RADiCAL – Precision-timing, Ultracompact Radiation-hard Elecromagnetic Calorimetry

T. Barbera, K. Ford, A. Heering, C. Jessop, Yu. Musienko, R. Ruchti, D. Ruggiero,

D. Smith, M. Vigneault, Y. Wan and M. Wayne

University of Notre Dame

T. Anderson, N. Chigapurupati, B. Cox, M. Dubnowski, R. Hirosky, A. Ledovskoy and C. Perez Lara

University of Virginia

C. Hu, L. Zhang and R-Y. Zhu

California Institute of Technology

U. Akgun, P. Debbins, D. Blend, M. Herrmann, G. Karaman, O. Koseyan,

M. Mohammed, Y. Onel, and J. Wetzel

University of Iowa

From M. Aleksa, et al, <u>Calorimeters for</u> <u>the FCC-hh</u>, CERN-FCC-PHYS-2019-0003, 23 December 2019.

Table 1: Dimensions of the envelopes for the calorimeter sub-systems (including some space for services) and the maximum radiation load at inner radii (total ionising dose is estimated for 30 ab^{-1}). The abbreviations used in the first column are explained in the text.

RADiCAL - Ultracompact Sampling EM Calorimetry Modules for beam testing and comparison with simulation.

Objectives

Energy Resolution: $\sigma_F/E = 10\%/\sqrt{E \oplus 0.3/E \oplus 0.7\%}$ up to $|\eta| < 4$. Fast response: $\sigma_t = 30-50$ ps Performant under FCC-hh operating conditions

- Scintillators
 - Crystals •
 - Ceramics •
- Wavelength Shifters
 - Fluorescent dyes
 - Liquids •
 - Ceramics ٠

- Optical Transmission Elements
 - Fiber optics/filaments
 - Capillaries
- Photosensors
 - SiPM
 - GaInP
 - SiC, Diamond, other

Fast and Ultrafast Inorganic Scintillators

	BaF ₂	BaF ₂ :Y	ZnO:Ga	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm ³)	4.89	4.89	5.67	5.35	4.56	5.94 ^[1]	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X _o (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ª (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19 ^d	0.36 ^d	6.5 0.5	100	35 ^e 48 ^e	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57 ^d	110 ^d	2,100	30,000	25,000 ^e	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 < <mark>0.6</mark>	600 <0.6	<1	1.5	4	148 <mark>6</mark>	40	820 50	191 25	800 80	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334
ecember 8. 2019	cember 8, 2019 Presentation by Ren-Yuan Zhu in the 2019 CPAD Workshop at Wisconsin University, Madison, WI											

December 8, 2019

Presentation by Ren-Yuan Zhu in the 2019 CPAD Workshop at Wisconsin University, Madison, WI

RADiCAL - Precision-timing, Ultracompact, Radiation-hard EM

Calorimetry - Ruchti R - CALOR 2022

LYSO:Ce and LuAG:Ce Comparison under Irradiation by protons and neutrons

RIAC values as a function of proton fluence for LYSO/LFS crystals and LuAG ceramics irradiated at CERN RIAC values as a function of 1 MeV equivalent neutron fluence for LYSO crystals and LuAG ceramics irradiated at LANSCE

New approach to the Fiberoptic Profile

Conventional Optical Fiber

Thick Wall Profile

- Optical Path in WLS mediu m is maximal.
- Whole structure typically polymer - is not rad hard.
- Optical Path in WLS medium is significantly reduced.
- High OH rad hard Quartz.
- Core liquid is generally more rad hard than polymer.

Transmission Studies in capillaries as a function of successive 50Mrad ⁶⁰Co gamma irradiation doses. ND Rad Lab.

RADiCAL - Precision-timing, Ultracompact, Radiation-hard EM

Thermionic Cooling of HPK SiPM (CMS)

Calorimetry - Ruchti R - CALOR 2022

Photosensor Development - SiPM

- <u>Pixelated Geiger-mode devices</u> with high photo efficiency across a broad spectral range.
- Intention is to exploit and further the <u>development of localized</u> <u>cooling</u> (TEC) of the SiPM to reduce noise and extend performance lifetime.
- Development of small pixel devices (5-7 μ m) to enhance efficiency and benefit from fast response time.

Modeled scenario of operation up to 4000fb⁻¹ (CMS)

Blue – (-35c operation, no annealing)

Red – (-45c operation, annealing at 40c)

SiPM Development at FBK

Time [days]

Photosensor Development – Large Band Gap Devices

- Larger Band-gap Technologies
 - For operation in very high radiation environments
 - GaInP pixelated devices have been fabricated.
 - Individual photon counting seen, similar to SiPM.
 - Device optimization needed to reduce surface currents seen in the latest version.
 - <u>Challenge here is the lack (currently) of a broad commercial market</u> to help drive development. Pursuing interested industrial partnerships.

