NOBLE LIQUID CALORIMETRY FOR FCC-EE

Nicolas Morange, on behalf of the FCC Noble Liquid Calorimetry group CALOR 2022, Brighton, 16 May 2022

Noble Liquid Calorimeters

- Decades of success at particle physics experiments: HERA, DO, NA31, NA48, ATLAS...
- Mostly LAr, a bit of LKr
- Simple principles
- Many good properties
- Not too expensive to build

LAr calorimetry today: ATLAS experiment

- Excellent physics performance matching its specs.
 - Instrumental to Higgs boson discovery !
 - Resolution: $10\%/\sqrt{E} \oplus 0.2/E \oplus 0.7\%$
 - Linearity at per-mille level over 4 orders of magnitude
 - Stability over time at 10⁻⁴
- 14 years of successful operation
 - See presentation by Julia Gonski
- Electronics upgrades to make it cope with HL-LHC
 - See presentation by Alessandra Betti

ESPP 2020: An e^+e^- Higgs factory is the highest-priority next collider

The possible next machine at CERN

- 2-4 interaction points: several detectors / technologies needed
- Very advanced R&D on new calorimeter concepts: highly-granular (CALICE), dual-readout (DREAM)
- R&D on LAr calos stopped 25 years ago
 - Noble Liquid calos can be competitive, but R&D has to be restarted to explore new ideas

Requirements for FCC-ee

- Excellent shower shape discrimination for event classification
- Unprecedented hadronic resolution: \sim 4% at 50 GeV
- $\bullet \rightarrow$ Points toward high granularity, optimised for use in Particle Flow algorithm
- High EM resolution even at low energy for b and *τ* physics at the Z peak

NOBLE LIQUID CALORIMETRY FOR FCC

Initial studies for FCC-hh

- R&D initially started for ESPP studies for an FCC-hh calo
- Radiation levels at FCC-hh make Noble Liquid the only viable option

R&D then shifted to calo concept for FCC-ee

- "Simpler" FCC-ee conditions ⇒ optimization towards ultimate performance
- Small but active community: CERN, IJCLab, Charles Univ. Prague, Copenhagen
- First ever workhop organised at IJCLab in April 2022

Achieving high granularity for PFlow, π^0 identification

- High granularity electrodes
- High density feedthroughs

High EM energy resolution

- Minimize dead material (cryostat, solenoid)
- Low noise electronics

Simulations to allow performance optimization

- Choice of absorber (Pb, W) and active material (LAr, LKr)
- Optimization of granularity

CONCEPT OF HIGH GRANULARITY ELECTRODES

Reaching $10 \times \text{ATLAS granularity}$

- 200000 cells \rightarrow few million cells
- Readout in ATLAS uses simple copper/kapton electrodes
- Issue: traces to route signals to front or back of electrode take space !
- For 10× more granular: go to multilayer PCB to route signals in a deep layer

Basic design

- Multi-layer PCB cannot be bent to accordion as ATLAS Kapton electrode
- \Rightarrow Straight planes inclined around the barrel
 - Simulation in a specific IDEA-LAr setup

General considerations

- Sampling calo: baseline with Pb absorber and LAr active material
- PCBs as readout planes: lots of possibilities
 - Projective cells along η and ϕ
 - Possibility to group electrodes into cells
 - Finer segmentation where needed, i.e 'strips' in ATLAS for π^0 rejection
 - adjust depth of each layer

Barrel

- Tilted planes around barrel: non-trivial geometry
- Gap widening at high radius
- \Rightarrow non-constant sampling fraction within a cell
- \Rightarrow mitigated by high longitudinal segmentation
 - 12 layers in baseline design

Endcaps

- Simple design: planes perpendicular to beam axis
- May be revisited for mechanical considerations

Principle

- HV layer capacitively coupled to readout layer
- Signal transferred from both sides to readout trace through a via
- Shielding traces reduce cross-talk from other segments

