Calibrating the Deep Underground Neutrino Experiment (DUNE)

Rhiannon Jones, for the DUNE Collaboration University of Sheffield, UK

CALOR 2022 19th International Conference on Calorimetry in Particle Physics May 16th - 20th 2022

Overview

- Introduction to the DUNE detector systems
 - Liquid argon time projection chamber (LArTPC) technology
- Overview of the DUNE physics program
- Calibration procedures under development
 - Focussing on the far detector (FD)
 - Largely similar at the near detector (ND)

B. Abi et al 2020 JINST 15 T08008

Probability of detecting electron, muon and tau neutrinos

The DUNE LArTPC

APA

The first, *horizontal drift*, DUNE FD module will house **150 APAs**, with 50 TPCs residing between each APA-CPA pair

14 m

- CP-phase, δ_{CP}
 - Significant CP violation discovery potential over wide range of true δ_{CP} values within 10 years

Snowmass Neutrino Frontier: DUNE Physics Summary (2021). arXiv:2203.06100

- CP-phase, δ_{CP}
 - Significant CP violation discovery potential over a wide range of true δ_{CP} values within 10 years
- Mass ordering
 - Unambiguous measurement of the neutrino mass ordering for all values of $\delta_{\rm CP}$ within the first few years

- CP-phase, δ_{CP}
 - Significant CP violation discovery potential over a wide range of true δ_{CP} values within 10 years
- Mass ordering
 - Unambiguous measurement of the neutrino mass ordering for all values of $\delta_{\rm CP}$ within the first few years
- Astrophysical neutrino searches
 - Solar neutrinos
 - Supernova neutrinos
- Atmospheric neutrino searches
- Beyond the Standard Model (BSM) searches

Multiple features of the DUNE experimental program will facilitate these measurements, including:

- Unprecedented control of the systematic uncertainties using the near detector system
- Liquid argon technology provides mm-scale resolution of neutrino interactions
- Expertise gained from ProtoDUNE
 - A multi-system prototype for DUNE
- Calibration of the detector systems

Calibrating the DUNE FD LArTPCs

Calibration approach

- Determine the components of the detector response which measurements depend on
- Calculate the response of the detector to these dependencies using "standard candles"
- Establish the calibration timescale required to achieve **physics precision goals**
 - GeV-scale: < 2% (5%) energy scale uncertainty on leptons (hadrons)
 - MeV-scale: **< 5%** energy scale uncertainty
- Ultimately, the simulation will be updated such that it better-reflects DUNE data

Calibration sources

- Naturally-occuring
 - Cosmic muons
 - Atmospheric neutrinos
 - Intrinsic radioactive isotopes
- Beam particles
 - Neutrinos
 - Neutrino interaction products
- Hardware systems under development
 - Ionisation laser system
 - Pulsed neutron source
 - Radioactive source deployment system

Discussed in this talk

Detector response dependencies

Dependency	Definition	Measurement significance
Electric field	Goal field strength is 500 V/cm in each DUNE TPC	Precision map of the uniformity is essential in determining the ionisation electron origin
Recombination	lonisation electron recombination with positively-charged argon ions	Impacts the number of electrons reaching the wire planes, E-field-dependent
Electron lifetime	Drift time before electrons attach to electronegative impurities. Goal: >3 ms	Impacts the number of electrons reaching the wire planes, purity-dependent
Electron diffusion	Longitudinal and transverse spread of the electrons as they drift in the TPC	Affects the signal shape and the electron distribution across wires
Electronics	Gain [mV/fC], wire field response, electronics response	Definition of the absolute energy scale and signal distribution on wires

Cosmic-ray muons

- DUNE FD MC simulations: **4,750 primary muons** in the active volume of a single 17 kt module per day
 - 1.8% (around 90/day) stop in the detector
- Stopping and through-going muons are standard candles for drift-dependent calibrations
 - Electron lifetime, recombination & detector alignment
- Source of other standard candles
 - δ-ray & Michel electrons
- Electron lifetime can be calculated from the x-position-dependence of the muon charge depositions
- ProtoDUNE achieved **24 ms** electron lifetime¹