Photo of a 4x4 mm² GalnP Photosensor consisting of 10 arrays of 0.5 x 1.5mm² size and containing 25 µm pixels

GaInP Photospectrum showing individual photopeaks. Left most (0) is the pedestal. Illumination at λ = 405nm.

IV curves for GaInP photosensors under illumination and dark field (blue).

I-V Curve

Test of a 4x4 array of W/LYSO:Ce with DSB1 WLS - filled Capillaries – CERN H4

Capillaries with the ruby core blocking

Geant4 Simulation of Energy Resolution (module shown in slide 3).

RADiCAL - Precision-timing, Ultracompact, Radiation-hard EM Calorimetry -Ruchti R - CALOR 2022

Preliminary Study of Timing Measurement using W/LYSO:Ce and DSB1 WLS Fibers and Capillaries

<u>Conclusion</u> and not a surprise: the more light you can collect the better the timing resolution.

<u>LYSO/W module, single channel time resolution with SiPM</u> <u>readout</u>. Waveshifter readout was either DSB1 WLS dye in a multiclad optical fiber (dots) or DSB1 WLS in a liquid-filled capillary (squares). FTBF, A. Bornheim et al.

<u>Motivates</u>: Capillary use with clear ends rather than ruby quartz ends and read out from both downstream and upstream ends of the capillaries.

RADiCAL - Precision-timing, Ultracompact, Radiation-hard EM Calorimetry -

New approach to timing measurement with RADiCAL Timing from WLS at Shower Max.

Specialized WLS Applications

- 1. To measure shower energy WLS runs the full length
- 2. To measure timing

WLS filament at Shower Max Remainder of capillary is filled with Quartz Fiber and fused solid. Capillary can be read out from both ends. WLS Light Yield as a function of distance from photosensor.

Blue: Energy Capillary Orange: Timing Capillary Geant4 Simulation of EM Shower of 50 GeV in a 3x3 array of RADiCAL Modules 14 x 14 x 114 mm³

Full energy measurement. Shower size set by Moliere Radius: $R_m = 13.7mm$

events (normalized)

Energy Fraction contained in Central Module

1.1 E_{3x3} / E_{beam}

Energy Fraction contained in 3x3 array

0.8

0.9

Shower Max Timing Simulation with RADICAL

<u>GEANT4 simulation of the time resolution</u> <u>expected from Shower Max</u>, using LYSO and DSB1 filament. Electrons of 50 GeV Shower size at shower max $\sim X_0 = 4.7$ mm

Profile of the energy at Shower Max In a LYSO/W Module with WLS filament at the Shower Max location

Shower Max Timing Simulation with RADICAL

Time resolution vs detected light yield at Shower Max

<u>GEANT4 simulation of the time resolution</u> <u>expected from Shower Max</u>, using LYSO and DSB1 filament. Electrons of 50 GeV Shower size at shower max $\sim X_0 = 4.7$ mm

Profile of the energy at Shower Max In a LYSO/W Module with WLS filament at the Shower Max location. Module Cross section imposed...

RADiCAL - Precision-timing, Ultracompact, Radiation-hard EM Calorimetry -

Ruchti R - CALOR 2022

Testing at Fermilab FTBF Negative Beam 12 < E < 28 GeV, Positive Beam E =120 GeV

Upstream: Silicon Tracking MCP for Timing/Trigger

RADiCAL Module Downstream: Pb glass for full EM shower containment.

First Look at Energy signals: Pb glass vs RADiCAL Module No tracking constraint (28 GeV negative beam)

Near term and Future

Near term (June 2022):

- Time Resolution for:
 - 12< E< 28 GeV negative beam
 - Electrons silicon tracking constraint
 - "Gammas" electrons without the tracking constraint
 - MIPs pions
 - 120 GeV positive beam
 - Protons Compare timing with BTL modules
- Spatial resolution of EM shower position reconstructed in the RADiCAL module vs incoming beam position from tracking

<u>Future</u>:

- Study of a Hexagonal Modules with simulation
- Advanced Rad-hard Photosensor R&D

Red: Energy Capillary WLS runs full module depth

Blue: Timing Capillary WLS at shower max only

Yellow: Calibration Clear leaky fiber runs full module length for laser light injection

Summary

- RADiCAL R&D to develop highly efficient, ultra-compact and rad hard EM calorimetry elements that are precision timing capable.
- Development and testing of modular elements that can provide:
 - 1. Energy measurement.
 - 2. Shower Max timing measurement.
 - 3. EM Shower Position derived from the region of shower max where the shower cross section is confined within a radiation length.
- Potential applications of the technique or components in other areas:
 - Endcap and Forward Calorimetry
 - Timing detectors
 - Scintillation/WLS detection over compact regions

Work Supported by in part by:

- U. S. Department of Energy: DE-SC0017810.006
- U. S. National Science Foundation: NSF-PHY-1914059

University of Notre Dame: Resilience and Recovery Grant Program