Calculation of cell properties

- Multi-parameter optimisation:
 - Trade-off capacitance (noise) / cross-talk ?
 - What is the maximum density of signal traces ?
- Studies ongoing with simulations and building prototypes

ELECTRODES PROTOTYPES

Simulations of capacitances and cross-talk

- Use Cadence/Sigrity and FEM tool ANSYS HFSS
- Cell capacitance driven by readout shield capa
- Cross-talk limited < 0.2% for long shaping times

Prototypes

- First prototype "test structure" built
 - Learn subtleties of measurements
 - Validate simulation tool ⇒ good agreement for frequencies of interest
- Next prototypes designed and being fabricated
 - Varying sizes of shields, depths of layers, etc...
 - Measurements of realistic cells

HIGH DENSITY FEEDTHROUGHS

Signal extraction from cryostat

- High density feedthroughs needed in case readout electronics outside of cryostat
- Aim for \sim $\times 5$ density and \sim $\times 2$ area wrt ATLAS

Ongoing CERN R&D

- Prototypes of 3D-printed epoxy resins structures with slits for strip cables, glued to the flange
- Leak tests and pressure tests at 300 K and 77 K
 - Suitable materials identified
- Stress / deformation simulations of complete
 Morange designs at 300 K and 77 K

87 H

THIN CRYOSTAT

Minimizing dead material in front of calo

- Crucial for low energy measurements at FCCee
- Ongoing R&D for cryostats using new materials and sandwiches
 - Generic R&D at CERN as cryos will be used for solenoids in all experiments
 - Synergy with progress in aerospace
 - Test microcack resistance, sealing methods, leak and pressure tests
 - Address CFRP/Metal interfaces
- Promises for 'transparent' cryostats: few % of X_0 !

		Sandwich B			iseline	
	UHM CFRP	HM CFRP	IM CFRP	AI	ті	
Avg. Th. [mm]	3.5	3.8	4.9	4.0	1.5	
Material budget X/X ₀	0.0134	0.0147	0.0189	0.045	0.034	
X ₀ + %	-70%	-67%	-58%	x _o	-24%	
Skin Th.[mm]	1.2	1.2	1.6	1.7		
Core Th. [mm]	25	33	40	40		
Total Th. [mm]	27.4	35.4	43.2	43.4	101	
Thickness + %	-37%	-18%	0%	т	+133%	

NASA's lineless cryotank

Goals of low noise

- ullet Good resolution even for \sim 300 MeV photons
- Measure MIPs deposits

Master formula

- Dominant noise term goes as $C\sqrt{4kT/(g_m\tau_p)}$
- Where C depends on cell capacitance and on the transmission line
- au_p can be much larger than in ATLAS: 50 o 200 ns

Cold electronics ?

- Gain on g_m, T and C (short transmission line) !
 - Noise requirements can be achieved
- No radiation hardness issue at FCCee, could simplify feedthrough design
- Challenges are heat dissipation and difficulty of repairs

Warm electronics ?

- A la ATLAS, with longer shaping
- First calculations indicate low enough noise levels achievable (*S*/*N* > 3 for MIPs)

$C_{cable} = \frac{\tau_{delay}}{Z}$	ENC (keV)	Peaking time = 500 ns		
Warm electronics L = 5 m Couble = 500 pF / 1 nF clebte = 500 pF / 1 nF L=10 cm Couble = 10 pF / 20 pF	Cd = 100pF - 50/25 Ω	1400 / 2500		
	Cd = 200pF - 50/25 Ω	1600 / 2800		
	Cd = 400pF - 50/25 Ω	2100 / 3200		
	Cd = 800pF - 50/25 Ω	2900 / 4100		
	Cd = 100pF - 50/25 Ω	140 / 150		
	Cd = 200pF - 50/25 Ω	250 / 260		
	Cd = 400pF - 50/25 Ω	470 / 470		
	Cd = 800pF - 50/25 Ω	910 / 910		