¹B. Abi et al 2020 JINST 15 P12004

Cosmic-ray muon energy calibration

- Look at the true-energy dependence of through-going muon track charge depositions
 - Determine how best to mitigating this truth-level dependence in data
 - Quantify any impact on the energy scale in the form of a systematic

Cosmic-ray muon energy calibration

- Look at the true-energy dependence of through-going muon track charge depositions
 - Determine how best to mitigating this truth-level dependence in data
 - Quantify any impact on the energy scale in the form of a systematic
- Use the well-characterised behaviour of stopping muon track energy depositions
 - As a function of residual range, the distance from the end of the track

University

- π^0 invariant mass is a standard candle
- Used for calibrating the electromagnetic energy reconstruction
- π^0 are available from multiple sources
 - Only **0.8% (around 40/day)** of the primary cosmic-ray muons produce at least 1 π^0 in the DUNE FD
 - Around **200** π^0 /day in total are produced the DUNE FD
- It is difficult to reconstruct the full electromagnetic shower energies of the photon decay products
- Procedures for calibrating with π⁰'s have been developed by other experiments

δ-ray activity surrounding a 400 GeV muon

Michel and δ-ray electrons

- Used to calculate the low-energy electron energy scale
 - Critical for the astrophysical neutrino program
- Michel electrons occur at the end of a stopping muon
 - Low statistics but easy to reconstruct

- **δ-rays** are produced along muon tracks
 - Increased rate with muon energy
 - Extremely high statistics but often very few hits

Images from all 3 wire planes are shown

Radioactive isotopes

- ³⁹Ar is naturally present in the detector
 - Beta decays have end-point energy of 565 keV
 - Decay rate of ~1 Bq/kg
 - High statistics
- Electron lifetime, recombination and electronic noise effects on the spectrum are largely separable
 - ProtoDUNE have successfully used the relative change in spectra to predict the electron lifetime at the % level
- ⁴²Ar will be present^{2,3}, though less abundant than ³⁹Ar
 - ~0.1 mBq/kg
 - Higher energies possible, just below 4 MeV

²<u>A S Barabash et al 2016 J. Phys.: Conf. Ser. 718 062004</u>, ³arXiv:2203.00740

Ionisation laser system

- Construct drift velocity and electric field maps from track position distortion measurements
- Facilitates a fine-grained estimate of the electric field in space and time
- Multiple periscopes placed in the detector in order to maximise coverage
 - FC-penetrating (1) and non-penetrating (2) designs
- Possible measurements:
 - E-field
 - Drift velocity
 - APA alignment

Pulsed neutron source

- Neutron capture in ⁴⁰Ar: $\mathbf{n} + {}^{40}\mathbf{Ar} \rightarrow {}^{41}\mathbf{Ar} + 6.1 \text{ MeV } \mathbf{\gamma}$
 - Well-characterised γ cascades from dedicated experiments
- Deuteron-deuteron (DD) source used
 - Possibility for high statistics

³arXiv:2203.00740

- ⁴⁰Ar has an anti-resonance at 57 keV where the elastic scattering cross-section is low
 - High detector coverage from long-range neutrons
- Possibility for characterising the low energy threshold region of DUNE (5-10 MeV)
 - Valuable for low energy recombination and energy scale calibration measurements
 - Valuable for low energy charge and light calibrations
 - Critical for astrophysical neutrino program

19 Rhiannon Jones | Calibrating the Deep Underground Neutrino Experiment

Summary

- There are many calibration procedures under development for DUNE
 - Software and hardware-based techniques
- Challenges introduced by the detector response will be carefully addressed in order to,
 - Minimise the systematic uncertainties to achieve the precision goals
 - Eliminate data-MC biases in all physics measurements
- Will leverage ProtoDUNE data where possible in order to mitigate the challenges faced in operating an experiment on the scale of **DUNE**

Thank you!

Backup slides

Active-sterile neutrino mixing sensitivities

BSM in **DUNE**

- Search for active-sterile neutrino mixing
- Searches for non-unitarity of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
- Searches for nonstandard interactions (NSI)
- Searches for violation of Lorentz or charge, parity, and time reversal symmetry (CPT)
- Searches for neutrino trident production
- Search for light-mass dark matter (LDM)
- Search for boosted dark matter (BDM)

PMNS matrix non-unitarity parameter sensitivities

arXiv:2002.03005v2, Eur. Phys. J. C (2021) 81: 322

Cosmic-ray muons in DUNE

Landau-Vavilov

The Landau-Vavilov formula dictates the expected behaviour of **muon energy depositions per unit length** with respect to its **energy** and **'thickness'** (density*pitch).

