Design and test-beam results from the FoCal-H demonstrator prototype

Radoslav Simeonov*

on behalf of ALICE Collaboration
Outline

• FoCal detector for ALICE Upgrade
• 2021 FoCal-H prototype
 – Design and performance
• Preliminary results and MC studies
• Summary and conclusions
ALICE Upgrade - FoCal

FoCal-E: high-granularity Si-W sampling sandwich calorimeter for photons and π^0.

FoCal-H: conventional metal-scintillator sampling calorimeter for photon isolation and jets.

$3.4 < \eta < 5.8$
ALICE Upgrade - FoCal

Explore the small-x structure of nucleons inside nuclei down to Bjorken-x of $\sim 10^{-6}$

Observables in $3.4 < \eta < 5.8$
- π^0 and other neutral mesons
- Isolated (direct) photons
- Jets
- J/ψ and other quarkonia correlations
- UPC Physics
FoCal-H 2021 Prototype

- **Spaghetti-type calorimeter**
 - capillary tubes concept by the IDEA collaboration

- **Quadrangular prism**
 - Copper tubes OD – 2.5mm, ID - 1.2mm
 - Scintillator fiber - diameter 1.0 mm
 - 95 x 95 x 550 mm3
 - 36 x 40 = 1440 scintillating fibers

- **2021 Readout system**
 - Onsemi MICROFC-60035-SMT-TR1 SiPMs with 35 µm cell
 - Two CAEN A1702 boards used
 - 32 channels each
 - 48 active during TestBeam
 - 12 bit ADC, measures only the total charge per channel
 - 1 ADC for all channels
 - DATA transfer via Ethernet
 - Root based software for DAQ
 - Focus on readout of central 32 channels
FoCal-H 2021
Prototype TestBeam

SPS H6 Beamline
EHN1 (building 887, Preveissin site), CERN

- up to ~120 GeV
- 4 different systems
- various different configurations tested in 13 days
Focal-H 2021 Prototype Preliminary Results

- Particles traversing along the scintillating fiber - result as peak in the total energy distribution
- Change incident angle to reduce effect
- Reproduced in MC

- Charge reconstruction
- Beam energy dependence follow qualitatively expected trend
Monte-Carlo studies

- **GEANT4 based simulation**
 - Geometry and materials description
 - Physics list: FFTP_BERT (also QGSP_BERT checked)
 - Signal: energy deposit in the plastic scintillator fibers
 - Scintillation, light propagation, SiPM response, digitization - considered in an effective manner

- **Main goals**
 - Precise data analysis
 - Total charge studies
 - Saturation estimation
 - Beam decomposition

- **Tests for future prototype designs**
FoCal-H 2021 Prototype
Final results

- Electrons peak position in MC matches the DATA
- DATA total charge distribution described by a weighted sum of simulated e, π, μ, p
- Consistency between MC and DATA
Prospects

- **PS TestBeam, 8 - 16 June 2022**
 - Readout studies
 - Work with additional detector system

- **SPS TestBeam, Autumn 2022**
 - 9 modules, 3x3 construction
 - Each module – 6.5 x 5.8 x 110 cm³
 - Capillary tubes, inner diameter 1.1mm, 596 * 1mm scintillating fiber
 - Shower containment
 - Energy resolution
 - Beam energy scanning
Conclusions

- The FoCal-H demonstrator prototype was assembled
- Stable operation and performance achieved during a test run in 2021
- Channeling verified and its effect is being evaluated
- MC description consistent with DATA
- Next prototype preparations are ongoing