & Security

Testing of components for space environment

Testing components exposed to extreme radiation levels (space application) for radiation hardness

Nuclear interrogation and national security

Narrowband x-ray or neutron induced gamma emission Element/isotope mapping of samples via nuclear activation

Spin-off: CARDAM Solutions, Ltd.

- Mathematical simulations
- Advanced material development
- Safety and security systems

Access to infrastructure

Date: 26-Nov-19

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

International cooperation and User

MEP

community

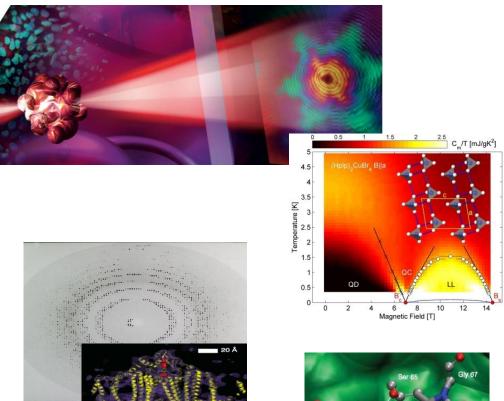
JAEA, NIFS

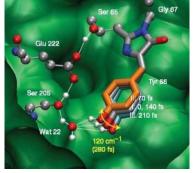
Osaka Universit

- I00% capacity operated by ELI ERIC
- Open excellence driven access
 - 6 laser systems
 - 7 beamlines
 - 9 user stations
- First call in 2019
- User community estimate
 - Originating from over 30 countries
 - 300 experimental weeks for 1000 users per year at full operation

LNS-INFI

LOA

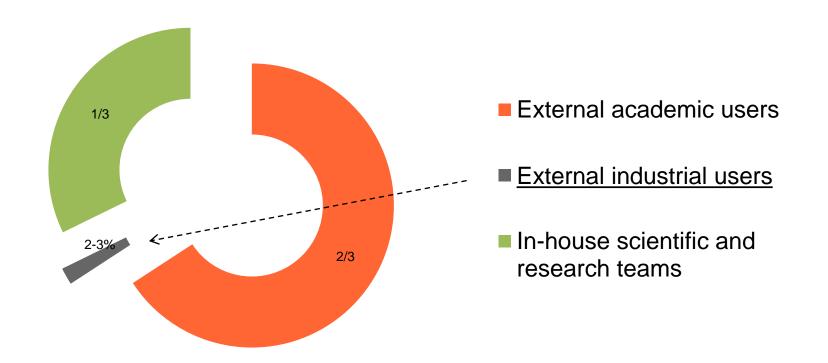

ELLAPLS



Scientific programs for early experiments

Atomic, Molecular and Optical Science and Coherent Diffractive Imaging

- Studying liquids being mixed in-situ and tracking chemical reactions
- Characterising materials at atomic-, nano-, and micro-scopic
 lengthscales
- Studying dynamic phenomena from milli- to femto-second time resolutions (time-resolved studies)



Lasers and all beamlines will be available for international users to accomplish their own research projects, development of technologies and know-how, and use or test their equipment

Access modes

USER OFFICE

 Receiving proposals via Electronic project office (remote registration, submitting, experiment results, feedback, etc.), distribution to relevant pillars

Academic users

- <u>Open Access Policy</u>: open to all researchers, based on open competition and selection of the proposals, evaluated by on the sole criterion of scientific excellence
- Non-proprietary access
- ELI Peer-review panel: evaluation and assessment of scientific/technological quality
- General non-discrimination principles

Industrial users

- Proprietary access
- NO Peer-review evaluation, but ELI Proprietary Project Approval Panel

Proposed access categories

Non-proprietary research

- Scientific excellence
- Peer-review assessment
- Dissemination of results via publications and scientific journals
- Access is funded from public sources, grants, projects, etc.

Proprietary research

- Industry-related research, return on investment expected
- Assessed only by technical feasibility, legality, safety and ethics (Proprietary Project Approval Panel)
- Confidential, no requirement to publish results
- A fee would be charged to cover operational costs of the ELI facilities (time used and services provided)

Individual and group access

Individual researchers, research teams or research consortia

Proposed access time

Call for access

- Calls published for available beamlines (non-proprietary access)
- On-going for proprietary access

Time slots for access

- Beam-day: 8 hours
- Beam-week: 40 hours

Fast track access

- Standard will be a beam-time waiting list scheduled on an operational plan
- Fast track access for short expiration date (bio projects)

Long term access

- Projects requiring long installation / assembling of equipment
- Equipment could be used by other users
- This user will not be required to re-submit proposals to access the infrastructure

Intellectual Property policy

Legal conditions

- Reflect national legislation of each pillar
- Experiment performed under contract guaranteeing complete confidentiality, the results are available only to the customer
- Non-disclosure agreement (NDA) signed

Ownership of Intellectual Property (IP)

- Standard IP policy principles for research infrastructures apply
- Ownership of IP is split in a ration that reflects financial and human contribution
- Always based on a written agreement
- Proprietary research full IP rights belong to the user

Protection of created Intellectual Property

- Patent costs are divided in a ratio reflecting the ownership rights
- Patent exploitation is priority for technology transfer activities

Support services

Infrastructure

- User office planning visits to ELI pillars, administrative support, travel arrangements, etc.
- Available laboratories for experiment (sample) preparation
- Grant office assistance with preparing new joint collaboration projects with industry

Personnel

- Industrial Liaison Scientist assistance to industrial users with no prior experience with research infrastructures / laser facilities
- Clear explanation of available techniques to industrial user
- Support to experiment preparation, data collection and data analysis
- Reporting and data sending

Thank you for your attention!

ANY QUESTIONS???

Aleš Hála Head of technology transfer unit

26 November 2019