TOWARDS A FIRST CALORIMETER PROTOTYPE

Goal: $\sim 40 \times 40$ cm proto in a few years

Only testbeam will tell if the concept will work

Mechanics

- Work on absorbers to start in Autumn
- Spacers: ideas for 3D-print

Readout electronics

- Requirements not too far from other projects
- SKIROC chip for CALICE good candidate
 - Does not work at cryo temperatures
 - Energy consumption too high
 - Can be used for warm electronics
- DUNE readout electronics
 - Dynamic range not large enough
 - Sufficient for cold electronics in a first prototype

Cryostat

• Possible synergy with first carbon fiber prototype from CERN

- in two gains – 16-deep Analog memory
- Low power 25µW/Ch with power pulsing
- Embedded readout (see SPIROC)
- SiGe 350 nm, produced in 2010

Geometry implemented in FCC SW

- 12 layers, 22 X⁰
- 2x1.2 mm LAr, 2mm Pb/Steel, 1.2mm PCB, inclined by 50°
- Typical cell size: 2x2x3 cm³
- Reconstruction and simple cluster corrections enable first performance studies

Optimizing the design

- Important design options: Pb vs W, LAr vs LKr
- Photon energy resolution: baseline design gives $8\%/\sqrt{E}$
- Preliminary comparisons performed

Optimizing the granularity

- Use of PCB gives large flexibility
- First studies focusing on π^0 identification efficiency and classification of τ decay modes
 - Also points towards using LKr to benefit from smaller *R*_M (4cm with LAr)

Next step: move to jet physics

- Jet energy resolution of $\sim 4\%$ at 45 GeV requirement for Higgs physics
- Pandora PFA integration in FCC SW in progress
- Assuming some HCAL, will allow to perform end-to-end detector optimization
- Calo concept also well suited for new clustering techniques, ML approaches

$Recon \rightarrow$	_+	_± _0	-± 2-0	_± 2_0	-± 4-0.
Gen ↓	$\pi - \nu$	$\pi = \pi - \nu$	$\pi = 2\pi \cdot \nu$	$\pi = 3\pi \cdot \nu$	$\pi = 4\pi \cdot \nu$
$\pi^{\pm} \nu$	0.9560	0.0425	0.0010	0.0003	0.0002
$\pi^{\pm} \pi^0 \nu$	0.0374	0.9020	0.0586	0.0016	0.0002
$\pi^{\pm} 2\pi^{0}\nu$	0.0090	0.1277	0.7802	0.0808	0.0022
$\pi^{\pm} 3\pi^{0}\nu$	0.0036	0.0372	0.2679	0.5972	0.0910

Timing capabilities

- ATLAS resolution for EM showers: \sim 260 ps at 20 GeV, 130 ps at 100 GeV
- Time resolution to be evaluated on FCCee design
 - Electronics can be optimized, but limitations from stochastic ionization
- Overall detector design choices will impact usefulness of LAr timing: presence of a timing layer, dE/dx for PID...

Doping of Noble Liquid

- Increase signal yield by enhancing drift velocity
- R&D performed >25 years ago, never used in a calorimeter (fears of unsufficient radiation hardness)
- Could be studied again for FCCee use-case

Noble Liquid Scintillation

- Fast signal used in Dark Matter Noble Liquid detectors
- If measured in a calorimeter, would provide 'dualreadout'
- Huge design challenge to collect and measure this light

Noble Liquid Gas is an excellent technology for calorimeters

• Resolution, granularity, linearity, uniformity, stability

An appealing candidate for a FCC-ee detector

- Small but active R&D starting again to shape future detectors
- Gaining evidence that high-granularity LAr could be a very versatile solution, fulfilling stringent FCC-ee requirements
 - Capacitance and cross-talk of high-granular readout PCBs good
 - Successful R&D on high-density feedthroughs
 - Synergy with "transparent" cryostats
 - First simulations show great performance can be achieved
- Starting the design of a full detector concept around such a calorimeter