It should be possible to use this formula in the calibration of the energy scale of the detector.

This could either be defined in an energy-dependent or independent way.

Though energy-dependent is very difficult due to reconstruction complications with through-going muons.

Landau-Vavilov

Param.	Value	Comment		
m	0.511 MeV/c ²	Electron mass		
I.	188x10 ⁻⁶ MeV	Mean excitation energy		
j	0.2	Value from here		
δ(βγ)	See RHS of slide, based on <u>Sternheimer</u>	Density effect coefficient		
β	v/c	Relativistic beta		
γ	p/m _µ	Relativistic gamma		
ξ	(k/2)*(Z/A)*(x/β²) MeV	-		
k	0.307075	4π N _A r _e m MeV cm / mol		
х	(ρ*dp) kg/cm ²	Thickness (density * pitch)		
Peak values used to construct plot on RHS				
dp	0.55 cm	Peak pitch in CR muon sample		

Cosmic-ray muons

- DUNE FD MC simulations: **4,750 primary muons** in the active volume of a single 17 kt module per day
 - 1.8% (around 90/day) stop in the detector
- Stopping and through-going muons are standard candles for drift-dependent calibrations
 - Electron lifetime, recombination & detector alignment
- Source of other standard candles
 - δ-ray & Michel electrons
- Measured a 4% τ_e bias using a reconstructed approach in the DUNE FD MC simulation
 - The cause is currently being understood
- ProtoDUNE achieved **24 ms** electron lifetime¹

¹B. Abi et al 2020 JINST 15 P12004

Cosmic-ray muons

- Use the well-characterised behaviour of stopping muon energy depositions along the length of the track
- ProtoDUNE were capable of getting excellent agreement in stopping muon dE/dx vs residual range between their calibrated measurements, MC and theoretical expectation

 π^0 Invariant mass calculated with different photon selection criteria.

When adding **true** energy requirements to the photon selections the measured invariant mass bias, Δm , reduces from ~75 MeV/c² (56% of the true value) to ~25 MeV/c² (19% of the true value).

The width of the measured invariant mass peak also reduces substantially.

Reconstruction-based photon/ π^0 selections are under development.

The University Of

Ionisation laser system

- Construct drift velocity and E-field maps from track position distortion measurements
- Fine-grained estimate of E-field in space and time
- Multiple periscopes in the detector to maximise coverage

Advantages	Complexities	Periscope Structrure
High statistics	Field cage aperture required for design 1	**
Well defined tracks	Shadowing of FC profiles possible in	
Possible measurements:	design 2, if not mitigated	Design 1
E-field & drift velocity	Design-dependent coverage	
APA alignment		Retraction me
Photon system efficiency		Penetrates th
30 Rhiannon Jones Calibrating	the Deep Underground Neutrino Experiment	

Radioactive source deployment system

- Radioactive sources can be deployed within the detector
 - Primarily ⁵⁸Ni (9 MeV γ)
 - Also neutron & alpha (6 & 15 MeV γ) sources
 - At known locations with known activity
- Measure the response of the detector to photon signals
 - Within the energy range of interest to the DUNE astrophysical program
- Calibrate response to single isolated solar v events
 - Determination of radiological background suppression capabilities

External measurements

SBN Program

- 3 LArTPC detectors in the Booster neutrino beam at Fermilab
- Will be running before DUNE switches on
 - Mature calibration procedures defined in each detector with possible applications to the DUNE ND & FDs
- Possibility for use of data in DUNE procedure development
- Substantially different, narrow-band, neutrino energy spectrum

ProtoDUNE

Both are surface detectors with different detector response parameters, such as space charge

- Multiple iterations
 - Single phase (SP)
 - Dual phase (DP)
 - Dedicated DUNE R&D
 - Same E-field
 - Same drift length
- Immediate use of ProtoDUNE data in the DUNE calibration procedure development
- Charged particle beam
 - Not neutrino beam

Cryostat

